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Abstract: The In-Cloud Icing and Large-drop Experiment (ICICLE) flight campaign, led by the United
States Federal Aviation Administration, was conducted in the geographical region over US Midwest
and Western Great Lakes, between January and March 2019, with the aim to collect atmospheric
data and study the aircraft icing hazard. Measurements were taken onboard the National Research
Council of Canada (NRC) Convair-580 aircraft, which was equipped with more than 40 in situ
probes, sensors, and remote sensing instruments in collaboration with Environment and Climate
Change Canada (ECCC). In each flight, aerosol, cloud microphysics, atmospheric and aircraft state
data were collected. Atmospheric environment characterization is critical both for cloud studies
and for operational decision making in flight. In this study, we use the advantage of multiple
input parameters collected in-flight together with machine learning and clustering techniques to
characterize the flight environment. Eleven parameters were evaluated for the classification of the
sampled environment along the flight path. Namely, aerosol concentration, temperature, hydrometeor
concentration, hydrometeor size, liquid water content, total water content, ice accretion rate, and
radar parameters in the vicinity of the aircraft. In the analysis of selected flights, we were able to
identify periods of supercooled liquid clouds, glaciated clouds, two types of mixed-phase clouds,
and clear air conditions. This approach offers an alternative characterization of cloud boundaries and
a complementary identification of flight periods with hazardous icing conditions.

Keywords: clouds; mixed phase; classification; ICICLE; Convair-580; airborne; flight; troposphere

1. Introduction

Regulators, air traffic controllers, and pilots use atmospheric data for airborne opera-
tions. In the decision-making process, the interpretation of the incoming data may vary
based on individuals’ experience [1]. New weather forecast and operational tools aim to
overcome human factor biases and improve characterization of the hazardous flight envi-
ronment via multiplatform analyses, i.e., airborne, spaceborne, ground, and models [2–5].
Such characterization of the atmospheric environment would highly depend on the selec-
tion of tools and the final application. Common cases of interpretation biases include that
of clear-air or out-of-cloud environment definition and that of mixed phase clouds, where
the ratios of sizes and numbers of hydrometeors play a key role. Meanwhile, atmospheric
scientists distinguish between different types of clouds by the dominant physical processes
involved in cloud evolution. All identified categories are often inconsistent due to the use
of different approaches, e.g., selection of observations location, resolution and sensitivity.
For example, Oktem and Romps [6] have used ground stereo cameras in a multi-year
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study to identify cloud spacing, i.e., clear air and other cloud parameters. On the other
hand, for phase discrimination, satellite data is often used, incorporating algorithms and
thresholds on polarization or reflectance at multiple wavelengths (e.g., [7–9]), these may not
necessarily agree with cloud boundaries observations from the ground elevated research
stations (e.g., [10]), especially in cases of multiple cloud layers. Some specific examples
include spatial and temporal distribution of cumulus clouds, in particular cirrocumulus or
altocumulus which have inherent discrepancies in characterization using remote sensing
versus in situ. Moreover, the known limitations and accuracy of in situ probes [11] as
well as the expertise of the operator, in many cases, will influence the outcome of such
characterization efforts. In light of these limitations, a method for assessment of the flight
environment without using any a priori criteria would be desirable.

Research is ongoing to develop a multi-sensor cloud phase algorithm [12–15]. Recently,
in the second Buffalo Area Icing and Radar Study (BAIRS II) an effort was made to distin-
guish between liquid phase, mixed phase, and glaciated (no liquid) conditions [4]. That
study used a “decision tree” dendrogram classification approach where the liquid water
content (LWC) and total water content (TWC) data from the Nevzorov hot-wire probes,
particle concentration from forward scattering spectrometer probe (FSSP), temperature data,
and SNDI (Spheres, Needles, Dendrites, and Irregulars) crystal habit classification [16–18]
from the precipitation imaging probe (PIP) and 2D-C probes were the principal inputs to
determine cloud phase. Other researchers have used similar methods; however, these only
include in situ sensors (e.g., [19,20]). Additional relevant data clustering methods include
“hierarchical cluster analysis” [21], fuzzy j-means (FJM) [22] and clustering based Simulated
Annealing Improved Artificial Fish Swarm Optimization Algorithm (SA-IAFSA) [23] to
obtain the optimal number of clusters instead of defining it a priori.

In this study, we present the results from a number of classification approaches, applied
to data collected in flight, in an effort to advance the development of an operational tool for
flight environment classification. In the following section, we describe the environment
where data were collected, the aircraft and the instrumentation that were used to collect
the data, and focus on the description of common methods that were implemented in
this study.

2. Materials and Methods
2.1. NRC Convair-580 Research Aircraft

Measurements for this study were collected onboard the National Research Council
of Canada (NRC) Convair-580 aircraft, which was instrumented in collaboration with
Environment and Climate Change Canada (ECCC). The NRC Convair-580 is a twin-engine,
pressurized aircraft equipped with an array of in situ and remote sensing instruments,
which allow measurements of the atmospheric state, aircraft state, aerosol, gas phase,
cloud microphysics, and remote sensing parameters (Figure 1). These complementary
measurements allow a multidimensional and comprehensive characterization of the flight
environment. More details on the aircraft can be found in [24–26].

2.1.1. Aircraft Instruments

The exhaustive list of instruments integrated into NRC’s Convair-580 aircraft for the
flight campaign is described in detail in [24]. In Table 1, we list the source instruments
whose data was used as selected input features in the characterization approaches. The
Table includes both the probes for in situ measurements and remote-sensing instruments.

Nevzorov

The Nevzorov sensor has constant-temperature hot-wire elements, which measure
LWC and TWC in clouds. These elements differ in shape of their collectors: the LWC
detector is mostly sensitive to liquid droplets and discriminates them from ice particles
that instantly shatter when collide with the convex surface of the sensor, while the conical
hollow collector of the TWC enables to catch both ice and liquid particles. The operational
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principles of both Nevzorov elements are described in [14,27]. The Nevzorov was mounted
under the wing (Figure 1). In our analysis, we used LWC, TWC, and the ratio of the two,
which is a good indicator of mixed phase conditions.
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2019, reproduced with permission from [24]. Top row: NRC’s radar system (W- and X-band) and its 
axial pointing options and underwing cloud probes. Middle row: Aerosol isokinetic sampling inlet 
and bulk water detectors installed on the fuselage. Bottom row: Underwing cloud and atmospheric-
state probes. Bottom middle: Cabin configuration with operator stations. 
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Figure 1. Illustration of the NRC Convair-580 aircraft instrumented for the ICICLE campaign in 2019,
reproduced with permission from [24]. Top row: NRC’s radar system (W- and X-band) and its axial
pointing options and underwing cloud probes. Middle row: Aerosol isokinetic sampling inlet and
bulk water detectors installed on the fuselage. Bottom row: Underwing cloud and atmospheric-state
probes. Bottom middle: Cabin configuration with operator stations.

Table 1. List of selected parameters that were used for this study (see instrument description below).

# Selected Parameter Description Source Instrument

1 LWC [g m−3] Bulk in situ Cloud microphysics Nevzorov
2 TWC [g m−3] Bulk in situ Cloud microphysics Nevzorov
3 LWC/TWC [a.u.] Bulk in situ Cloud microphysics Nevzorov
4 Icing periods [Hz] Bulk in situ Cloud microphysics Rosemount Icing Detector
5 Number concentration [cm−3] Single particle in situ Cloud microphysics OAP & Scattering probes
6 MVD [µm] Single particle in situ Cloud microphysics OAP & Scattering probes
7 Static temperature [◦C] Atmospheric state Rosemount temperature sensor
8 Aerosol number concentration [cm−3] Aerosol UHSAS
9 Radar reflectivity [dBZ] Remote sensing NAW
10 ZDR [dB] Remote sensing NAW
11 LDR [dB] Remote sensing NAW

