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Supplementary Note S1. Initialization-dependency of the training stage 

To show the initialization dependence of network performance, the following experiment was 

carried out. For the “Fuel production” unit process, the network was trained with 20 random initial 

points. Supplementary Figure S2 presents the results of this experiment, confirming that the 

optimizer used for finding optimal model parameters (i.e. weights and biases) can depend on the 

initial point. 

Supplementary Note S2. Optimal Selection of Activation Function, Optimizer, and Loss 

Function Based on Heuristics 

To show the optimality of ReLU (Rectified Linear Unit) as an activation function, we train the 

topologically optimal FNNs with ten different activation functions available in Keras library 

(Chollet, 2015) and then compare the resulting performances. To save time, we only evaluate the 

top three contributors, accounting for 81 % overall contribution in fuel life cycles.  

As can be seen in Supplementary Figure S3 and Supplementary Table S3-S5, five out of nine 

activation functions are good, which are ReLU, SELU (Scaled Exponential Linear Unit), softsign, 

ELU (Exponential linear unit), and TanH (Hyperbolic tangent). However, ReLU generally yields 

optimal performance in comparison to the other activation functions. In other words, in our study, 

other activation functions are incapable of outperforming ReLU, hence confirming the optimality 

of our choice of ReLU for the activation function.  

In a similar vein, we train the topologically optimal FNNs with eight different optimizers 

available in Keras library (Chollet, 2015) and then compare the resulting performances. 

Supplementary Figure S4 and Supplementary Table S6-S8 demonstrate that four out of eight 

optimizers are good; adam, Nadam, Adamax, and RMSprop. In particular, the adam optimizer 

leads to optimal FNN performances. Similarly, none of the optimizers noticeably outperform adam 

although, Nadam, Adamax, and RMSprop can also work as well as adam depending on the FNNs. 

We observe that optimization among adam, Nadam, Adamax, and RMSprop seems unnecessary 
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because they can end up with nearly the same FNN performances. This result (i.e. that optimization 

on certain hyperparameters is unnecessary) has also been reported in (Song et al., 2017). Hence, 

the analysis presented herein confirms that our choice of the adam method for the optimizer is 

optimal. 

Regarding the optimal choice of the loss function, we also perform a systematic experiment to 

validate our a posteriori assumption on the optimality of MSE in our study. The networks are 

trained with three loss functions; MSE (Mean Squared Error), MAE (Mean Absolute Error), and 

Huber. Thereafter, the performances of the trained networks are measured by R2 score. 

Supplementary Table S9 shows the results of this experiment, confirming the other loss functions 

are not superior to the chosen loss function, i.e. MSE.  

Note that for all experiments mentioned above, in the training stage, the number of random 

initializations of model parameters is 50, meaning that each FNN is trained with 50 random model 

initializations and then the best performance is selected. As explained in the manuscript, this 

increases the chance of finding the global minimum of the non-convex loss function.  

In a nutshell, the general optimality of ReLU and adam as activation function and optimizer, 

respectively, in FNNs has been reported and explained in (Goodfellow et al., 2016). Furthermore, 

the reason that MSE was chosen is that there are no outliers in the data. In this section, we also 

performed experiments with these three hyperparameters to assure their optimality in our work. 

Hence, we conclude that, in our study, ReLU, adam, and mse are optimal activation function, 

optimizer, and loss function, respectively, leading to optimal FNN performance. 

Supplementary Note S3. Attributes impacts on identical networks 

To compare the attributes impacts under identical hyperparameters (values are listed in Table 1) 

and hidden topology, one hidden topology is required to be chosen for each contributor. 

Consequently, the hidden topology of Scenario I is chosen the same as the optimal hidden topology 
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found for Scenario II. The reason lies in the fact that the optimal hidden topologies of Scenario II 

are shallower and, in consequence, less complex than that of Scenario I (see section 3.2).  To save 

time, we only evaluate the top three contributors, accounting for 81 % of overall contributions to 

GHG emissions in fuel life cycles. 

Supplementary Figure S5 shows the results of the comparison of Scenario I and Scenario II 

under identical hyperparameters and hidden topology. Each panel shows the results for the 

prediction of CO2-eq emissions for the contributor named in the panel’s title. Moreover, 

performances of twelve networks are indicated in each panel. From left to right, the first ten 

networks correspond to Scenario I with ten different initializations and their hidden topologies are 

the same as the optimal hidden topology obtained for Scenario II. Note that regarding the first ten 

networks, we train 50 networks with different random initializations, and then the top networks in 

terms of performance are illustrated in Supplementary Figure S5. The two networks on the right 

correspond to Scenario I and II with their optimal hidden topologies.  

