Optimized feed-forward neural networks to address CO₂-equivalent emissions data gaps: application to emissions prediction for unit processes of fuel life cycle inventories for Canadian provinces

From National Research Council Canada

Download
  1. (PDF, 1 MB)
  2. (PDF, 2 MB)
  3. (XLSX, 31 KB)
DOIResolve DOI: https://doi.org/10.1016/j.jclepro.2021.130053
AuthorSearch for: 1ORCID identifier: https://orcid.org/0000-0002-9248-6698; Search for: 1; Search for:
Name affiliation
  1. National Research Council of Canada. Energy, Mining and Environment
FormatText, Article
Subjectlife cycle inventory; life cycle assessment; greenhouse gases; machine learning; genetic algorithm (GA); data gaps
Abstract
Publication date
Date created2021-12-10
PublisherElsevier
In
LanguageEnglish
Peer reviewedYes
NRC numberNRC-EME-56246
Export citationExport as RIS
Report a correctionReport a correction (opens in a new tab)
Record identifierea861c9b-2c7a-4505-a3d1-0b8235f4ea4f
Record created2021-12-20
Record modified2022-03-14
Date modified: