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Abstract—The panel method, or the boundary element method, 

has been widely used for calculating lifting flows in which forces 

on wing surfaces are primarily of interest. In panel method for a 

wind generation system with a number of propfans or for an oil 

platform motion control assembly with a number of 

thrusters/propellers, calling time for a matrix solver is the key 

factor for computing efficiency. This paper discusses the code 

development of an iterative matrix solver in MPI via C and 

benchmark analysis for a shared and a distributed memory UNIX 

machine, respectively. 

 
Index Terms— BiCGSTAB, Iterative matrix solver, HPC, 

Parallel computing  

 

I. INTRODUCTION 

URFACE panel method, or the boundary element method for 

lifting and non-lifting flows was initialized in the 1970s 

(Hess 1972). It has been widely used in aerodynamics and 

hydrodynamics computations. Simulation of single marine 

propeller using panel method was led by Hess and Valarezo 

(Hess and Valarezo 1985). 

In a time-domain panel method with multi-body interactions 

such as in the case of ducted propellers, propeller with nozzle 

or rudder or both, or propeller with ice blockage, the influence 

coefficient matrix needs to be created at each time step. For a 

sudden accelerating propeller computation, at least three 

revolutions are needed to obtain stable results that can be used 

for design and performance evaluation. Each revolution 

consists of about 40 time steps, so the minimum required total 

time step for one run at one advance coefficient is nt=120. At 

each time step, unsteady Kutta condition is applied at the 

trailing edge of a lifting foil section. An approximate zero-

pressure difference at the trailing edge, resulted from the Kutta 

condition, is to be obtained by an iterative procedure. If the 
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Newton-Raphson iteration procedure is used, about ni=5 

iterations are required to converge for each time step, which is 

dependant of load conditions and time step size. Each Newton-

Raphson iteration requires creating a new Jacobian matrix of 

an order of n×n, where n is a number of wake strips. For a 4-

bladed propeller, it has about 40 wake strips. To find each row 

of the Jacobian matrix, the coefficient matrix needs to be 

inverted once. Therefore, each computational run requires to 

solve the linear system of equations for N=nt×ni×n=24,000 

times. In the IMD in-house propeller code, it requires 3 square 

matrices and they are doublet, source and normalized/Kutta 

conditioned matrices. The size of these 3 matrices is small for 

single propellers (about 1,000x1000 each). For a group of 

propfans or the dynamic positioning (DP) system of a floating 

production, storage and offloading (FPSO) platform consisting 

of a group of 6 propellers with 4-6 blades each, the size of 

these 3 matrices is about 10,000 by 10,000 and 15,000 by 

15,000, respectively, and the number of strips increases up to 

360. For far wake velocity prediction up to 20-diameter 

downstream of a propeller, a total of 20 revolutions is needed 

for a propeller with a pitch-diameter ratio of 1.0. In this case, 

the number of calls to the matrix solver is about 

40×20×5×360=1440,000 times. Increasing speed of the matrix 

solver is essential for total computing efficiency of the code. 

As the code was designed to allocate memory for arrays 

dynamically, dynamic random access memory (DRAM) 

requirement becomes an issue. For double precision arrays, 

three matrices for a DP system require 15,000×15,000×3-

matrix×8-byte=5.4 GB of memory. The DRAM requirement at 

double precision for the shed wake panels is 6-blade×(10×6)-

strip×120-step/rev×20-rev×15,000-body-panel×8-byte=96 GB. 

This is the minimum requirement for the current panel method 

to predict the velocities at 20-diameter downstream of a 

propeller. For an NS solver for the same simulation, the 

required dynamic access memory would be in a range of tera 

to peta bytes, which is too high to be economically practical. 

Velocity prediction is the goal for the performance of propfans 

and for the momentum impact to risers by DP thrusters. This 

prediction requires solving a repeatedly created 15,000 by 
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15,000-element matrix for 1440,000 times and it is best to be 

done in a parallel computing environment. 

II. PARALLEL IMPLEMENTATION OF THE BI-CGSTAB MATRIX 

SOLVER 

In panel methods, the influence doublet and source 

coefficient matrices are normally dense and non-symmetric. 

Larger size matrix requires iteration procedure to gain the 

speed of the solution. Among many available matrix solver 

algorithms, the Bi-Conjugate Gradient Stabilized (Bi-

CGSTAB) is a suitable alternative. The Conjugate Gradient 

method to invert a symmetric and positive definite matrix 

appeared a long time ago (Jannings 1977). Bi-Conjugate 

gradient method was improved to handle non-symmetric 

matrix (Voevodin 1983 and Faber and Manteuffel 1984). The 

Bi-CGSTAB method was developed to avoid the irregular 

convergence patterns and to add some capability for ill-

conditioned matrix (Freund et al. 1991 and Van de Vorst 

1992). Barret et al. described implementation of a number of 

matrix solvers in a great extent and gave a pseudocode of the 

Bi-CGSTAB (Barret et al. 1994). 

In code development for a larger matrix size than the 

amount of DRAM available, dynamic memory cannot be 

allocated so the panel method code computation cannot be 

performed. The solution was to store only one row of the 

matrix in DRAM and other rows in hard disk. The Bi-

CGSTAB matrix solver was then rewritten in a row-by-row 

reduction form (Liu and Bose 1997).  Therefore, the DRAM 

requirement for matrix size was reduced from n×n to n. 

However, using row-by-row reduction scheme was about 100 

times slower than using DRAM to store the whole matrix 

elements; this is not computationally efficient for a group of 

propellers. 

For a single propeller with a small number of body and 

wake panels, a modern PC can normally handle both the 

memory and speed requirement. On a Dell 866Mhz (OptiPlex 

GX200) machine it took about an hour for a 3-bladed bare 

propeller computation but it took about 3 whole weeks for a 4-

bladed ducted propeller simulation. To simulate a group of 

propellers/propfans which requires 50 GB of DRAM and the 

solution to a 15,000×15,000 matrix 1440,000 times, HPC 

hardware is essential for an efficient computing calculation.  

There have been many studies on Bi-CGSTAB for parallel 

computers. A package, ScaLAPACK is available online on the 

Netlib site. This package was designed for heterogeneous 

computing in Fortran 77. As the MPI 2.0 standard, which is 

C++ compliant, was not available on the Alpha Tru64 OS, the 

in-house panel method was written in C. Therefore, a concise 

MPI C function for the Bi-CGSTAB, working under 

homogenous environment was a preferred choice. This MPI C 

function was not available. Some other codes had different 

limitations such as only allowing 4 processors, etc. We then 

decided to develop an in-house parallel Bi-CGSTAB function. 

A guideline in the design of this parallelized Bi-CGSTAB C 

function is as follows:  

 To work under a homogeneous computing 

environment on any platform using MPI, 

 To be able to work in a distributed computing 

environment such as IBM SP, Alpha and Intel 

clusters as well as in a memory shared environment 

such as Alpha Server ES40, SGI derivatives and Intel 

multi-cpu machines, etc., 

 Easy to use with good scalability, and 

 Executable can be run for any number of processors 

at run time without re-compilation of the source code. 

The C version of the row-by-row reduction function was 

parallelized. Implementing the pseudocode by Barret et al. 

(1994) with the MPI library functionalities (Gropp et al. 

1999), the pseudocode of this parallelized Bi-CGSTAB 

implementation is described as following:  
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end  

The total number of rows of the matrix was divided into nm 

blocks, 
p

pp

m
n

nnnn
n

%−+
= . Each block holds np rows, 

where n is the number of rows of the square matrix; np is the 

number of processors at run time. Each processor holds 

1)1( ++−=
npppr

taskidnin  rows, where i=1…nm, and 

taskidnp is processor ID starting with 0.  

 

III. RESULTS AND DISCCUSSION 

This section presents a comparison of computing efficiency 

in terms of matrix solver algorithms, between the Bi-CGSTAB 

and the Gauss Elimination methods, the scalability of the 

parallelized Bi-CGSTAB solver on the IBM SP3 and Alpha 

ES40 machines, and NAS Benchmark analysis on these two 

machines. 

A. Serial Benchmarks of the Bi-CGSTAB and the Gauss 

Elimination methods 

The C version of the Bi-CGSTAB and the C version of the 

Gauss Elimination (Press et al. 1992) were run on a HP PC, a 

Dell PIII Xeon PC (used only one CPU), the IBM SP3 at UNB 

over the C3 grid, and the recently purchased Alpha ES40 at 

IMD.  

Table 1 shows the elapsed CPU time and machine 

specifications and Figure 1 shows the comparison via plot. 

In serial computation, Bi-CGSTAB gave about 50 times 

better efficiency than the Gauss Elimination method. The 

larger the matrix size, the higher the ratio of Bi-CGSTAB to 

the Gauss Elimination. In this test, only a small matrix size of 

4344x4344 was used because of the limitation of the amount 

of the dynamic memory on the PCs.  

 

 Table 2 and Figure 2 show the computing efficiency 

comparison between the serial code Bi-CGSTAB and Gauss 

Elimination methods for a matrix size of 9984x9984.  
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Fig. 1.  Comparison of the computing efficiency between 

the serial code Bi-CGSTAB and Gauss Elimination 

methods for a matrix size of 4344. 
  

 

TABLE I 

COMPARISON OF THE COMPUTING EFFICIENCY BETWEEN THE SERIAL CODE BI-CGSTAB AND GAUSS ELIMINATION 

METHODS FOR A MATRIX SIZE OF 4344. 
 

 
CPU  

(MHz) 
DRAM Nodes OS Bi-CGSTAB Gauss Eli. Ratio 

PIII 650 256 MB 1 Win 2000 26.02 sec. 1481.48 sec. 57 

Dell XEON 2 * 500 1GB/CPU 1 NT 4.0 19.20 sec. 1063.90 sec. 55 

IBM SP3 16 * 375 1GB/CPU 4 AIX 4.3.3 57.60 sec. 1748.50 sec. 30 

Alpha ES40 4 * 667 4GB/CPU 1 Tru64 19.40 sec. 826.10 sec. 43 

 

TABLE  II 

COMPUTING EFFICIENCY COMPARISON BETWEEN THE 

SERIAL CODE BI-CGSTAB AND GAUSS ELIMINATION 

METHODS FOR A MATRIX SIZE OF 9984×9984. 

 

 Bi-CGSTAB (s) Gauss Eli. (s) Time Ratio

Dell 

XEON 
121.5 12310.7 101 

Alpha 

ES40 
98.7 1498.4 15 

 

9984x9984 matrix

-2000

3000

8000

13000

XEON 500MHz Alpha ES40

667MHz

tim
e

 (
s
)

Bi-CGSTAB

Gauss Elimination

 

Fig. 2.  Computing efficiency comparison between the 

serial code Bi-CGSTAB and Gauss Elimination 

methods on a Dell XEON PC and Alpha ES40 

Server, for a matrix of 9984 by 9984. 
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In table II, on a PC with Windows operation system the 

computing efficiency of the Bi-CGSTAB is much higher than 

on the Alpha server. 

 

B. Parallel Benchmark using the Bi-CGSTAB 

Both the serial and the parallelized Bi-CGSTAB MPI C 

function were used to run on the IBM SP3 and Alpha ES40 

Server. The matrix size was 4344×4344. A comparison is 

shown in figure 3. A larger matrix size cannot be used because 

the disk space to hold the matrix elements was limited on the 

IBM SP3 at UNB. 

 

From figure 3 it can be seen that the serial code computing 

efficiency is roughly proportional to the CPU clock speed 

among Intel PIII, IBM and Alpha processors, regardless CISC 

or RISC processor architecture. 

For the parallel Bi-CGSTAB code, the 4-node IBM SP3 

machine performed poorly. The communication speed across 

the 4-nodes was not the best (300 MBps bi-directional, 1.2 

µsec latency). The 1-node Alpha Server, however, gave a 

relatively good scalability in this case (1:4 processors vs 20:6 

seconds). The new crossbar memory architecture of the Alpha 

ES40 had a peak throughput of 5.2 GBps so that it had much 

less communication drag. In terms of computing efficiency 

using the serial Bi-CGSTAB code, the IBM SP3 gave about 

the same computing efficiency as that of an inexpensive Intel 

desktop with a PIII processor.  

For heavy matrix inversion computing using the current Bi-

CSGTAB code, high network/channel throughput over 

clustered computers (distributed memory) or high memory 

bandwidth over a multi-processor machine (shared memory) is 

essential for a computing efficiency. PC clusters equipped with 

fast Ethernet card (100 MBps) are deemed not suitable for 

such above-mentioned computation.  

C. NAS Benchmarking the IBM SP3 and Compaq Alpha 

ES40 

The computing power of a parallel system to execute parallel 

application programs may be measured by NAS parallel 

benchmarks. A similar test was performed for a 24-node Alpha 

powered PC cluster (Syms 2001). A detailed procedure that 

describes the installation, compile and the run the NAS 

benchmark programs for IBM SP3 and the Compaq Alpha 

ES40 machine was written recently (Li 2001). 

NAS application benchmarks include LU, SP and BT (Bailey 

et al. 1995).  Benchmark LU requires 2
i
 processors, with i=1, 

2, …Npt, where Npt+1 is the number of available points on a 

curve. Benchmarks SP and BT require i
2
 processors, with i=1, 

2, …Npt. Running the serial code, which usually takes shorter 

time than running the parallel code with one processor, creates 

an extra point. The serial results were obtained with a flag of 0 

processor. Figures 4, 5 and 6 show the execution time and 

Mflop/s of the class A version of the benchmarks on IBM SP3 

and Alpha ES40 machines. 

 

 From figure 4, it can be seen that the scalability of SP3 was 

good, with 4:16 processors vs 427:107 seconds. The Alpha 

Server also had a better scalability indication with 1:4 

processors vs 512:77 seconds. In one processor case, the 

communication overhead and multi-user access might be the 

reason for an extra long computing time of 512 seconds. 

 The BT version could not be executed in serial mode with 

one processor on the IBM SP3 machine, because the memory 

was not enough (1.2GB minimum for each execution). The 

scalability of the SP3 shows a ratio of 4:16 processors with 

555:86 seconds. 

Bi-CGSTAB: Serial vs Parallel
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Fig. 3. Comparison of the serial and parallel Bi-

CGSTAB solver on three machines.  
 

Fig. 4. Performance of LU benchmark. 

 

 

Fig. 5. Performance of BT benchmark. 
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 Linear scalability was also obtained for the SP benchmark 

on SP3 with 4:16 processors vs 219:44 seconds. From the 

above three graphs, it can be seen that with the increase of the 

number of processors, the execution time decrease and the 

total Mflop/s increase. The same observation as Syms (2001) 

was examined, of which one processor in parallel mode takes 

more time to run than the serial mode (communication 

overhead). The computing efficiency of the IBM SP3 and 

Alpha ES40 in terms of Mflop/s/process rating is shown in 

Figure 7. 

 

 

The Alpha server outperformed SP3 substantially within its 

range of number of processors. The computing efficiency for 

both machines showed a relatively smooth, straight curve. 

IV. CONCLUSIONS 

 

Parallel programming with the Bi-CGSTAB was done.  The 

serial versions of the solver code were tested on a Windows 

PC and the two multi-node UNIX machines. The parallel 

version of the solver was then executed on both the SP3 and 

the ES40. On the Windows PC with the serial code, for a 

matrix size of 10,000×10,000 the CPU time taken for the 

Gauss elimination solver was about 50 times for the Bi-

CGSTAB solver. The serial version of the Bi-Conjugate 

Gradient Stabilized matrix inverter took substantially less time 

than Gauss Elimination, regardless CISC or RISC CPUs and 

Windows or UNIX platforms, which means that proper 

algorithms are essential for computing efficiency and in cases 

they may save more execution time than a powerful HPC 

hardware system. 

 

Scalability was also obtained from IBM SP3 and Alpha 

ES40 by using both the NAS software and the parallelized 

matrix solver. A parallel benchmark application program by 

NASA (Advanced Supercomputing Division) was used to 

obtain some benchmarks on these two machines, i.e., a 16-

processor IBM SP3 at UNB and a 4-CPU Alpha ES40 that 

was acquired recently at IMD. The Alpha ES40 showed a 

rough trend because it has only 4 nodes; at least a 16-processor 

configuration is required for a reasonable analysis. For a small 

matrix with a size of 4344×4344, the scalability of the Bi-

CGSTAB matrix solver code was not as good as that of the 

NAS Parallel Benchmarks on the IBM SP3 machine. 

However, the scalability of the matrix solver was much higher 

on the Alpha ES40 machine because of its high-speed crossbar 

memory architecture. Higher performance and scalability 

analysis also require a parallel computing system to have at 

least 16 processors. For intensive matrix inversion using 

current Bi-CGSTAB code, fast I/O is essential for the 

integrated computing performance of a parallel system. 
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