Optimized feed-forward neural networks to address CO₂-equivalent emissions data gaps: application to emissions prediction for unit processes of fuel life cycle inventories for Canadian provinces

From National Research Council Canada

  1. Will be available here on December 10, 2022
DOIResolve DOI: https://doi.org/10.1016/j.jclepro.2021.130053
AuthorSearch for: 1ORCID identifier: https://orcid.org/0000-0002-9248-6698; Search for: 1; Search for:
Name affiliation
  1. National Research Council of Canada. Energy, Mining and Environment
FormatText, Article
Subjectlife cycle inventory; life cycle assessment; greenhouse gases; machine learning; genetic algorithm (GA); data gaps
Publication date
Date created2021-12-10
Peer reviewedYes
NRC numberNRC-EME-56246
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifierea861c9b-2c7a-4505-a3d1-0b8235f4ea4f
Record created2021-12-20
Record modified2022-03-14
Date modified: