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Abstract: This paper presents a comparative study of the effects of grid resolution, vehicle velocity

and wind vector fields on the trajectory planning of unmanned airships. A wavefront expansion

trajectory planner that minimizes a multi-objective cost function consisting of flight time, energy

consumption and collision avoidance while respecting the differential constraints of the vehicle is

presented. Trajectories are generated using a variety of test environments and flight conditions to

demonstrate that the inclusion of a high terrain map resolution, a temporal vehicle velocity and a

spatial wind vector field yields significant improvements in trajectory feasibility and energy economy

when compared to trajectories generated using only two of these three elements.

Keywords: path planning; unmanned airship; wavefront expansion

1. Introduction

Path planning algorithms can be categorized into those with differential constraints and

those without. Differential constraints refer to limitations such as velocity and acceleration limits,

non-holonomic motion and other higher order dynamic constraints. The inclusion of these constraints

is important to promote more realistic and feasible paths [1]. Goerzen et al. developed a comprehensive

literature summary of path planning methods for unmanned aerial vehicle (UAV) guidance and defined

five distinct stages in the planning process: sensor model, terrain representation, roadmap generation,

graph search and trajectory generation [2]. The idealized sensor model detects and maps all critical

points such as sensed obstacles, initial pose, and goal pose. The terrain representation stage divides

the map into a finite search space and segments passable and impassible regions. Roadmap generation

is the process of producing a graph that is then searched, with or without differential constraints,

for feasible paths or the optimal path (depending on the search approach) between the start and

goal poses. The optimality of the path is generally subjective and based on multiple user-defined

mission objectives such as time, energy and risk. Applying a scalar-valued preference (or weighting)

function to relate each objective into a global cost function is a common approach in multi-objective

optimization problems [3,4]. Finally, trajectory generation can be used to perform path smoothing and

speed control.

Wind is a major concern for airships and small UAVs with limited propulsion power [5]. If the

strength of the local wind is larger than the maximum vehicle velocity, impassible zones are created

which many planners do not account for [6]. Moreover, while many planners consider wind as a

disturbance whose influence is suppressed by the vehicle’s autopilot [7], the wind vector field has
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the potential to be used as a source for powering the UAV to further reduce energy consumption and

travel time [8]. This has been especially important in the path planning of static soaring UAVs that use

the vertical component of wind for lift, or dynamic soaring UAVs that exploit the vertical gradients in

the horizontal wind [9–13]. Other sources of wind energy that can be exploited are horizontal shear

layers [8]. For example, unperturbed wind velocity creates a boundary layer with the Earth’s surface

as shown in Figure 1. During path planning, it is more energy efficient to fly at lower altitudes when

travelling into the wind and higher altitudes when travelling with the wind.
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Figure 1. Percent gradient wind, surface roughness α and boundary layer height for different situations

(data from Plate [14]).

Potential field path planning methods are uniquely suited to this problem since much of the

environmental data, such as digital elevation maps (DEMs) and wind vector fields (WVFs), are already

available in a discrete matrix form. The wavefront expansion algorithm is a type of path planning

approach that propagates the costs for the graph and does not rely on the potential field being known

a priori. Therefore, a navigation policy can be applied to restrict field graph connectivity during

the propagation phase based on dynamic constraints such turning rate, pitching rate, velocity and

acceleration bounds. This policy promotes more realistic and feasible paths and has the added benefit

of reducing the search space. An example of this type of planner is presented by Soulignac to provide

feasible and the minimum-time optimal path for small UAVs in the presence of strong current fields [6].

Unfortunately, the research is performed in 2D and does not include other objectives such as fuel or

risk. Besada-Portas et al. presented an evolutionary algorithm-based on-line planner for multiple

UAVs in 3D that includes optimization of multiple mission objectives such as path length, fuel and

several flight risks, but has no mention of wind [15]. McManus developed a wavefront expansion

type planner with multiple objectives (distance travelled, time taken, fuel consumed) for a UAV in

3D [16]. In this work, the wind was added as a disturbance, and the dynamic constraints were not

taken into account. Al- Sabban et al. presented a Markov decision process-based fixed-wing UAV path

planner that exploits wind energy to minimize energy consumption in an uncertain and time-varying

wind field [17]. The simulation results showed almost 30% energy savings compared to a straight

line path, but this was only conducted for one WVF sample. Furthermore, the study was conducted

in 2D with a constant vehicle speed relative to the wind. Perhaps the most relevant work in this

field is by Wu et al., who presented an on-line, multi-objective mission planner for fixed-wing UAVs

in 3D that includes time, fuel and several risk objectives in the presence of planar wind fields from

weather forecasts [5]. However, their path planner uses a nodal resolution of one nautical mile with

interpolated 10-nautical mile resolution wind fields to generate long-range paths which cannot account

for local terrain features, an important consideration for low-altitude UAVs.

Many non-deterministic methods combining genetic algorithms, ant colony algorithms, particle

swarm optimization or neural networks have also been applied to the path planning of autonomous

robot navigation [18]. Besada-Portas et al. presented an evolutionary algorithm-based on-line planner
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for multiple UAVs in 3D that includes optimization of multiple mission objectives such as path length,

fuel and several flight risks, but has no mention of wind [15]. To address the growing complexity

of problems with increased constraints such as multiple UAVs, parallel evolutionary algorithms

have been implemented to decrease the execution time [19]. More recently, biologically-inspired

tau-based path planning strategies such as the decentralized receding horizon optimization in [20]

were developed to include velocities and time dependencies in the trajectory generation. Many path

planners including evolutionary algorithms are based on uniform WVFs [21–26] or constant vehicle

velocities [6,8,15,27–30]. The few planners that account for variable wind conditions simplify the

environment to two dimensions by assuming a fixed cruise altitude [6,27,28] or assume that the WVF

is horizontally planar [5,31,32] with coarse resolution discretization of the flight space (≥1 km).

The purpose of this paper is to demonstrate that coarse resolution grids, average wind data

and fixed vehicle speeds overestimate the number of feasible paths and underestimate the energy

consumption. This paper also demonstrates that aggregating these parameters in the cost function

yields more realistic and feasible paths and shows that corrective wind disturbance rejection methods

are inadequate for under-actuated and under-powered unmanned airships. The remainder of this

paper is as follows: First, a background on wind modelling and current wind usage is presented.

Then, the trajectory planning method consisting of a cost wavefront expansion type trajectory planner

is proposed, including a comprehensive multi-objective function to compute energy-optimized

flight trajectories for small unmanned airships. The trajectory planner is then simulated in a set of

randomly-generated 3D environments, and its effectiveness is evaluated based on several performance

metrics.

2. Wind Vector Fields

Wind can be modelled as the vectored sum of two components: a steady ambient component and a

stochastic (gust) component [33]. The gust component can be estimated using the Dryden model [34].

The Dryden model consists of passing white noise through the a filter with generalized parameters

based on flight conditions such as altitude and severity of turbulence as defined in MIL-F-8785C [35].

The steady ambient wind is typically expressed in the Earth inertial reference frame and can be

modelled based on weather information for a given area. For example, wind vector fields are available

in 6-h increments with a resolution of ten nautical miles for multiple areas across North America [36]

and will likely get more accurate, timely and widespread as weather sensing technology improves.

Figure 2 shows a typical wind vector field provided by the National Weather Service in the U.S.

Figure 2. A typical 2D wind vector field [36].
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As an alternative to the publicly available weather information, CFD software is capable of

estimating 3D spatial WVF over a DEM given sparse wind monitoring stations. CFD software is

especially useful where real-time weather information for an area is not available or for periods when

communication with the UAV is lost. It can also provide finer resolution fields capable of capturing

local weather patterns such as wind currents around buildings and other surface features such as

variations in terrain [37].

3. Vehicle Model

For vehicles with a constant input power, the lowest energy path will be the path with the shortest

arrival time. However, with the introduction of a set time goal and 3D spatial WVF applied to a

vehicle capable of zero-speed flight, such as airships, there is the potential of a velocity varying path

(i.e., trajectory) that consumes less energy. Energy consumption estimates are dependent on multiple

factors and are highly platform specific. Airships, like most UAVs, are under-actuated non-holonomic

vehicles, which require additional energy to change their orientation, which cannot be neglected for

medium to long-range path planning. Moreover, rapid changes in orientation can cause unstable

behaviours. A recent study by Al-Sabban et al. suggests that these changes, as well as incorporating

a six-degree of freedom model affect path planning performance [8]. The model developed in this

paper includes several significant differential constraints inherent to airships and other non-holonomic

UAVs.

The theoretical energy required to change orientation is negligible compared to that of forward

motion for highly dynamic manoeuvring UAVs. Conversely, airships are typically under-actuated

and under-powered and thus have large turning radii. This results in longer paths and increased

flight times between two points. The additional time to travel between two points depends on two

factors: the ratio of the minimum turning radius over the distance between nodes, rmin/d(n, n′),

and the magnitude of the orientation change, ψ. Figure 3 shows an example of an idealized kinematic

reorientation that takes into account the minimum turning radius. The true distance, d′(n, n′), is the

arc length of the two tangent arcs; the first is tangent to υvg(n) with radius rmin, and the second is

tangent to both the first arc and υvg(n′). The orientation ratio, o, is the ratio of the true distance over

the idealized straight line distance, d′(n, n′)/d(n, n′).

d(n, n′)

d′(n, n′)

rmin

vvg(n
′)

vvg(n)

ψ

Figure 3. Idealized reorientation between two nodes.

The platform considered in this paper is shown in Figure 4. It has a fixed pair of forward facing

electric thrusters complimented by a hybrid gas-electric power plant and uses two tail-mounted

thrusters for directional control and roll stability [38,39]. The minimum turning radius ranges from

0 m at zero linear velocity to 10 m at a cruise speed of 12 m/s. This was estimated empirically

from the full dynamic model of the vehicle developed in [40]. Considering a resolution between

nodes of 50 m, the increase in energy to reorient the vehicle can be upwards of 25% for a 90o turn.

The platform considered also exploits the use of air ballasts (ballonets) for altitude control and pitch
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stability. These actuators use an electric air pump to change ballast volume. The ballonets also provide

two essential alternate functions of pressure regulation to ensure structural integrity and weight

ballasting to compensate for the consumed fuel of the power plant.

Figure 4. Platform used in the simulations (middle), camera, GPS and inertial navigation system (left),

hybrid power plant (lower left) and auxiliary electric propulsion (lower middle) [38].

4. Cost Wavefront Expansion Planner

The optimal flight trajectory is defined to be the one that reaches the goal position within the

desired time while consuming the minimum amount of energy and avoiding obstacles at a sufficiently

safe distance.

The cost wavefront propagation is a simple yet efficient method for generating optimal paths in

autonomous robot applications in unknown environments [41]. This approach starts from the robots’s

current position and expands anisotropically outward toward the goal position while minimizing a

cost function. The cost function is the sum of all trajectory objectives multiplied by the mission weights

that are dependent on the mission objective priority and selected by the user a priori. The cost function

is then searched using a multi-resolution Dijkstra algorithm. This approach produces a trajectory that

is complete and resolution optimal [2].

The cost function, C, proposed for the trajectory planning of unmanned airships is given by,

C
(

n, n′
)

= Wt ·Ct

(

n, n′
)

+ We ·Ce

(

n, n′
)

+ Wa ·Ca

(

n, n′
)

(1)

with the user-selectable weight, W, given by:

Wt + We + Wa = 1 (2)

for any two nodes n and n′ where the subscripts t, e and a denote the time, energy and avoidance

objectives, respectively. In (1), the three objective cost functions are mapped onto a common scale of

zero to one with the exception of Ca, which equals ∞ at the obstacle boundary.

The selection of resolution and scope is critical since the Dijkstra search algorithm is only resolution

optimal and has a proven computational complexity of O (N log N), where N is the number of nodes

in the grid [2]. If the resolution is too large, the planner will generalize obstacles and will over-simplify

the wind vector field. If the resolution is too small, planning becomes more computationally expensive.

One approach to reduce computation time is to apply sub-optimality bounds through the inclusion

of an inflated heuristic (a multiplier greater than one that penalizes new path branches) [42]. It can

be shown that the confidence level on the environmental information, such as wind, decreases as the

distance from the vehicle increases [43]. The optimal trajectory segments close to the goal node may

change due to variations in temporal environmental information (such as wind and flight patterns of

other aircraft). Thus, the value of determining the optimal trajectory segments near the goal node is

diminished. Two types of methods can be imposed to mitigate this uncertainty. The first is the use a
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multi-resolution grid, employing a fine resolution in the immediate vicinity of the UAV, and a coarse

resolution approaching the goal node. This approach is similar to the action space map decomposition

approach outlined in [44]. Since both fine and coarse resolutions follow the same procedure, this paper

focuses on the short-range, fine resolution grid. Using this method, the sub-optimality condition can

be effectively controlled by adapting the spatial range and gradient of resolution changes to maximize

optimality within the computational constraints. The second method, which could also be applied

during the implementation stage, is temporal re-planning which is similar to the three re-planning

triggers outlined in [45].

5. Trajectory Objectives

The three objectives in (1) need to be simultaneously optimized for any given mission.

The trajectory objectives can be formulated based on the availability and limitations of the equipment

on-board the UAV to facilitate the implementation of the planner on a physical platform.

Wind is added to each node n according to the sum of WVF and gusts, but assumed to be constant

in between nodes. If the vehicle is to arrive at the next node n′, the vehicle’s ground velocity, υvg,

must be parallel to the unit vector direction to that node, ~υvg. Thus, the perpendicular components

of the wind, υw,⊥, and the vehicle velocity relative to the wind, υvw,⊥, must be equal and opposite.

The parallel component of the vehicle’s relative velocity, υvw,‖, can then be optimized for the time and

energy objectives depending on the current flight conditions. The components of the vehicle velocity

vector relative to the ground and to the wind are shown in Figure 5.

υvg

υvw,‖ υvw

υw

υvw,⊥n

n′

d
(

n, n′
)

Figure 5. Vehicle velocity vector components relative to the ground and to the wind.

5.1. Arrival Time

The time to traverse a cell bounded by the nodes n and n′ can be approximated by,

t
(

n, n′
)

≈







o·d(n,n′)

|υvg|
= o·d(n,n′)

|υvw,‖+υw,‖|
, υw,‖ · υvg > 0

∞, υw,‖ · υvg ≤ 0
(3)

where o is the orientation ratio (described in Section 3) and d is the distance between nodes.

This time estimate extends the work of Wu et al. [5] by considering that the distances and vectors

are three-dimensional, and the time estimate approaches infinity when the wind magnitude along

the vehicle trajectory is equal to or above the vehicle’s cruise velocity. The equation adjusts for

the non-linear flight trajectory between nodes using the orientation ratio. It is assumed that, when

υvw,⊥ = −υw,⊥, the vehicle will achieve an angle of sideslip (crab angle) to offset the lateral wind. This
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is an important distinction as the lateral wind reduces the vehicle’s available goal-oriented velocity,

whereas the parallel component reduces the traversal time. It is also important to note that the true

traversal time depends on other factors such as vehicle stabilization effort and trajectory tracking error,

which require a complete dynamic model flight simulation for a more accurate approximation.

Although time between nodes can be minimized directly, it does not provide the operator any

feedback on the final travel time before selecting a weight, which makes weight selection difficult.

In real-world applications, the travel time between grid nodes is time-dependent [46,47]. In other

words, the arrival time cost is a function of the progress the aircraft has made towards arriving to the

goal node. Therefore, it is appropriate to non-dimensionalize time by a user-selectable time goal and

the distance remaining to the final goal node. This also has the advantage of extending the arrival

time factor to the time-dependent case where the remaining cost is dependent on the total cost so far

(i.e., how on schedule the UAV is to meet a given estimated time of arrival). Cumulative time can be

non-dimensionalized by considering the user-selectable arrival time to the goal node, tg. The time

objective cost function, Ct, can thus be written as,

Ct

(

n, n′
)

=







(

tsum(n)
2tg

)

−
(

dg−dr(n)
2dg

)

+ 1
2 , tsum < tg

1, tsum ≥ tg

(4)

where dg is the initial Euclidean distance from the start to the goal node while, dr is the remaining

Euclidean distance from the current node n to the goal node and tsum is the total time spent from the

start node to current node. When Ct is less than one half, the UAV is ahead of schedule, and when it is

greater than one half, the UAV is behind schedule. Equation (4) enables the trajectory planner to adapt

to unforeseen environments. Since lighter-than-air vehicles do not need a forward velocity to maintain

lift, the velocity of the UAV can be modified along the length of the path to successfully arrive at the

goal node by the user-set time. Under this assumption, the optimal vehicle speed, υot, for time at each

node can be defined as,

υot

(

n′
)

=







(

dr(n)
tg−tsum(n)

− υw,‖ · υvg

)

, tsum < tg

υv,max, tsum ≥ tg

(5)

If the current travel time has already exceeded the time goal, the vehicle speed for time is set to

maximum vehicle velocity, υv,max, for the remaining duration of the flight. Changing the weight for

arrival time, Wt, affects the choice of the path, but also changes the vehicle’s velocity, which is further

explained in Section 5.2.

5.2. Energy Consumption

The energy objective cost function, Ce, can be defined by the energy required to traverse two

nodes. Considering the vehicle described in Section 3, Ce is given by,

Ce

(

n, n′
)

=
(Pc + PL + PT) · t (n, n′)

Ec
(6)

where PT is the power required to propel the vehicle at the desired ground speed along the horizontal

path, PL is the power required to change altitude and Pc is the constant electrical power required

to maintain on-board electronics (e.g., camera, flight controller, telemetry, etc.). The inclusion of Pc

is significant as it can represent up to 65% of the total power for airships [48]. The addition of this

parameter also prevents unrealistic loitering when a large time goal is set in the planner. The platform

simulated in this paper has constant on-board electronic power requirements of Pc = 50 W [38].

The energy constant Ec is used to normalize the energy cost. It is set at vvw = vv,max with zero net wind

(computed to be 1.50 Wh for the proposed platform).

Substituting the definitions of mechanical power for propeller and pump actuators into (6) gives,
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Ce

(

n, n′
)

=

(

Pc +
Q△ρ (n, n′)

ηpump
+

FT

ηT
|υvw|

)

·
t (n, n′)

Ec
(7)

where −12 L/s < Q < 12 L/S is the air flow rate through the air ballast pump for the given

platform [40], △ρ (n, n′) is the change in atmospheric pressure between nodes and FT is the force

required from the UAV’s thrusters. The propeller forces applied by the UAV thrusters, including

the electric motors and the hybrid power plant, are non-linear functions of input electrical power.

A propeller’s efficiency, ηT , is dependent on the propeller advance ratio, which is the ratio of the

vehicle’s relative velocity υvw over the product of the propeller’s diameter and rotational speed.

Based on a third order least squares fit of propeller efficiency curves for the 12-inch propeller used by

the simulated platform, the propeller efficiency can be estimated from,

ηT ≈ −2.59 · 10−5υ3
vw + 2.07 · 10−4υ2

vw + 4.15 · 10−2υvw (8)

for 0 < υvw < 36 m/s [38]. The wind vector field is a crucial addition to the energy consumption

model as longitudinal winds will effect the arrival time in (3) and compounds the effect of applied

lateral winds in (7). For a force equilibrium,

FT = Fd =
1

2
Cdδair A |υvw|

2 (9)

The product of the axial drag coefficient and reference area, Cd A, in (9) can be estimated by a few

methods. Using the empirical method proposed by Hoerner [49], the value for this platform is 0.229.

Using the procedure outlined by Jones [50], the value is 0.147. Furthermore, the value is not constant

for all flight conditions, and increases with both the angle of attack and the angle sideslip. Therefore,

for the airship to hold a constant crab angle into the wind is not trivial from the perspective of energy

consumption. In this paper, the value predicted by Jones was used as it was developed explicitly for

airships [50].

The air ballast flow rate, Q, is assumed to be equal to the ballast volume change, △Vb, required to

maintain vehicle buoyancy with changes in altitude over a given travel time,

Q =
△Vb (n, n′)

t (n, n′)
=

△δair (n, n′)Vv

δair (n) t (n, n′)
(10)

where Vv is the envelope volume of vehicle. Substituting (3), (9) and (10) into (7) yields the complete

energy objective function,

Ce (n, n′) =
(

Cdδair A
2ηT

|υvw|
3 + Pc

)

· o·d(n,n′)

Ec|υvw,‖+υw,‖|

+△δair(n,n′)Vv△ρ(n,n′)
Ecδair(n)ηpump

(11)

The energy objective cost function (11) is a non-linear function with respect to υvw,‖, which makes

solving for the vehicle velocity for minimum energy, υoe, difficult. It can be solved using non-linear

optimization or numerical methods, but this was found to be too computationally expensive for

real-time planning. For these simulations, υoe was solved directly assuming that ηT is constant and,

υ3
vw ≈ υ3

vw,‖ + υ3
vw,⊥ (12)

Although the trajectory planner finds the optimal path based on the energy and time priorities,

the vehicle’s velocity along the path also has a significant impact. When time and energy priorities

have conflicting vehicle speeds, a weighted sum of both optimal speeds is used to select the speed

according to,
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υvw,‖

(

n′
)

=

{

Wt
Wt+We

· υot (n′) + We
Wt+We

· υoe (n′) , υoe < υot

υoe, υoe ≥ υot

(13)

while satisfying the vehicle’s velocity limits of 0 < υvw (n′) < υv,max. If the vehicle speed for minimum

energy is faster than the one for arriving on time, the vehicle speed for minimum energy is used.

5.3. Collision Avoidance

In this paper, the collision avoidance objective function, Ca, considers the terrain, the altitude

ceiling and static obstacles (including airspace constraints and no-fly-zones). Each risks is considered

to have a finite minimum separation zone (MSZ) based on aircraft visual flight regulations or risk

minimization. The MSZ for each risk is defined as a distance from the risk boundary to the obstacle.

The collision objective cost is normalized from zero to one while operating outside any MSZ and is

equal to ∞ inside the MSZ. The collision avoidance objective function for the proposed vehicle is taken

to be the maximum of the terrain, altitude ceiling and static obstacle components such that:

Ca (n) = max
(

C
l
a (n) ,Cm

a (n) ,Co
a (n)

)

(14)

The terrain component, Cl
a, adopted is,

C
l
a (n) =







(

MSZl
dvl,z

)

, zv > zl

∞, zv ≤ zl

(15)

The pressure altitude ceiling component, Cm
a , is taken as,

C
m
a (n) =







(

MSZm
dvm,z

)

, zv < zm

∞, zv ≥ zm

(16)

The static obstacles component including buildings, Co
a, is defined as,

C
o
a (n) =



































max

(

MSZo
dvo,z

, MSZo

|dvo,x , dvo,y|

)

,
(

dvo,x , dvo,y , dvo,z

)

> MSZo

MSZo

|dvo,x , dvo,y|
,

(

dvo,x , dvo,y
)

> MSZo & dvo,z < MSZo

MSZo
dvo,z

,
(

dvo,x | dvo,y

)

> MSZo & dvo,z > MSZo

∞,
(

dvo,x , dvo,y , dvo,z
)

< MSZo

(17)

where di,j are the distances between the vehicle v and the terrain l, altitude ceiling m and blocks of

buildings o, along the x,y,z axis in Cartesian coordinates. The selection of the avoidance term Co
a

depends on the vehicle position with respect to the obstacle. As an example, the second term of (17)

would be used for the vehicle position shown in Figure 6.

Additional Ca terms can be added to (14) to include restricted airspace, dynamic objects such as

other UAVs and ground vehicles. The planner’s ability to avoid dynamic obstacles depends on the

the object’s speed relative to the UAV, the frequency, range and uncertainty of the available on-board

sensor information and the frequency of the re-planning process.
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max
(

MSZo

dvo,z

, MSZo

|dvo,x , dvo,y|

)

MSZo

|dvo,x , dvo,y |

MSZo

dvo,z

∞

z

x|y

MSZo

Figure 6. Definition of term Co
a in relation to buildings.

6. Numerical Simulations

6.1. Trajectory Planning and Test Setup

Once a multi-objective cost function field is formulated, the desired trajectory through the field

is determined using 3D grid search techniques. A terrain map nodal list is generated based on an

rectangular grid representation of 2 km × 2 km × 1 km with a nodal resolution of 50 m × 50 m × 10 m

for a total of 160 × 103 nodes. This resolution was chosen because it is roughly the same as 0.75 arc-sec

digital elevation maps that are publicly available from GeoBase. To reduce the computation time,

the connections between nodes are generated using the vector neighbor operator [5]. It provides an

average horizontal angle increment and allows for flight path angles of some predetermined values to

connect successive path nodes as they may not lie within adjacent grid cells. This technique avoids the

exhaustive search within all the nodes and provides a better scalability to the search space. As it is

illustrated in Figure 7, the black arrow represents the UAV direction while the gray lines represent

possible UAV directions (assuming that the nodes exist and are not outside the search environment).

Redundant connections are eliminated (for example, [2, 2, 2] is excluded because it is a multiple of

[1, 1, 1]). Furthermore, connections that create an angle greater than the critical turning or pitching

angles of the UAV described in Section 3 were also omitted.

−100
−50

0
50

100

−100

−50

0

50

100
−20
−10

0
10
20

Y [m]
X [m]

Z
 [
m

]

Figure 7. Vector neighbor operator.

The field strengths for obstacles are computed using (15) to (17). The field strengths for time

and energy consumption are computed on demand as they depend on the nodal approach direction,

wind conditions and other flight characteristics. The multi-objective cost function is minimized

using the Dijkstra algorithm [51] and the computation time, total trip time, energy consumption

and the distance to the closest obstacle along the path are recorded. In the implementation of the

planner, the WVF data would be recomputed frequently to capture changes over time and could be

supplemented by publicly available weather forecasts for added confidence.
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As mentioned in Section 1, many planners described in the literature consider only uniform WVFs

or assume constant vehicle velocity paths. Additionally, planners that do include variable WVFs were

found to have a coarse terrain resolution (>1 km). The low resolution of a planner can oversimplify

weather information between nodes reducing the planning problem to the shortest straight line path

in a uniform wind field case. The following four test cases were identified to illustrate the importance

of a fine terrain nodal resolution, spatial WVFs, and temporal vehicle velocities.