As seen in Supplementary Figure S5 for the prediction of CO2-eq emissions for each contributor, 

Scenario II consistently outperforms Scenario I in terms of network performance under the 

condition that the hidden topology and hyperparameters are kept identical. Supplementary Figure 

S5 confirms the superiority of Scenario II compared to Scenario I. Additionally, Supplementary 

Figure S5 shows that the optimization carried out by GA is successful because, for each 

contributor, the performance of Scenario I becomes poorer if the hidden topology is non-optimal. 

All in all, assessment of the attributes scenarios under identical hidden topologies unequivocally 

shows that Scenario I is incapable of reaching the accuracy obtained by Scenario II. The 

improvement is particularly noticeable for “Fuel production” and “Feedstock recovery”. 
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Supplementary Note S4. GA validation 

Supplementary Figure S6 illustrates the fitness evolution associated with the unit processes, as 

obtained through GA generations. The best fitness function, i.e. validation error, for each unit 

process drops sufficiently across generations. There is also no improvement during the last 

generations. In light of these two observations, at least local minima are successfully captured by 

the GA optimizer. The optimality of GA results can also be appreciated from the analysis carried 

out in Supplementary Note S3 where the performances obtained by non-optimal hidden topologies 

are less than optimal ones. Furthermore, Supplementary Note S5 presents learning curves for 

optimal ANNs, in which learning curves are acceptable due to the right network capacity obtained 

by GA, confirming the valid performance of GA. Taken altogether, the optimal hidden topologies 

proposed by GA are validated. 

Supplementary Note S5. Learning Curves 

The “early stopping” criterion is a regularization by which training stops if validation error 

increases for a certain number of epochs, known as “patience”, as learning progresses.  

Supplementary Figure S7 illustrates the RMSE errors of the training and validation sets during 

training by the consideration that the “early stopping” regularization along with “patience” of 25 

epochs is applied. 

Supplementary Figure S7 shows that the “early stopping” approach with  25 epochs as 

“patience” is generally successful for regularization in our study to avoid overfitting although 

negligible overfitting can be seen in Supplementary Figure S7(c, j) as training errors decrease 

while validation errors remain almost unchanged. Another result obtained from Supplementary 

Figure S7 is that the networks are not underfitted since the loss functions associated with training 

sets drop sufficiently; hence, models learn while the epoch marches forward. Consequently, 
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Supplementary Figure S7 reinforces the appropriate capacity of the networks designed in sections 

2.4 and 3.2, also supporting the valid performance of GA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

Supplementary Figure S1. Data Extraction From GHGenius 

 

 

Supplementary Figure S1. The automation COM-based workflow for data extraction from 

GHGenius through Python. Python initializes GHGenius and runs the Macro Codes behind 

GHGenius for the specific cases. Once the GHGenius computation is finished, Python collects the 

resulting data from GHGenius. This bidirectional communication is performed through 

“win32com”, which is a python library. 
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Supplementary Figure S2. Initialization impact 

 

Supplementary Figure S2. Representative performances of the networks whose trainings were 

initialized by different random values. Early stopping regularization was applied for each network.  
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Supplementary Figure S3. Optimality of ReLU (Rectified Linear Unit) as an activation 

function 

 

Supplementary Figure S3. The network performances for different activation functions. Red, blue, 

and grey show the RMSE for training, validation, and test sets, respectively. The title of each panel 

indicates the name of the unit process and the hidden topology of the FNN. Note that each network 

was trained with 50 random initial model parameters and the best performance of each activation 

function is presented here; this multiple initializations approach noticeably increases the chance of 

finding the global minimum of the loss function. 
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Supplementary Figure S4. Optimality of adam (adaptive moments) as an optimizer 

 

Supplementary Figure S4. The network performances for different optimizers. Red, blue, and grey 

show the RMSE for training, validation, and test sets, respectively. The title of each panel indicates 

the name of the unit process and the hidden topology of the FNN. Note that each network was 

trained with 50 random initial model parameters and the best performance of each optimizer is 

presented here; this multiple initializations approach noticeably increases the chance of finding the 

global minimum of the loss function. 
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Supplementary Figure S5. Attributes impacts on identical networks 

 

 

Supplementary Figure S5. Attributes impacts under the condition that both hyperparameters and 

hidden topology are identical for each contributor. The error bars highlighted in yellow and green 

correspond to Scenario I and II, respectively. The hidden topology is indicated by the arrow. Note 

the superscript * shows the optimal hidden topology, and each panel’s title shows the name of the 

unit process.  
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Supplementary Figure S6. Fitness Evolutions 

 

 

Supplementary Figure S6. (a-k) Best fitness and mean fitness through evolution for optimal 

networks. The title of each panel indicates the name of the unit process. (l) shows the legend for 

all panels.  
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Supplementary Figure S7. Learning curves 

 

Supplementary Figure S7. Learning curves, variation of the training and validation errors versus 

epoch. The maximum number of the epoch is 750. 
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Supplementary Table S1. List of Canada’s provinces and unit processes 

 

Supplementary Table S1. List of provinces and unit processes considered in this study. For detailed 

information, readers are referred to (GHGenius).  

Provinces Abbreviation Unit Processes 

Alberta AB Fuel dispensing Fertilizer manufacture 

Atlantic Canada AT 
Fuel distribution and 

storage 
Gas leaks and flares 

British Columbia BC Fuel production 
CO2, H2S removed from 

NG 

Manitoba MB Feedstock transmission 
Emissions displaced - co-

products 

Ontario ON Feedstock recovery  

Quebec QC Feedstock upgrading  

Saskatchewan SK 
Land-use changes, 

cultivation 
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Supplementary Table S2. List of fuel pathways 

 

Supplementary Table S2. The feedstock-to-fuel list considered in this study. For detailed 

information, readers are referred to (GHGenius). 

Feedstock Fuel Feedstock Fuel Feedstock Fuel Feedstock Fuel 

coal Coal Jatropha Oil Biodiesel NG FT diesel 
(W0/G100) 

Ethanol 
CH2 

Crude Oil Gasoline Camelina 
Camelina 

Oil 
Coal FT diesel Wheat Ethanol CH2 

Crude Oil 
Gasoline 

(LowS) 
Camelina Oil Biodiesel 

Wood 

Residue 
BTL Gasoline CH2 

Crude Oil CG0/RFG100 Algae Algae Oil RDF FT diesel FT Diesel CH2 

Crude Oil Hwy diesel Algae Oil Biodiesel LFG FT diesel LPG CH2 

Crude Oil 
Offroad 

Diesel 
Animals Tallow electricity FT Diesel NG100/Water0 CH2 

Crude Oil 
Marine/Rail 

Diesel 
Tallow Biodiesel NG Gasoline Used Oil Diesel 

Crude Oil Fuel oil 
Waste 

Grease 

Yellow 

Grease 

Wood 

Residue 
Gasoline Uranium Nuclear 

Crude Oil Jet Fuel 
Yellow 

Grease 
Biodiesel NG DME Wheat Straw Grass 

Crude Oil 
Refinery Fuel 

Gas 

Palm 

Effluent 

Palm Sludge 

Oil 

Wood 

Residue 
DME Wood Residue Wood 

Crude Oil Coke 
Palm Sludge 

Oil 
Biodiesel LFG DME Whole Corn 

Corn 

Stover 

Crude Oil LPG 

Spent 

Bleaching 

Earth 

SBE Oil 
Wood 

Residue 
RNG Wood Residue 

Wood 

Pellets 

NG LPG SBE Oil Biodiesel 
Wood 

Pellets 
RNG MSW RDF 

NGL94/RF6 LPG Corn Corn Oil Coal SCNG power NG 

NG LNG Corn Oil Biodiesel process LFG industry NG 

NG CNG Fish Fish Oil NG MA100 commerce NG 

Corn Ethanol Fish Oil Biodiesel 
Wood 

Residue 
MA100 

Fuel 

Production 
NG 

(W0/G100) Ethanol Canola Oil HRD RDF MA100 NG pipeline NG 

Wet Stover Ethanol Corn Oil HRJ 
Wood 

Residue 
Bio Oil NG field NG 

Wheat Ethanol Soybean Oil HRG 
Wood 

Pellets 
Bio Oil power H2 

Barley Ethanol Canola Oil HRP 
Wheat 

Straw 

Bio Oil 

Ag Res 
pipeline H2 

Peas Ethanol Corn Ethanol ETJ 
Wood 

Residue 

Refined 

Bio Oil 
power Syn gas 

Sugarcane Ethanol NG Methanol 
Wood 

Pellets 

Refined 

Bio Oil 
gas pipeline Syn gas 

Sugar Beet Ethanol coal Methanol 
Wheat 

Straw 

Refined 

Bio Oil 

Ag Res 

EV Electricity 

Sorghum Ethanol 
Wood 

Residue 
Methanol water CH2 EV Nat. Gas 

Corn Butanol LFG Methanol off grid elec CH2 power Electricity 

Canola Canola Oil electricity Methanol NG CH2 power User Grid 
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Feedstock Fuel Feedstock Fuel Feedstock Fuel Feedstock Fuel 

Canola Oil Biodiesel NG100/C0 Methanol 
Thermo 

nuclear 
CH2 to power 

User 

Generator 

Soybeans Soybean Oil LFG CRNG 
Wood 

Residue 
CH2 Wood Residue 

RNG 

(Engine) 

Soy Oil Biodiesel AD CRNG Coal CH2 Wood Pellets 
RNG 

(Engine) 

Palm Palm Oil 
Organic 

Waste 
CRNG Methanol CH2 Wood Residue 

RNG 

(Turbine) 

Palm Oil Biodiesel Electricity CRNG 
Methanol 

LFG 
CH2 Wood Pellets 

RNG 

(Turbine) 

Jatropha Jatropha Oil H20/NG80 Hythane 
Corn 

Ethanol 
CH2     
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Supplementary Table S3-S5. Optimality of ReLU as an activation function 

 

Supplementary Table S3. Optimality of ReLU for “Fuel production” unit process 

Fuel production. H=[7, 95,  67], Scenario II 

 Network Performance 

Activation Function training validation test 

relu 14.7 23.1 23.5 

selu 18.9 26.0 35.2 

softsign 25.1 25.9 43.5 

elu 25.5 25.9 43.4 

tanh 25.5 25.9 43.4 

softmax 52.2 56.2 58.1 

softplus 57.2 60.4 62.4 

sigmoid 58.8 61.1 63.3 

exponential 59.6 63.1 63.5 

 

Supplementary Table S4. Optimality of ReLU for “Feedstock recovery” unit process 

Feedstock recovery. H=[9], Scenario II 

 Network Performance 

Activation Function training validation test 

relu 1.4 2.3 3.4 

selu 1.7 3.2 2.9 

softsign 1.7 3.2 2.9 

tanh 1.7 3.3 2.9 

elu 1.7 3.2 2.9 

softmax 3.4 5.4 4.4 

softplus 4.1 5.1 4.7 

exponential 4.2 5.0 4.7 

sigmoid 4.5 5.7 5.0 
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Supplementary Table S5. Optimality of ReLU for “Land-use changes, cultivation” unit process 

Land-use changes, cultivation. H=[28, 58], Scenario II 
 Network Performance 

Activation Function training validation test 

relu 1.6 3.5 4.3 

selu 2.6 4.7 4.3 

softsign 3.1 4.7 4.6 

elu 3.3 5.0 4.6 

tanh 3.3 4.9 4.8 

softplus 5.4 5.8 7.7 

sigmoid 5.9 5.9 8.4 

softmax 6.2 7.3 8.5 

exponential 9.0 9.0 11.1 
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Supplementary Table S6-S8. Optimality of adam (adaptive moments) as an optimizer 

 

Supplementary Table S6. Optimality of adam for “Fuel production” unit process 

Fuel production. H=[7, 95,  67], Scenario II 

Optimizer training validation test 

RMSprop 11.7 21.7 19.3 

adam 14.7 23.1 23.5 

Nadam 18.1 30.2 28.1 

Adamax 18.4 31.6 30.0 

SGD 58.9 61.5 62.1 

Adagrad 59.2 62.9 62.4 

Ftrl 60.3 63.5 65.1 

Adadelta 60.4 62.9 63.1 

 

Supplementary Table S7. Optimality of adam for “Feedstock recovery” unit process 

Feedstock recovery. H=[9], Scenario II 

Optimizer training validation test 

RMSprop 1.2 3.5 2.9 

adam 1.4 2.3 3.4 

Nadam 1.4 3.5 2.9 

Adamax 1.9 3.6 3.3 

SGD 10.4 10.5 11.7 

Adagrad 12.0 12.0 12.0 

Adadelta 12.9 13.0 12.8 

Ftrl 13.3 13.3 13.2 
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Supplementary Table S8. Optimality of adam for “Land-use changes, cultivation” unit process 

Land-use changes, cultivation. H=[28, 58], Scenario II 

Optimizer training validation test 

Nadam 1.1 4.0 3.8 

adam 1.6 3.5 4.3 

Adamax 1.7 4.5 4.2 

RMSprop 1.8 4.7 3.6 

SGD 10.8 11.4 12.8 

Adagrad 11.2 13.1 13.3 

Adadelta 12.2 13.3 14.4 

Ftrl 14.3 15.7 16.8 
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Supplementary Table S9. Optimality of MSE (Mean Square Error) as a loss function 

 

Supplementary Table S9. The R2 score for the network performances trained with MSE, MAE, 

and Huber. Note that δ=1 for the Huber loss function.  

  Unit Process 

  Fuel production Feedstock recovery Land-use changes, cultivation 

M
SE

 Training 0.94 0.99 0.98 

Validation 0.87 0.97 0.93 

Testing 0.86 0.92 0.90 

M
A

E 

Training 0.98 0.99 0.97 

Validation 0.87 0.93 0.89 

Testing 0.81 0.92 0.90 

H
u

b
er

  Training 0.96 0.99 0.98 

Validation 0.81 0.92 0.86 

Testing 0.83 0.91 0.89 
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