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The antenna whose whole pattern fits
To an ideal (and not just in bits),

Is doomed to a failure,

Despite Dolph and Taylor,

Lagrange or Rayleigh and Ritz.




ABSTRACT

A number of antenna synthesis problems involving
non-planar apertures have been solved explicitly. In
each case the problem contains a constraint in the
form of a limitation on the size of the aperture ‘Q’.
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AN APERTURE SYNTHESIS STUDY

— R.A. Hurd -

I INTRODUCTION

1.1 Types of synthesis problem

The problem of designing an antenna or an array of antennas to give an approximation
to a prescribed radiation pattern is known as antenna synthesis. Compared to analysis, which
is the derivation of the characteristics of a given antenna configuration, synthesis is normally
the more difficult task. But owing to its greater importance in engineering, it has been worked
on considerably in the past. No attempt is made here to document the problem; the interested
reader could refer to Chapter 7 of the book by Collin and Zucker (1969) for more details.
Despite a large literature, much work remains to be done. In part this is because of inherent
difficulty; it is also due to the large range of possible problems, of which we shall now try to
give some idea.

Perhaps the most basic synthesis problem is the following: given a linear array of
dipoles of fixed spacing and orientation, to find the driving voltages such that the best
approximation to a prescribed radiation pattern is obtained. Another problem of greater
difficulty arises if the total number of dipoles is fixed, but we ask for their best positions as
well as the driving voltages. Problems of a different kind are those in which only a part of
the pattern (say the main beam) is specified, with perhaps maximum sidelobes given. Still
another variation is to specify only the magnitude of the pattern. This is often all that is
required, but it generally leads to problems of greater difficulty. Other variants can be
envisaged. There are different error criteria: mean square match of derived and actual patterns
equal ripple approximations, maximum ripple specified, etc. Constraints of various sorts can
also be introduced. For instance the magnitudes of the driving voltages could be restricted;
in fact, this is often necessary if practical antennas are to be realized. Finally, rather than
dealing with discrete arrays, one could try to synthesize continuous distributions, which are
sometimes easier to treat.

b

In short, analmost endless variety of problems can be thought of. It is hardly necessary
to say that many will be very difficult to solve.

1.2 Scope of the present work

In this report we shall deal mostly with continuous distributions. This implies the
presence of an aperture, which will usually be assumed non-planar. Such apertures might
occur on the surface of a satellite, for instance. In addition, we shall normally assume that
a constraint in the form of an aperture ‘Q’ exists. This will be discussed in more detail in
Section (1.5). For the present, we merely observe that something of this sort is necessary
to avoid ‘super-gaining’.
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We shall assume that the amplitude and phase of the desired pattern is given, and seek
an aperture distribution giving the best-mean-square fit pattern to this. For a number of
these problems we are able to give an exact solution.

1.3 Exact and implicit solutions
By an exact solution we mean an answer A in the symbolic form

A= f(P) (1.2;1)

where P is the desired pattern and f a known function. To date, very few synthesis
problems with constraints have been solved exactly in this sense. The only ones known
to the author are by Rhodes (1963, 1972) and Fante (1970). Usually the answer turns
up in the implicit form

g(A)= P (1.2:2)

where the known function g remains to be inverted. While this is sometimes feasible by
computer, an answer in the form (1) is generally much more desirable.

1.4 Theoretical possibility of synthesis

Before considering complicated synthesis problems with constraints, it is instructive
to examine a general unconstrained synthesis problem to see how the aperture field can be
determined. Suppose we have an arbitrary 3-dimensional aperture denoted by A in Fig. 1.

Fig. 1 Arbitrary aperture antenna A
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Surround it by a sphere § whose radius is allowed to become 1nf1n1te On § we suppose
that a scalar field u is known. This will have the form u = ekr P(0 ¢) and we suppose

that P(0 ¢) is the desired pattern function. Then, if G is an outgoing wave function singular
at a point P outside 4 and satisfying G = 0 on 4, we have by Green’s theorem:

= G _ ~ou oG .
du (P) £(uan Gan)ds+£uands. (1.4;1)

The integral on § vanishes, so that (1) expresses the field u in terms of its values in the
aperture. If now we let kr > oo we obtain an integral equation for the unknown aperture
distribution function u. It can be proved that a solution to this exists under quite general
conditions.

Some points to be observed are:

(a) An analogous treatment exists for vector fields;

(b) the solution u occurs in the implicit form (1.2;2);

(c) the solution u provides an exact fit to the far field 13(0,¢). If constraints
are added, an exact fit is no longer possible in general. In this case a
best-approximation pattern must be sought.

1.5 A discussion of constraints

The problems with which we are about to deal will always embody a constraint on
the amount of reactive power in the aperture. This is necessary to avoid super-gaining.
Highly super-gained antennas are characterized by large and rapid variations of field in the
aperture. Such antennas are hard to build and, if built, intolerant to frequency changes.

The degree of super-gain is usually indicated by the super-gain ratio v, first introduced
by Taylor (1955) strictly for line sources. Approximately y = 1 + |S l/ S, where S, and S;
are the real and imaginary parts of the power, and this relation allows the super-gain concept
to be extended to aperture antennas.

Clearly ¥ 2 1, and large values of v imply impossible antennas. Evidently, appreciable
amounts of reactive power mean poor pattern stability and low realizability. This is reminis-
cent of resonant circuit theory where Q — the ratio of magnetic or electric stored energy to
dissipation — is indicative of the width of the resonance curve. Clearly S; contains both types
of reactive power in the form f [|HP — |EI?1dy. Thus IS;1/S; is not truly representative of 0,
since S; can be small even when the electric and magnetic powers are large. However, attempts
to define a quantity more analogous to Q for apertures have thus far failed. The reason, as shown
by Rhodes (1966), is that the integral over all space of either |H|? or |EI2 separately is divergent,
although the difference is finite.

A closely related Q factor was introduced by Uzsoky and Solymar (1957) for arrays
of dipoles. Specifically, they put Q = lJ;12 /S, where J; is the feeding current of the ith
element and the sum is over all elements. Ev1dently |J 12 is representative of real and
reactive powers in some sense; so this definition is a pOSSlble alternative to S;/S,. This
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concept of Q was extended by Lo, Lee, and Lee (1966) to aperture antennas simply by
letting the J; be the amplitudes of the modes in the aperture. But this definition fails in
cases where there is a one-to-one relation between aperture and pattern modes.

Despite its deficiencies we shall normally use Q@ = S; /S, asa constraint. However,
Uzsoky’s Q is sometimes more convenient, and has been used in one problem, (sec. 8.1).

II RHODES’ SYNTHESIS OF A LINE SOURCE
2.1 An outline of Rhodes’ solution

One of the very few synthesis problems to be solved exactly when there is a constraint
is that of finding the continuous line distribution which gives the best mean square fit to
a given pattern. This was solved beautifully by Rhodes (1963) who employed the doubly
orthogonal property of the spheroidal functions. Since his work serves as a model for
much to follow and since it raises some questions and speculations not considered by Rhodes,
a brief outline of his analysis is now given.

Let a line source extend along the x axis from —a/2 to a/2. Putv= 2x/a and suppose
the distribution along the line is A(v). With u = (ma/\)sin 8, the far field pattern is given by

Puy= 55 [, AG)eWay @11

See Fig. 2. On taking a Fourier transform we have

AW)= f_:P(u) W gy (2.1:2)

TY

-a/2 a/2

Fig. 2 Line source and coordinate system
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The pattern P(u) represents real power for lul< ma/\ and reactive power elsewhere. Thus
the super-gain ratio can be defined as

y= [ : |P(u)1? du/f "”//x IP(u)I? du . (2.1:3)

~maf\
Suppose now that 13(u) is the desired pattern, then the problem faced by Rhodes was

to minimize the mean square error
A .
N Py - Pl du |
A

-naf
while holding v constant. Using the method of Lagrange, this is equivalent to minimizing

ma

A oo
e+ u { 7]' / [Pw)]? du — f [P(u)? du } (2.1;4)
-maf\ —oo
where u is the Lagrange multiplier to be found by substituting the solution in (3).

Rhodes’ solution to the problem rests on finding functions orthogonal on two ranges,
(=90, %) and (-c, ¢), where ¢ = ma/A. Rhodes recognized that the prolate spheroidal functions
Son(c,u) have this property. Thus

S Son () Som (c,4) dt = Ky 8yg/ A, (2.1;5)

f S (C u )S (C —“)a’u =CK, 6 (2 16)
on ‘e om ‘e nYmn H R ]
-C

where Ky ?\n are certain normalization constants.
If the given pattern is expanded in terms of the Son, we have
- N . u
Pu) = %J dy, Sop (C’E) 2.7
with the dy, known. Let

_ ¥ u
Pw) = % a, Son (c, —c-) . 2.1;8)

Then after substitution in (4) and differentiation with respect to the real and imaginary
parts of a, one finds that

4, =dy [1+pQ, 1 =TT, (2.1,9)

while u is got by solving
N Kn 'lin '2

> =
0 O -+, T-n7 17

(2.1;10)
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While apparently the complete solution to the problem is given in (9) and (10), the
reader might feel that there are still some unanswered questions, as follows. Are (9) and
(10) sufficient to ensure a minimum; and if not, what extra restrictions does Ehis entail?
Can v be arbitrarily chosen? As (7) is a best mean square approximation to P(u) (with the
dy, determined by Fourier methods), does the solution (8.) represent a best mean square
approximation to a best mean square approximation to P(u)?

We shall clear up these questions in connection with another minimization problem
to be considered in Sec. 3.2. Here the analysis involves the much simpler exponential and
Bessel functions, as opposed to the fairly complicated spheroidal ones. Our answers will
remain valid regardless of the problem.

2.2 An implication of Rhodes’ solution

The spheroidal functions of the previous section were introduced because their doubly
orthogonal properties allowed a closed form solution to the synthesis problem. Evidently
Rhodes did not realize it, but there is a second reason why the spheroidal functions are
appropriate to the problem. They are appropriate simply because they arise naturally when
the boundary value problem of a straight line conductor is solved in its natural system of
coordinates (the prolate spheroidal system). Looked at from this new angle, any synthesis
problem ought to be exactly solvable if the aperture consists of a complete coordinate surface,
and if the particular coordinate system is one for which the wave equation separates; always
providing a suitable definition of the super-gain ratio is available.

Since the super-gain ratio is roughly 1 + ISil/ S, for a line distribution, and the quantity
S;/S, is easily found by a direct integration of the complex Poynting vector across the
aperture (rather than by an integration of the pattern in Rhodes’ case), we have a method of
introducing a power constraint involving only integrations across the aperture, where the
orthogonal properties of the natural functions of the particular coordinate system can be
exploited.

We are then led to the main conjecture of the present essay: “A synthesis problem
with a constraint on the aperture Q (=S; / S,) is exactly solvable if the aperture coincides
with a surface for which the corresponding diffraction problem is exactly solvable”.

This conjecture turns out not to be true; for instance we have been unable to solve the
problem of the parabolic cylindrical aperture. However, it does work in many cases, and
we have been led thereby to the exact solution of several aperture synthesis problems.

I SYNTHESIS OF A CIRCULAR CYLINDRICAL APERTURE
3.1 Analysis of the problem — E-polarization

In this problem we are given a circular cylindrical aperture of radius a, extending to
infinity in the *z directions, and we look for a z independent distribution of E, in the
aperture which gives the best mean square fit to a given far field pattern P(¢).
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We regard this problem as the key one of the report since its solution is the simplest
of all and not only gives the answers to the questions raised in Sec. 2.1 but points the
way to the solution of the more complex problems treated later. Accordingly, it is
treated in some detail.

Since only E, exists in the aperture, there are only 3 field components outside, namely
E,, o H¢. Assuming and suppressing a time-dependence e™ /! | the relevant field compo-
nents are given by

E,(p,¢) = Z Ay e™d ) (kp) (3.1:1)
- ik . = j 1) .
Hy(p,9) = s 2 Am e™mé g (kp) , 3.1;2)

the A,, being undetermined constants. From (1), the far field is easily found:
E, (p,¢) = el(kp = m/4) o1t nyh _%.;Am ¢ imn[2 +im¢ (3.1:3)
and, with a,, =4, e im"/z, the pattern is
P@) = 3 a, elm$ (3.1:4)

The complex power S in the aperture p =a is given by (a/2) f02" (E X H*)p d¢. On using
(1) and (2) to evaluate the integral, we get

§ = 8§ +i = GrkaJouy) X lay, 1* H) (ka) HY) (ka) . (3.1;5)
Then, after introducing the Wronskian relation for the Hankel functions:
S, = Qwr) 2 la, I , (3.1;6)
S; = (ﬂka/wuo)_zoio la,, I* Z,, , 3.1;7)
with
z, = I (ka) Jm'(ka) +7Y,, (ka) Ym'(ka) . (3.1;8)
It follows that
S %wka_%; la_ |2 z,
Q =21 = = : (3.1,9)
Sr S a2



_8—

If l;(qs) is the pattern we wish to obtain:

P@) = 2 a4, em?, (3.1;10)
with 4, found from
by = 5 fo " e imo pg)dg 3.1;11)
then the problem is to minimize
e = fOZ" IP(¢) — P(p)|? do (3.1;12)

subject to @ = constant. Or, by the Lagrange method, we minimize

2 . oo
[ 7 @) - b@P do +u 3 (@~ FnkaZy) lay . (G113)
0 - 00

If (4) and (10) are substituted into (13), the integration performed, and the derivatives with
respect to the real and imaginary parts of the a,, set equal to zero, we get

2nd,
a,, = . (3.1;14)
o +u(@- §kaZ,)

To find u, (14) is inserted in (9) yielding

£ la, . 12n+u(Q - $7kaZ,)|. 72 (Q - §7kaZ,) =0 - GL1D)

— 00

This is a transcendental equation to be solved for u, but it is normally quite a simple job on
the computer. It will be observed that (14) and (15) are the analogues of (2.1;9) and
(2.1;10), but that they involve much simpler functions.

The solution is now formally complete: substitution of (14) in (4) and (1) gives the
realized pattern and the aperture distribution.

The actual minimum error is easily found to be

e = w3 dm(Q—%ﬂkaZm) 2 .
S |1+ (w/2m(Q- snkaZ,)

(3.1;16)

3.2 Subsidiary proofs, bounds, discussion

A vital question is: “How does Z,, behave as a function of m? ” It is easily answered.
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By differentiation of Nicholson’s formula (Magnus and Oberhettinger (1949), page 30)
we have

z, = (—8/1r2)f K (2kasinh ¢) sinh ¢ cosh 2me dt ,  (3.2;1)

m

where K 1 is the modified Hankel function. Since the integrand is positive, Z,, is negative.
Moreover, since cosh 2mt is increasing withlml, Z,, decreases monotonically w1thlml It
will be noted that (1) also shows that Z_m Zm

We are now able to treat the question raised in Sec. (2.1) as to whether a minimum of
error has been achieved. It is well known that a sufficient condition for a minimum of a

2 . ..
function f (x;, ...x,) of n variables is that the Hessian matrix (a—a-aL) be positive definite.
X; x]-
In this case (and in Rhodes’) the off-diagonal terms are zero ; so the condition reduces to

?flox2 >0, i=1,2,..... no... . 3.2;2)
For the cylindrical aperture, (2) translates into

2 + u(Q — 7‘1rkaZm)> 0, m=0,1,.. . (3.2;3)

This puts conditions on u which can only be understood after reference to (3.1 ;15). Here
it is apparent that the factor Q — +mka Z,, must change sign as a function of m, if a finite
value for u is to be obtained. Thus we must have

Q- tmkaz, <0 (3.2;4)
for all Iml <M, say. Then from (3)

2n
< —=——, Iml<M
: smkaZ, —Q 0

which, since Z,, is monotonic, can be replaced by

2r
< — W 3.2;5
H —;—nkaZO -0 ( )

Asm — oo Z,, — —oo, 50 that (3) also gives
u>0. (3.2;6)

If, as must always occur in practice, our series are finite, then (6) becomes

> __2am 3.2;,7
. smkaZ,-Q ( )
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where M is the upper limit of the sums. Clearly a solution of (3.1;15) must always be sought
which satisfies the two inequalities (5) and (7).

The inequality (4) implies that Q cannot be arbitrarily chosen. It must in fact satisfy
takaZ, <Q< 1wkaZ, . (3.2;8)

We note that Q is always negative. This is just a consequence of our choice of a multiplier
in (3.1;9); clearly any positive or negative one would do.

According to (7), negative values of u are allowed. Then there must exist a value of
Q which yields p = 0, corresponding to zero error. This Q value (called Qperf) can be got
from (3.1;15):

= inka 2 I, 2 a2 '

Qperf = 2mka a4y Zm ay, . (3.2;9
-M -M

Values of 0 < Qperf lead again to non-zero error, so that the lower bound of (8) should be

replaced by Qperf. If M is infinite, Qperf= — o0 and this is also the lower bound of Q accor-

ding to (8).

It is implicit in much of the foregoing that u is real. Doubtless (3.1;15) yields complex
p-roots, but since these cannot satisty (3), only real roots need be considered. The question
now arises whether there is a unique real root of (3.1;15) satisfying (5) and (7). The answer
is yes, as can be seen from writing the L.H.S. of (3.1;15) in the following way:

)3 + > e (1607« 20+ u(Q- inkaZ )+ (Q - tmkaZ,,)
{lm|<M0 MO<|mI<M} { " : m 2 m

(3.2;10)

Each term of the first sum is negative, while the second has only positive members. For u
at its minimum value (7), the second term gives + while the first term is maximum but
finite. As u increases, both terms decrease monotonically. The first term tends to —e at
maximum g, while the second term is minimum. See Figure 3. It is evident, then, that a
u exists for which the first term is minus the second. In view of the monotonic behaviour,
this must be the only root satisfying (3.1;15) in the required range.

Finally we answer the question: is our solution a mean square approximation to a mean
square approximation? The answer is no, as can be seen by using the exact P(¢) in (3.1;12)
rather than its M term approximation.
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K MIN, 'K ROOT | Max.

_/>\
FIRST TERM \

!

Fig. 3 Graph showing existence of a root u

3.3 Summary of relevant formulae

The following steps give succinctly the synthesis procedure assuming that a desired

pattern P(¢) the radius a of the antenna aperture, and the Q (a negative number) are pres-
cribed.

(@) Set M= 2ka.
(b) Calculate Zm = Jm (ka) I '(ka) + Ym (ka) Ym'(ka) for ImI< M.

(c) Calculate d,, — (4m) f 21re""”"1>13(gt>) do, ImI<M.
0

i |2 .

1 M 4 |2 u
(d) Calculate Q = skam 3 ldg,l Z, | Z lg,

o
pe -M -M

(e) Check that Qperf < Q < inka Z,. If not, Q must be reassigned.

M
() Calculate p from 2 ld,,[7+u(Q - LnkaZ, )] 12 - (Q - Lnka Z,)=0
-M

It must lie in the range __ 20 <y < __ 27
3kaZ, - Q kaZy- Q

2n d
(g) Calculate a,, = m
m 2+ u(Q- %ﬂkaZm)

M .
(h) The achieved pattern is given by P(¢p)= I a,, eimo
-M
M
Z

() The aperture distribution is E, (a, ¢) = imm/2 a,, HY (ka) e™9 .
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3.4 Numerical results

A computer program was written to calculate realized patterns and the aperture
fields. Figures 4—11 give realized patterns for different Q’s and an aperture of ka = 20,
with M = 29. The desired pattern is unity for —45° < ¢ < 45° and zero outside. The
pattern marked unconstrained is the 29 term Fourier series approximation to the square
wave ideal pattern. Some of the corresponding amplitude distributions are given in
Figs. 12—15. One will observe little pattern improvement beyond Q = .0260, but extreme
sensitivity to Q before this. (In labelling these patterns we have changed Q into —Q).
Apparently a good compromise choice would be @ = .02540.

For comparison, Figs. 16—20 repeat the above but with the beamwidth narrowed
to 45°. It is evident that a Q of .02540 no longer gives a good approximate pattern;
something greater than about Q = .026 seems necessary here. This finding fits with the
intuitive idea that higher Q’s are needed to approximate more extreme patterns.

3.5 Analysis for H-polarization

This problem is almost identical with the preceding. We have

Hy (0,8) = 2 Ay €™ HS G0) 3.550)

Ey (0, 9) = (-ikjweo) T Ap, emd W (ka) . (3.5:2)

We now define the desired and achieved patterns in terms of Hz. The power in the
aperture becomes

S, +1iS; = (inkajwey) T la,, 1 Hy (ka) HP (ka) (3.5:3)

which is p, /€, times the complex conjugate of (3.1;5). This just has the effect of
altering the sign of @, so that all the previous analysis goes through otherwise un-
changed. But we note that the aperture electric field will of course be different.
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SYNTHESIS OF A TWO-DIMENSIONAL ELLIPTIC APERTURE
4.1 Analysis for E-polarization

IV

In this case the aperture is an elliptic cylinder described by u = u, in the elliptical

coordinate system {u, v, z}. See Figure 21. Again we assume that E, is the only component
of electric field. In the region outside the aperture u = u,:

E,(0.8) = I Ay, e, mRE) @, 8

3
+ B, 50,,(c, D RS) (¢, ) . (4.1;1)

v=3w/2

Fig. 21 Elliptic cylindrical coordinates, u = U, is the aperture surface.
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Here we are using Stratton’s (1941) definition of the Mathieu functions, and n = cos v,
¢ = cosh u, ¢ = 3 kd; d being the interfocal distance.

Since H, = (i/wkoC) (sinh? u + sin? v)"/’aEZ/au we have

H, = (i/wpoc)sinhu (sinh®u + sin? ) % T A, Se,, (c, n)Re (c £)
o

+ B, So,,(c, n)Rom (c, &)
“4.1;2)

The outward flow of power from the aperture can be computed from
2w )
S = —tc [ E Hy*(sinh?u, + sin*v)* dv
o
with the aid of (1) and (2).

= (iJwp)sinhu, = 14, 12 RE) (@, £ )RED @ £,)NE,

+ |B, 1> Ro o 2 so)Ro(” c E)NS ,  (413)

where we have employed the orthogonal property of the angle functions:

2
S, Seyn ¢, ) Sep () ¥ = NEO 8, - (4.1;4)
In (4), N, ¢ and N, O are normallzatlon consltants On se1)2arat1ng into real and imaginary parts
1
and using the Wronskian relation Re Re(m) - Réni Réni = —1/sinhu, etc. we get
S, = (lwpo) T Ay? NG+ 1By 2 N, (4.155)
o]
S, = (sinhuo/wio) S 1Ayl NgZew + Byl* N7, Z0yy, (4.1:6)
)

(1 @)

2) (2
with Ze,, = Re,, Re,, + R( ) R( ) etc. Again the Q is defined as S;/S,.

To find the far field, we employ the asymptotic representations

RE) (0.5 = oy, ellek-@mFDT4T in (1):

E, 0,5~ (ks)“/z. HCETIN T (4, Sep (c.1)
+B,, So,, (c, e imnl2 4.1;7)
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From (7), the pattern is

(=]

Pm) = Za, Sepy (c,m) + by Sopm (c, n‘) (4.1;8)

S

with a,, = e M2 4, b, = ¢"IMTI2p  With the desired pattern given by

G Sep (¢,m) + by, Sop (¢, 1) (4.1:9)

oMg

P(n) =

the process of minimizing the mean square error leads to

G = dpy [ 1+ p(Q — sinhu, Ze, 7, (4.1;10)
b = byl + 1 (Q - sinhu, Zo, 17!, (4.1;11)

where the Lagrange multiplier u is to be found from solving the transcendental equation
2 ldy |2+ 11+ 1(Q ~ sinhu, Zey)I™2 + (Q = sinhu, Zep,) * NE
o
+ 1by)? 11+ u(Q = sinhu, Zop,)I"2+ (Q—sinhu, Zo,,) - N2 =0 . (4.1:12)

4.2 Discussion

When the desired pattern Is(n) is symmetric about the x axis, the infinite sums of odd
functions can be dropped throughout. If P(n) is symmetric about the y axis, only the Sey,

for even m and S0, for odd m need be retained. We also note that So, (c,m) = 0, so that
the odd sums always start at m = 1.

Sufficient conditions for minimum error are given by the inequalities
1+ p(Q —sinhuy, Ze_)y>0,m= 0, 1,...... 4.2;1)
Om

In contrast with the circular case, it does not seem possible to prove that the Ze are monotonic
in general. Thus we are not able to establish theoretical bounds on i, or dec1de the allowable
range of Q in advance. But of course, these questions can be answered by numerical calculation
of the ng in any specific case.

4.3 Particular case: infinite slit in conducting plane

This sub-problem of the preceding is of such importance that it calls for a few words of
special treatment. For u, — 0, the elliptical aperture degenerates to a slit of width d; and if
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Ay =0in (4.1;1) the electric field is zero on v= 0 and v = . The formulae of Sec. “4.1)
can now be used directly, once the quantity C, = ulh_x)lo (sinh u, * Zoyy,) is evaluated. Since

4 0
ROV (c, 1) =0, and Rdy) (c, 1) is finite, Gy reduces to R& (e, 1) & R8P (¢, coshu)|,_-
These values can be found in a National Bureau of Standards publication (1951).

This problem has also been solved using Mathieu functions by Leonard (1959) for no
constraints; and recently with constraint by Rhodes (1972). The latter paper appeared after
the present work had been done.

4.4 Analysis of H-polarization

This problem is a trivial variant of the preceding and will not be given here.

V  SYNTHESIS OF A PERIODICALLY BLOCKED CIRCULAR APERTURE
5.1 Statement of the problem and analysis

Clearly it is more realistic to have apertures which do not occupy the whole of a co-
ordinate surface. In general such apertures lead to problems which do not have an exact
solution. But there is one special case which can be solved in closed form; this is an array of
similar slots, such as a series of parallel plate waveguides, equally spaced on the circumference
of a circular cylinder.

The situation is illustrated in Fig. 22. Here there are N slots, each of angular width
2y, whose central axes are 2n/N radians apart. We assume that 2kay,< 1; thus Ey across
each mouth can be assumed constant*. However, the amplitudes Eg(s =0, 1, ...N—1)are
allowed to vary from slot to slot. Consequently the electric field on the cylinder is given by

Ep@@,9) = Eg, 205 = 4o < ¢ < 205 4y, (5.1;1)

= 0 , elsewhere.

Fig. 22 Slotted cylindrical aperture

* A more realistic field would have a singularity at each edge. The difference in pattern is small for narrow slots.
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We also have the representation of (3.5 2):
Ep (@, 0) = (ik/we,) T Ay eimd 5D (ka) |
so after inverting (2) and using (1) we find

- ’ N-1 ,
% —mm_ Ap Hr(r%) (ka) = 3 Eq e~ 2mims[N
o sinmy, s=0

where sin my, /m is to be interpreted as Yo if m=0,

As in Sec. (3.5) we have

P@) = I ay ™,
P@) = I 4y eim?

with a,, = A,,7M7/2 Also

S, = (2/we,) % lay, 1%,

S; = (—mak/we,) _°2° lap,1* Zp,

(5.1;2)

(5.1;3)

(5.1:4)

(5.1;5)

(5.1;6)

(5.1,7)

where Z,, = J,, (ka) I (ka) + Y,, (ka)Yy,' (ka). Thus the quantity to be minimized is

e =213 lay, — 6,12 + u_%: (Q + LtnkaZ,) lay,l?.

We now use (3) in (8) and minimize € by varying the quantities E;. This leads to

_:‘-?: {[27r+#(Q +dmkaZy,)] - |Gl? + e2mimsIN
: :’é; Ey em2mismIN _ 4 eznims/N/G”T} _ o
s =01, ..N-1.
wherein

-ik mu , D'
G. = . — . eimm/2 o H( (ka) .
m we,  sinmy, "

(5.1;8)

(5.1;9)

(5.1;10)
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If the sums are re-ordered, (9) can be rewritten as

N—=1
p> 0 Eg X(s—s') = Y() (5.1;11)
§ =
in which
X6) = 5 (27 4 u(Q + trkaZy)] * 1Gyl 2 - 2SN (5.1;12)
Y() = _°E; dy €2"mSIN /Gy (5.1;13)

To treat a system such as (11), some of the ideas of Borgiotti and Balzano (1970) can
be used. We first note that X(s + N) = X(s) and Y(s+ N) = Y(s). It follows that quantities
X;, Y; can be found such that

=1 ,
X = Z X e2mistiN . (5.1;14)
t=
N=1 :
Ye) = 5 Y, etV (5.1;15)
t=0
In fact, it is easy to show that
Xp = E LTH u(Q + +mkaZyy 4 )1+ 1Guy 472
(5.1;16)
= U+ uV;, say
and
x . *
Yr = 2 duyir! Guvir- G.L17)

N = =00

If we substitute (14) and (15) in (11) and re-arrange the sums, we get

N—-1 . - ., - ,
T X, estt/N NE 1 Ey e wmis tIN — NEI Y; e21r1st/N . (5.1;18)
t=0 s'= t=0

A comparison of the coefficients of e2Mist/N in (18) then yields

N—1
z. Eg e 2mSHN = ¥, /X, . (5.1;19)
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The justification for the last step is that the functions e2Tist/N form a complete orthogonal

set. Thus if
N—-1 .
fi = Z g e 2Mist/N
s=0
then
N—-1 ,
g = N1 = f e 2Mist/N
t=0

as can be verified by substitution. These relations allow us to solve (19) for the Ej:

1 .
Es = N1 3 (Yt/Xt)eZMSt/N
0 o

(5.1;20)

To calculate u, we first observe that (3) and (19) give am Gy = Y,/ X,,; thus the Q

relation

2 [Q+4nkaZ, ] layl* = 0

yields, after some algebra,

N-1 |y |2
z 2 Ve = 0, (5.1;21)
s=0 |X;
which, with (16) and (17) gives a transcendental equation to be solved for u.
The realized pattern is then given by
(5.1;22)

P@) = 2 Y (X Gpy) ! eimd

It is not quite straightforward to deduce sufficient conditions for a minimum in this case;
for the Hessian matrix is not diagonal when computed with respect to the E;. However, one
can equally well minimize with respect to the quantities Y:/X; of (19), and in this case the

second derivative condition is just
X >0 ,t=01,...,N-1 (5.1;23)
It would seem difficult to say anything about the behaviour of U; and V; as functions of ¢,

in general. But this can always be found by machine for a particular example.
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VI SCALAR SYNTHESIS IN THREE DIMENSIONS

Hitherto we have treated only 2 dimensional synthesis problems. But there is
reason to expect our methods to be successful in 3 dimensions, providing the corresponding
diffraction problem can be solved. Unfortunately not many vector problems are tractable —
the sphere and the disc are about the only ones—so we shall have to confine ourselves to
scalar problems for the most part.

6.1 Analysis of the prolate spheroid

The aperture comprises the surface ¢ =%, in the prolate spheroidal system{ &, 7,9 }
depicted in Fig. 23. Here the z axis is the axis of symmetry and the angle ¢ is measured
from the x—z plane.

7! n=cos /12
macosw/6
7n=cos /4
- P SR fi ——
M=cosT/3
n=cos S5mw/12
d ~
s |o
- 1= R—- n=0
1t " " L
w jw fw
n=-c0s57/12
E N=-cosw/3
Y _ . \PERPIS. ——
n=-~cos T/4
7= -~-cosw/6
7=f-! n=—cosw/12

Fig. 23 The prolate spheroidal coordinate system
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In the notation of Flammer (1957), a general outgoing wave has the expansion

u, n,¢) =

neag
=

m
zo R3) (¢, £) Sy (¢, M) [ Ay cos mop + B,nsinmg]  (6.1;1)
m n=

where ¢ = %kd and d is the interfocal distance.

The function R3) (c, £) possesses the asymptotic expansion
R @d = (c®™ explict —Limn+ 1)] (6.1;2)

as c¢ > o=, Thus the far field expansion of (1) is

. oo m .
uEne) = €% T T DS (0on)[ A, cosme + By, sinme] (6.1:3)
ct m=0n=0

Since c¢ = r (the radial distance), the pattern function becomes

o m
Pn,¢) = Z 20 Spn (€, 1) [ayy, cosme + b,,, sinm¢], (6.1;:4)

m=0 n=

1. -
where we write g, = e~ zi(n+1) Amp etc. Again we let P(n,¢) be the wanted pattern with
constants d,,, b,,,, found from

a

¢ 2 1 )

Here €, = 1 form =0 and is 2 for m> 0. N,,,, is the normalization factor of the Smn(c, 1),
viz:

1
j;l Smn (€. M) Spp'(c, Mdn = 8y Ny .

The power in the aperture is proportional to iu du*/dn integrated over the surface of the

spheroid. We have a—a= 1 /2-1 3 , while the element of area isda = ¢2 \/(52—172 Y(E*—1) dndy .

n o cV g-n* 0
Then
) @'
S = 2micz-1) z 3 RnnE)Rnn L)y {IamnP
m=0 n=0 €m

+ by (1—5,,,0)}. (6.1;6)
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In view of the Wronskian RSy Ri) — R RY) = (g2 — 1)"!, we have

w55 N {Iamn|2+ Ibm,,|2(1—am0)}, 6.157)

m=0 n=0 €,

Sy

b m zZ N
S: = 2 2] > y IZmn_ mn
! "C(Eo )m=0 n=0 €

{Iam,,l2 + 1y (1- 5,,,0)} . (6.18)

m

where Zp,, = Riph RY + R RZ) . With Q= S;/S,, the minimization process leads to

Gmn = Gmn {1 + u[Q- (8 - 1)zmn]}"l , (6.1,9)

b {1 +,1[Q—c(g3,—1)2,,,,,]}'l . (6.1;10)

As usual p is found by substituting (9) and (10) in the expression for Q, while the condi-
tions for minimum error are

1+ p[Q@-c@E-DZpyl > 0. (6.1;11)
Again it is not possible to say much about bounds in the general case.

6.2 Special case: the sphere

A case of some interest is the sphere, the solution for which is got by letting ¢ = 0,
¢k~ r, ck, ~ a in the preceding. We have Sy, (c,n) ->an(17), R(,?,ﬁ)(c, - h(,,l’z) (kr),
No. = 2 (tm)!
MR op+ 1 (ntm)!
the spherical Hankel functions as defined in Stratton (1941), pages 401 and 404 respectively.

; where P':(n) is the associated Legendre polynomial and h(,%’z)(kr)

It would also be interesting to recover the line ‘aperture’ considered in Sec. (2.1) from
the foregoing, thus getting a slightly different version of Rhodes’ problem. But unfortunately,
the situation does not remain valid in the limit £, = 1 owing to S; becoming infinite.

6.3 Analysis of the oblate spheroid

The coordinate system {£,m, ¢} is shown in Fig. 24, where z is the symmetry axis and
¢ is measured from the x-z plane.

The solution can be written down directly from that of Sec. 6.1 by making the changes
¢ = —ic, £ it throughout. In so doing, it should be noted that the primed quantities in
Sec. 6.1 are derivatives with respect to £.
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al n=cos 7 /12
7M=cos w/6
7N=cos w/4
n=cosw/3
€=0.4
N=cos5w/I2
£=0.2
7=0 ¢=0 2:0 , .
N=~cos57/12
7=-cosw/3
M=—-cos /4
7)=—-CO0S T/6
eS| 7=—cosw/I2

Fig. 24 The oblate spheroidal coordinate system

6.4 Special case: the circular aperture

The important case of a circular aperture of diameter d in a plane can be obtained by
letting £, - O in the preceding. The different boundary conditions on the plane u = 0 or
du/dn = 0 can be handled by restricting the sums ton—modd and even respectively. In this
case Z,,, remains finite, becoming just

Zypn = —R,(,ZJ,(—ic,io)R,(%,),’ (~ic, io) . (6.4;1)

These values are given by Flammer (1957), page 42, where it should be noted that Flammer’s
prime denotes derivative with respect to .

While the vector diffraction problem of a circular aperture has been solved rigorously,
it does not appear possible to handle the synthesis problem with our methods. This is because
the vector oblate functions do not have enough orthogonality properties to allow the aperture
power to be calculated simply. But we might note that Fante (1970) solved the problem using
generalized prolate spheroidal functions under a somewhat weaker constraint.
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VII THE VECTOR PROBLEM FOR THE SPHERE*

7.1 Analysis of the problem

This is the only three dimensional vector problem that appears solvable. In the
spherical coordinate system {r, 6,6} the aperture is defined by r = a. In the region
r = a the electric field will be given by

2

E= 2 2 [4u m$), + Bm&) + Crgnity + Dignéicp] (7.1;1)

where m, n are vector spherical wave functions as defined by Stratton (1941), page 416.
Apgs Brgs Crg> Dyq are undetermined coefficients. From (1) the magnetic field is

= (cik/wpo) on +Zo [Agndd) + Brgndl) + Cramdi + Degmegg 1 - (7-1:2)

As r = o we have

k
. . a .
me(i?Z ~ {? ke Pg( 0s8) > ke 6 - aQ (cosB) & i k0 ¢} 0¥+ ek 1y

cOSs
= =)t Me,, k7 |kr, say, and (7.1;3)
[
oP k k ikr
ne(;)y2 ~{ T8 (cost) + ko b 7 — Pk (cosB) oo ko ¢} b e
= (—i) Neyg e [kr. (7.1;4)
o

where the upper rows of symbols are for the even functions. It follows that the far field is

o 2
where akQ = (_1)2+l AkQ’ ka = (_1)2+13k2’ ckQ = (_'l)‘Z CkQ, de = (_'l);Z DkQ
The desired pattern is

PO.0) = 020 K2 Z [“kQ Moyg + Byg Megq + € Nogp + dig Nego 1 - (7.1;6)

* It is a pleasure to record the contributions of T.A. Gough to this section: he checked the mathematics,
found mistakes and did the programming.
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To find the coefficients drg I;kQ’ Crps fle for a given 15(0,¢), one applies the orthogonality
relations

27 s . _ e,o0
fo do fo Mz,d2 Meygr sin6 b = S bggr X7,

o i : e, o
_/(; d¢_[(; NekQ ‘ Neklgl sinf df = akk’ SQQI Xk’Q .
o (4]

where

Xe = xO0 _ 2me(R+1) (R+k)! k>0
k= K 20+1 (2—k)!

X = 47(R+1)

0¢ 20+1 ’

0 ==

X0 0

Any product of even and odd functions, or M and N functions integrates to zero. Then the
coefficients are

1

o
Yo

am m . .
dg = fo d¢f0 Moy * P(8,¢) sin do (7.1;7)

and so forth.

To find the power flow outward through the aperture, we have to calculate

27 T
S = %aZfO d¢f0 EXH*:F sing df . (7.1;8)

We begin by noting that no radial components of E or H contribute to the integral. We can
therefore rewrite mg and n. for integration purposes as

[ [
melh = Meyy hp” (ka) (7.1,9)
4 o
3) - 1.9 (1) .
ngkg Nng ka ar [r hQ (kr)]rza . (7' 1 ] 1 O)

= Nng fo , say .

NowEXH-:F=E-HXF. SinceMXr‘=—NandNXr‘=M,wehave

-ik 2 & (1) (1) 1) )
— X I [A0M, + B, oM = Cro Nogo 15— Dy o Nez o BP0
oo 220 k=0[ ke Mo, fy %o Merg /o kg Nogg g ke Negg 1o

(7.1;11)
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o g (1) .
E =2 Z M Mogg K+ BrgMegg h) + Cig Nog £ + Digg Nege Sy 1 - (7-112)

When (11) and (12) are substituted in (8) we obtain

v

LR o e 1 (1) (2)
= S 3 [lagl® Xop + b0l Xzolh
> 2w, 2=0 k=0[ k2 kR ke’ Xig 1 hg fy

— [leggP XS + 1yl Xigg 108 11 (7.1513)

Since £ (ka) = K (ka) + (kay" b (ka), we have

o e
s = L 55 {[lagl + legglP] X% + [1bggl?+ ldpgP1 Xpo b > (7.1314)
T 2wpek 2=0 k=0 {[ k0 crel”] Xpg + [bgg k] Xpg

ka? ) Q 0 e
Tz laol2 = lenol21 X0 + [Ibol2 = ldgol?1X,, L Zg  (7.1515)
2ote 270 k=0 {[ K ke*1 Xy + 1ok kel 15X + 20

1

where

Zy = 3 Uigka) +yjtka) 1" + (ka)” Ligka) +yqka) 1 . (7.1;16)

We would ordinarily set @ = S,-/Sr. But S; now contains both positive and negative terms,
thus it would be possible to reduce it to zero by letting lagol® = |bygl?, leggl® = ldjol?.
Since this can be done in an infinity of ways, it would appear that this Q restriction is fairly
meaningless. However, an expression closely analogous to our previous Q’s would be ob-
tained if the negative signs of (15) were reversed. This we arbitrarily do.

The expression for the mean square error is

o L
= —4 |2 o K |2 e
e= 2 I {Iak,2 Gegl? X7y + 1= Bial® X,

. o e .
+ logg —Ergl? Xop + g — gl ng} . (7.1;17)
Minimizing in the usual manner, we are led to
G = Gpgll +n(Q— k2> ZY]™ ete. (7.1;18)
while u is found from

= & (Q-k*a® Zg)
2=0 k=0 [1+u(Q-k*a®Zp)]?

. 4 12 yO ;12 ye A |2 vO ~ 12 y€ —

(7.1;19)
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7.2 Subsidiary proofs and bounds

In the spherical system we are once again able to supply accurate bounds for the
various quantities. We begin by investigating the behaviour with £ of

Zy = $1i (ka) + y 2 (ka)] + (1/ka)[ ]y? (ka) + y,* (ka) ]

Similarly to (3.2;1) we obtain the integral representation

oo

Zy = 4 f cosh(2Q+l)t[Ko (2ka sinht) — 2kasinht - K, (2kasinh #) 1dt. (7.2;1)
0

' 12klq?

For small ¢ the K, term of the integrand dominates, while the K , term becomes larger as
t > oo, Consequently fort=r1 (indeﬁendent of ), the two terms are equal. We split
the range of integration at 7 and write 4(R) = fOT , B(®) = f:oso that % n?k%a? Z

= AR) + B(R). A(R) is positive and B(2) negative. For £ = 0 , a short calculation gives
Zg = 0. Thus A(0) = -B(0). As % increases, the increase in the multiplier cosh (28+1) ¢ is
everywhere greater in B(2) than A(R). Therefore Zy is monotonically decreasing and < 0.

It is now clear that Q must be chosen negative. If we assume that only a finite number
of harmonics can be generated, i.e., the upper limit of the sum on £ is L, then from (7.1;19)

k*a*Z, <0<0 (7.2;2)
becomes the allowable range of Q.
The conditions for a minimum mean square error are
1+ u[Q-k%a2Zg]>0, 2=0, 1, ... L (7.2;3)
which leads to
~(Q-ka*Z) ' <u<-Q7 (7.2;4)
as the allowable range of u.

7.3 Numerical results

Figures 25 and 26 show realized two dimensional patterns in the form of contour plots
for differing Q values. The desired pattern is unity in 45° < 6§ < 135°, -90° < ¢ < 90°
and zero outside. The ka value is 20, and the contour interval is 0.1. In the curtailed region
¢ > 135° approximately, only zero contours exist.
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VIII SOME PROBLEMS NOT SOLVABLE IN CLOSED FORM

Even when a problem is not solvable exactly, but is left in the implicit form mentioned
earlier, it may still be entirely feasible to obtain useful results. Normally this means that
a matrix will have to be inverted, whose dimension will be the number of elements in an
array or the number of harmonics in an aperture, unless some special symmetries exist.
Thus in practice we are limited to reasonably small arrays or apertures. In this section
we consider a pair of problems of this type — an arbitrary array of similarly oriented dipoles
and unequally spaced similar slots on a metal cylinder. For the latter problem we use our
normal Q constraint, but we find Uzsoky’s Q more useful for the former.

8.1 A discrete array of infinitesimal dipoles

Here we have N similarly oriented but arbitrarily placed infinitesimal dipoles. Let
them occupy positions r,, 8,,, ®n, in the spherical coordinate system {7, 6, ¢,} and denote
their driving currents by J,,.

The far-field pattern of such an array is well known. It is

PO,9) = g(@6,9¢) gl Jy expl —ikry, cosay, ], (8.1;1)
n:

where g(0, ) is the element pattern (sin @ for a z-directed dipole) and

cosqy = sinf sin, cos(p—¢,) + cosb cosf, . 8.1;2)

If 13(0,¢) is the desired pattern, the mean square error turns out to be

N N N N )
€= pZ I b ImIn* = T Juap* = T Sra, + 1BR, (8.1;3)
where
2 m
byn = f do f lg(@,9)I1? exp[ik(r, cosay, —rp, cosay, )] sin@ d6, (8.1;4)
0 0
2T T A
ap= [ do [ P®,¢)g*©,0) explikr, cosa,]sinf db , (8.1;5)
0 0
2w T .
lEIZ= [Tdg [ 1P©,4)? sin6 do . (8.1;6)
0 0

For the Q constraint we now use

N N N
Q = 2P /n§1 Zy bmn T I (8.1;7)
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Minimizing in the usual manner, we are led to
N
n2=:1[(1+p‘Q)bmn_i‘5mn]Jn =am > (8.1;8)
or in an obvious matrix notation
[(1+pQ)B—pJ=A . (8.1;9)

Thus we have to invert an N X N matrix to find J. This is complicated in the present
instance by the presence of the unknown quantity p in the matrix. The difficulty can be
overcome in the following way. Consider the matrix equation

Bx = AX . (8.1;10)

In general, it possesses N orthonormal eigenvectors X; and N eigenvalues A;. Since it is
readily shown that B is symmetric and real, these are real.

Suppose that

N
J = 'El cj Xj (8.1;11)
l=
and
N
A= Zdx

where the d; are known and the ¢; are to be found. Then
[(1+up@)B—pI]) = (1+uQ)BEc,-x,-—yEc,-x,— (8.1;12)
which by virtue of (10) is
=(1+uQ)Ec,~)\ix,-—ch,-x,-. (8.1;13)
On comparing coefficients of x; we obtain
¢ = di[(1+pQN—H . (8.1;14)
In terms of ¢;, the Q relation (7) becomes
0= 2 lof /i’élx,- ;12 . 8.1515)

i=1

If (14) is inserted in (15), the equation for u becomes
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.2 Pl
,% 4" @A) 0. (8.1;16)
=1 [(1+uQ)Aj—u]?

Again we note that Q must be properly chosen if (16) is to have a solution. Since

computer routines exist for finding eigenvalues and eigenvectors of matrices, the problem is
essentially solved.

Finally we note that the sufficient conditions for minimum error are:
A+uDbpy—u>0, m=1, 2 .. , N, 8.1;17)

8.2 Computation of the quantities b,,,

The matrix elements b,,, have been computed several times in recent years — by
Lo et al (1966), Forman (1970),and Hansen (1972). In each case the results are for planar
arrays. But the results are easily extended to arbitrary arrays:

byym = 87/3, 8.2;1)

bmn

~

= —47 { 2 COS Ky _ 2sin KTy + ot [_ sin k7,,, _ 3coskr,,
(K7 un)* *7mn)? ? K pan (rn)*

mn
%]} ,mtn. (8.2:2)
*rnn)

Here ry,, is the inter-element distance while 7,,, is the projection of I'mn O the plane
0 =mu/2, viz,

2 2

Tmn> = rp?sin? 0,, + r,2sin? 6, — 2rpyry sinB,, sinf, cos(@—~ ¢,) . (8.2;3)

Usually there exists no closed form expressions for the elements Q-

8.3 Arbitrary slots on a cylinder

This problem is a generalization of that treated in Sec. 5. Again we have N slots each
of angular width 2y,, but now their positions on the circumference are arbitrary. We
suppose the centre line of the sth slot is at ¢ = ¢, with the initial slot at ¢= ¢, = 0. Then
the driving field is given by

E¢(a,¢)= Es: ¢s—‘po < 9 < ¢S+ wo, s=0, 1, ... N—- 1,

0 elsewhere . (8.3;1)
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As before, this has the representation

Ep@d) = (-iklwe,) Z Am eim$ gL (ka) (8.3:2)
so that
S ,
am = Gm 20 Eg e~imds (8.3;3)
s:

where @, = Apy, ¢ M7/2 and

G, = —k _mn_ gimn2 HY (k) . (8.3;4)
we, sinmyy
We have
S, = (~mkajwe,) T laml® Zm 8.3:5)
S, = (lwe,) T layl® . (8.3:6)

Again we want to minimize

e = 3 lay - dpl? + 1 = (Q+E7kaZy) layl 8.377)

after (3) has been inserted. This leads to

:VZ—JJ Ey B(s',s) = Y(s), (8.3;8)

where
B(s,s)= B [1+n(@+4nkaZy)] - 1Gn s e 96, (8.3;9)
Y(s) = _OE; dm Gp~' €™ (8.3;10)

The inversion of (8) involves difficulties similar to those of Sec. 8.1. We write (8) in
the matrix form

BE =Y (8.3;11)
where

B =B, + uB; gt (8.3;12)
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To reduce (11) to the form (8.1;9), we compute Bz"l and multiply by it on the left,

giving*
B,7'B, + uDE = B,7'Y,
or alternatively

B +uDE = Y'.

Eigenvectors x; and eigenvalues ); are now found which satisfy B'x; = i X

E =%

= C; X;,

i=o '
N-1

Y= Z dix
i=0 ’

the solution is given by
¢ = i+ w7,

and the parameter u can be found in the usual manner.

IX FINAL WORDS

(8.3;13)

(8.3;14)

Then with

(8.3;15)

(8.3;16)

(8.3;17)

We have solved a number of synthesis problems in closed form, making a significant
increase to the total of such problems. Our original conjecture that all problems with
apertures coinciding with a complete coordinate surface are exactly solvable if the corre-
sponding diffraction problem is, was found not true in general. Two problems — the vector
problem of a circular aperture in a plane and the scalar one for a parabolic aperture — were
found to be intractable. In each case, the characteristic functions did not possess sufficient
orthogonality to allow a simple evaluation of the power. Nevertheless, the conjecture led

us to a large number of solvable problems.

In the realm of implicit solutions, such as considered in Sec. 8, it would seem that
much more can be done. For many such problems the Q definition of Uzsoky and Solymar
(1957), as extended by Lo et al (1966), seems preferable. To adapt this definition to aper-
ture antennas, one need only follow Lo’s suggestion and associate the ‘currents’ Jim with the
modal amplitudes in the aperture. For instance, the field in a rectangular aperture could be
expanded in the form ?n E Amp e~2minx/a. o=2mimy[b and the A,,, treated as the J.

Evidently many interesting and practical problems can be so treated. It must be remembered,

though, that computer time limits this method to apertures that are not too large.

* We must assume B, non-singular. This is probably always true.
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Computer limitations and analytic difficulties encountered in some of the problems
mentioned in Sec. 1.1 would seem to call for new methods. In this connection it is worth
noting that synthesis is a form of optimization problem. Such problems are under intense
investigation in other fields (economics, logistics, etc.). The massive literature on this
subject would surely merit study by antenna engineers.
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