Case 1, Low terrain resolution: This case emulates low terrain resolution planning by

constructing a trajectory that consists of the shortest straight line segment between the current node

and the goal node that respects the vehicle constraints and avoids known obstacles. The cost function

(1) is modified to C (n, n′) = dr (n) + Wa ·Ca (n, n′). This case uses the spatial WVF, and the planner

optimizes the velocity along the path.

Case 2, Constant velocity: The optimal velocity Equation (13) is ignored, and the vehicle velocity

is held at a constant value equal to the distance between the start and goal nodes divided by the goal

time. This case uses the spatial WVF.

Case 3, Uniform WVF: The planner assumes a constant and uniform WVF equal to the average

bulk flow direction and magnitude at all nodes (computed from the spatial WVF). The planner

optimizes the velocity and the path.

Case 4, Complete planner: This is the full trajectory planner proposed in this work. It is applied

as outlined in Section 5 using fine nodal resolution. This case uses the spatial WVF, and the planner

optimizes the velocity and the path.

Paths were planned using the WVF data generated. Stochastic wind gust was added to the

steady field after the planning process to account for uncertainties in the wind model. A trajectory is

considered to converge to a feasible solution if the planner finds an obstacle-free path that connects the

start and goal nodes within a finite time. The path planning is considered to fail in reaching a feasible

solution if the generated path crosses regions where the total (WVF and gust) wind magnitude is

higher than the vehicle velocity. This is when strong opposing winds form a planar barrier preventing

the UAV from reaching its destination. Trajectories that do not meet the time goal are considered

convergent, but with a poor performance due to their long flight times. The three weights defined

in (1) were set to 1/3. The goal time tg was set to 300 s, and the maximum vehicle velocity was set to

12 m/s. The simulations were performed in MATLAB on an Intel Core 2 Duo 2.80-GHz CPU with 4

GB of RAM.

6.2. Test Environment

The DEMs (terrain) for the test environments were generated based on statistical data from

the real DEM of Vancouver, BC, Canada, which is publicly available on GeoBase [52] as it features

significant changes in elevation. One hundred DEMs were then generated by randomly adding blocks

of buildings to the terrain according to the seed variables listed in Table 1.

Table 1. Seed values for terrain generation based on typical conditions in Vancouver, BC, Canada.

Parameter Value

Mean altitude 600 m
Altitude standard deviation 600 m
Water table altitude 0 m
Mean grade 18.4%
Max grade 306%
Average number of blocks 20
Min block height 15 m
Max block height 200 m
Block length 100 m
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For each environment, a 3D spatial WVF was generated with the help of the CFD software

WindStation using a single wind vector seed to populate the entire control volume based on the

interaction with the terrain and the building topography. The wind seed direction was a uniformly

random integer between 0◦ and 359◦. The wind seed magnitudes were produced based on the

approximation that wind magnitude follows a Weibull probability density function [53] with a shape

value of two and a scale of µw/0.89, where the mean wind velocity µw, for Vancouver is 3.61 m/s

(averaged annually) [54]. The WVF resolution was set equal to the terrain’s nodal resolution of 50 m to

negate any computational time required for interpolation between nodes. The WVF was generated

using the k-epsilon turbulence model with surface roughness set to 2 m and the max residual set

to 10−5.

6.3. Results and Discussion

Figure 8 shows a typical environment with the planned trajectory plotted for each planner and

cross-sections of the variable WVF. In this example, the start and goal nodes are set to [0.5, 1, 0.25] and

[1.75, 1.75, 0.5] km, respectively. The wind seed, represented by a light blue line, is approximately

located at [2, 0.5, 0.75] km, has a [−0.707, 0.707, 0] direction, and a magnitude of 3.25 m/s. The darker

regions of the WVF cross-sections in the figure indicate high wind magnitudes. The WVF is computed

at the start of the planning process and remains constant during the simulation.

Z [km] 

" . .

,· 

X [km] 

2.0

Y [km] 

1.5 

1.0 

0.5 

0 0 
0.5 

1.0 
1.5 

2.0
0 

0.5 

1.0 

_
Low terrain resolution 
Constant velocity 
Uniform WVF 
Complete planner

___

Figure 8. A typical planned trajectory in a simulated city landscape showing WVF magnitude

cross-sections. Note: please refer to the full-color PDF.

The performance of the proposed complete planner was bench-marked against that of the other

three. The aggregated results of 100 simulations are summarized in Table 2. It is important to note that

the average computation time, the average flight time and the average energy consumption were only

computed for instances where all four cases had produced a feasible trajectory. It is also important to

note that buildings are randomly generated in each new simulation. Generally speaking, however,

the wind amplitude and turbulence is much larger around buildings than away from buildings, as will

be discussed at the end of this section. Therefore, when combined with the MSZ, the airship tends to

plan paths well away from buildings.
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Table 2. Performance comparison between trajectories generated by the four planners. (a) impact of

nodal resolution; (b) impact of path planning versus trajectory planning; (c) impact of fixed versus

variable WVF.

(a)

Planner
Convergence Avg. comp. time Avg. flight time Avg. energy

(%) (s) (s) (Wh)

Low terrain resolution 57 15.2 388.9 181.7
Complete planner 94 41.7 206.9 43.9
Change +64.9% +173.9% −46.8% −75.8%

(b)

Planner
Convergence Avg. comp. time Avg. flight time Avg. energy

(%) (s) (s) (Wh)

Constant velocity 74 43.6 325.2 94.0
Complete planner 94 41.7 206.9 43.9
Change +27.0% −4.2% −36.4% −53.3%

(c)

Planner
Convergence Avg. comp. time Avg. flight time Avg. energy

(%) (s) (s) (Wh)

Uniform WVF 83 44.4 185.2 114.8
Complete planner 94 41.7 206.9 43.9
Change +13.3% −6.0% +11.7% −61.8%

The first comparison, shown in Table 2a, illustrates the impact of using a low terrain resolution

planner. The high resolution trajectory planner converged to a viable solution 94/100 times as opposed

to 57/100 for the low resolution version. The convergence rate for the shortest straight line case is

understandably low since the vehicle has limited on-board power and the number of passable nodes is

limited. Furthermore, the average energy computed in the low resolution case for the trajectories that

did converge was over four-times higher than the high resolution version. The lower computation

time for the low terrain resolution planner was caused by many of the potential trajectory options

being eliminated when optimizing for the shortest distance instead of minimum time and/or energy.

However, the computation time for both planners was still only a fraction of the predicted flight time.

The second comparison, shown in Table 2b, illustrates the impact of using a temporal vehicle

velocity. The paths generated without velocity optimization were generally spatially similar to the

complete trajectory planner. However, the constant velocity planner exhibited a lower convergence

due its inability to overcome stronger lateral and head winds. Excluding velocity in the path planning

process also excludes the option of planning the time the UAV will be in a given wind field. To fully

optimize energy consumption, it is desirable to remain in tail winds for a longer period of time

(by reducing airspeed) and passing through strong lateral and head winds as quickly as possible.

To further illustrate this effect, a case study was conducted to highlight the function selecting

the vehicle velocity to minimize the energy consumption defined in (11). Consider the vehicle flying

horizontally over a straight line distance of 100 m, with varying amounts of parallel and perpendicular

wind components, −10 m/s ≤ υvw,|| ≤ 5 m/s and υvw,⊥ = 0, 3, 6 m/s, respectively. If these wind

components are known, the vehicle velocity, υvw, can be chosen to minimize energy, as shown by the

white line on each surface in Figure 9. Clearly, since the line in each graph is nonlinear, the desired

vehicle velocity for minimal energy consumption is not constant and should be included in the

planning process. Furthermore, Figure 9 shows that the optimal vehicle velocity is never zero even in

the presence of a pure tail wind due to the non-negligible constant power required to maintain the

on-board electronics.
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(a) (b) (c)

Figure 9. Energy map for various lateral wind speeds. (a) υvw,⊥ = 0 m/s; (b) υvw,⊥ = 3 m/s;

(c) υvw,⊥ = 6 m/s.

The third comparison, shown in Table 2c, illustrates the impact of using a fixed WVF path

planner. The trajectories generated with this planner tended to be similar to those generated by the low

terrain resolution planning, discussed earlier. Since the WVF was considered to be uniform, the UAV

would climb into higher magnitude winds resulting in considerable energy consumption increases.

The uniform WVF planner converged less often due to the lack of awareness and planning for stronger

head winds. In the cases where the planner converged, the resulting viable trajectories were faster

on average, but exhibited greater variability. The standard deviation in flight times for the uniform

WVF and the complete planners was 135 s and 74 s, respectively. The full planner was slightly faster

on average then the constant velocity and the uniform WVF planners. This can be explained by the

fact that fewer connections between the nodes were feasible in the full planner case as a consequence

of more connections exhibiting negative ground velocities. The reduction in the number of feasible

connections reduces the computational load and the processing time of the optimization. In individual

tests with low wind velocity seeds, the fixed WVF path planner converged faster than the complete

planner; however energy savings could still be achieved using the complete planner, as airships are

highly sensitive to wind disturbances. It is worth noting that the mean wind velocity seed used in the

simulation was 3.61 m/s or 13 km/h and that this is considered low wind for heavier-than-air UAVs.

In addition to these comparisons, it is worth commenting on the design of the trajectory planner.

The complete trajectory planner has a consistently higher convergence rate than any other planner

considering only two of the three key factors. The limited flight speed for small-scale UAVs imposes

severe path restrictions and even impassible regions at high altitudes where wind magnitudes can be

higher. The inability to adapt the path or vehicle velocity to avoid these conditions has been shown to

reduce the feasibility of the trajectories that were produced. More importantly, the energy consumed

by trajectories generated by the complete trajectory planner using a variable trajectory and variable

WVF data was found to be at least 50% lower on average over all scenarios simulated.

Figure 10 shows the average energy consumed for each planner with a 95% confidence interval.

The improvement in performance between the complete and the other planners was greater than the

error in performance caused by the random gust wind component. Therefore, the inclusion of all three

key factors to UAV trajectory planning yielded a significant improvement.

0 250

Low terrain resolution 

Constant velocity 

Uniform WVF 

Complete planner

50 100 150 200
Average energy consumed [Wh]

Figure 10. Comparison of the average energy consumed per trial for each planner.
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The maximum computation time for a single trial of the complete planner was 78 s. It is worth

noting that the WVFs were loaded from a calculated a priori database. Hence, uploading variable

WVFs’ data using CFD computations in the physical UAV may lead to an additional overhead and so

to a slight increase in the processing time. However, it was observed that the WVFs for these trials were

calculated in 60 s, on average, and never more than 90 s using WindStation Version 4.0.1. The resulting

total computation time to calculate the CFD WVF plus the trajectory over the 2 km × 2 km × 1 km

control volume would still be only a fraction of the predicted flight time to traverse the trajectory.

Since the trajectories can be planned faster than they can be followed, it is reasonable to conclude

that the proposed complete trajectory planner could be used for unmanned airships. Depending on

the desired resolution and on-board processing capabilities, it is foreseeable to include temporal and

spatial WVF generation into the re-planning process or equipping the UAV with a local planner

to find optimal paths within regions where obstacles are detected and re-planning is required,

for instance. CFD-generated WVF data could also be fused with national weather service predictions

(when available) and UAV-generated wind measurements for added certainty.

The UAV attempts to arrive at the goal node within the allowed time frame by adjusting both the

path in (4) and the vehicle speed in (5). This redundancy leads to a conservative trajectory planning

approach. Based on the one-to-one weight ratio of time and energy, the ability to arrive at the goal node

on time for the four respective planners was 53.2%, 53.2%, 87.2% and 91.5%, respectively. In addition,

the complete planner arrived 32.5% earlier than expected, on average. If the weight for time is reduced,

the arrival time will follow the goal time more closely. The average additional time due to reorientation

of the UAV was on average 1.5% per convergent trial. Therefore, the idealized reorientation of Figure 3

is relevant to this UAV platform.

The trajectory planner uses wind speed and direction to optimize the vehicle velocity and path.

Therefore, incorporating turbulence intensity data into the path planner may further optimize the

generated path. It is known that turbulence flows persist long into the wake of a disturbance. Although

their intensity is low, it may have a detrimental effect on the flight performance. As an example,

this means penalizing areas with relatively high turbulence intensities, such as the one circled in a

solid line in Figure 11a, and rewarding the others with low turbulence intensities, like the one circled

in a dashed line. The CFD software WindStation, used to generate WVFs, also produces the turbulence

intensity fields, shown in Figure 11b. These data could readily be incorporated into the objectives in the

cost function. However, platform-specific experimental flight data would be required to fully realize

the impact of turbulence intensity on the flight performance and to properly utilize the turbulence

data for trajectory planning. In addition to turbulence, thermal effects could also be included in the

generation of the WVF generated by the CFD software to account for the vertical wind components

produced by thermal convection [55].

200 [m]

Wind Speed [m/s]0 30

(a)

200 [m]

Turbulence Intensity [%]0 3

(b)

Figure 11. Wind speed and turbulence intensity around a mountain ridge and city blocks. (a) Wind

speed plot; (b) turbulence intensity plot.
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7. Conclusions

In this paper, a wavefront expansion trajectory planner incorporating a comprehensive

multi-objective function for unmanned airships is presented with the purpose of quantifying the

reductions in energy consumption achievable when using spatial WVFs, high resolution grid

and temporal vehicle velocities in the planning process. The planner was subjected to large, highly

realistic, 3D environments and simulated over a variety of flight conditions. The inclusion of spatial

WVF data significantly improved the trajectory feasibility (convergence rate) and reduced the energy

consumption by 53–76% when compared to other planners. The results have also illustrated that the

trajectory planner could operate in semi-real time on a less powerful on-board computer as the average

processing times were a small fraction of the flight times.

Although the energy objective function encompasses many of the factors contributing to the

energy consumption, there is still room for improvement. The aerodynamic drag on the vehicle is

not constant for all flight conditions as was assumed in this model. Furthermore, various degrees of

stabilization are often required to maintain a UAV on a given trajectory, which are not accounted for.

Errors due to this stabilization effort will increase when aggressive arrival times are set. Applying

a trajectory following controller with the complete non-linear dynamic model and a temporal WVF

would help validate the realism of the generated trajectories and would provide a more accurate

prediction of the travel time and energy consumed.
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Abbreviations

The following abbreviations are used in this manuscript:

Variables

A Reference area [m2]

C Cost

C Constant

δ Density [kg/m3]

d Distance [m]

E Energy [J]

F Force [N]

η Efficiency

n Node identifier

N Number of nodes

o Orientation ratio

ρ Pressure [Pa]

P Power [W]

Q Volume flow rate [m3/s]

t Time [s]

υ Velocity [m/s]

V Volume [m3]

W Weight

z Elevation [m]
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Subscripts

a Avoidance

c Constant

d Drag

e Energy

g Goal

l Terrain

m Pressure ceiling

o Obstacle

ot Optimal for time

oe Optimal for energy

r Remaining

T Thrust

w Wind

v Vehicle

vg Vehicle with respect to ground

vw Vehicle with respect to wind

‖ Parallel

⊥ Perpendicular

Abbreviations

CFD Computational fluid dynamics

DEM Digital elevation map

ETA Estimated time of arrival

MSZ Minimum separation zone

UAV Unmanned aerial vehicle

WVF Wind vector field
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