Rosemount Icing Detector

A Rosemount Icing Detector (RID) is mounted on an oscillating rod, which changes its
natural vibration frequency as impinging ice droplets accrete and freeze on the sensor. The
decrease in frequency is proportional to the increase in the accumulated mass and induces
a voltage gain digitized to 1 mV precision. If the accreted ice exceeds a voltage threshold,
the sensor’s tip is heated for a fixed time interval to remove the ice. Previous studies have
shown that the instrument has insignificant response to ice crystals; hence, the RID can not
only provide independent supercooled liquid water (SLW) detection, but also can be useful



Atmosphere 2022, 13, 1715 4 of 24

in segregating liquid and glaciated conditions. The detailed principle of RID operation and
limitations are described in [28–30].

OAP and Scattering Probes

In this study, we used composite Particle Size Distributions (PSD) covering the full
size-range of the hydrometeors (2 µm to 2 cm). Normally, these PSDs are composed of data
from one scattering probe (e.g., CDP, FCDP, FSSP) one mid-size range Optical Array Probe
(OAP), typically 2D-S, and one precipitation-size range OAP, typically HVPS-3, similar to
PSDs presented in Nguyen et al. [31]. A detailed description of these common commercial
probes can be found in Baumgardner et al. [32] and references therein. For images, a particle
area equivalent diameter was used for sizing of particles that are captured fully within the
detection array.

Rosemount Temperature Sensor

In this study, we use one of the 5 Rosemount Temperature sensors [33] installed on
the aircraft. The accuracy of the static temperature measured by this sensor is known to be
±0.1 ◦C [33]. However, due to known sampling biases and spread, including the location
near the fuselage, it is estimated to be ±1 ◦C.

UHSAS

The Ultra-High Sensitivity Aerosol Spectrometer [34] was integrated in a cabin rack
and connected to a sampling isokinetic inlet located on top of the fuselage. The instrument
recorded 1 Hz PSD data in the size range of 60 to 1000 nm. For our analysis, we used the
total number concentration of aerosol counted by the instrument.

NAW

For remote sensing, we used the NRC’s Airborne W-band radar (NAW), which typ-
ically has three pointing direction options [31,35]. In this study, we used data from the
side (horizontal) sensing direction. The most informative parameters were found to be
Radar Reflectivity (Z), Differential Reflectivity (ZDR), and Linear Depolarization Ratio
(LDR) (Table 1). We used the remote sensing data within the vicinity of the aircraft, at a
distance of 250 m. This distance was selected to ensure the radar data are not affected by the
close-range biases [31] while remaining within the same flight environment as experienced
by the in situ probes (for more details, see Section 2.3.2). The assumption here is uniformity
of cloud microstructure on a spatial scale of 250 m. This assumption works quite well for
homogeneous cases. However, it does not work in the case of an inhomogeneous cloudy
environment within a 250 m range. Such issues may occur on cloud edges; however, since
here we use the side antenna which is leveled on the plane of the in situ instruments, the
probability of lateral inhomogeneity is much lower.

Additional instruments, not listed here, were used for quality assessment of the
characterization outcomes. Some of those include but not limited to Airborne Elastic Cloud
Lidar (AECL, [36]), Cloud Particle Imager (CPI, [37]) and other OAP images, as well as
GOES satellite channels and other data, which are available in the ICICLE project repository
(see Data Availability Statement section).

2.2. ICICLE Flight Campaign

The data used in this study was collected during the In-Cloud Icing and Large-drop
Experiment (ICICLE) flight campaign, led by the United States Federal Aviation Adminis-
tration (FAA). It was conducted between January and March 2019, over the US Midwest
and Western Great Lakes. An essential aim of this campaign was to study microphysical
cloud properties in order to better understand how hazardous icing conditions (particularly
freezing rain, freezing drizzle, and ice pellets) form and evolve over time [20,24]. In these
flights, the observed cloud composition (i.e., PSD and phase) varied between ice particles
of various sizes and shapes, freezing drizzle, and freezing rain, and supercooled cloud
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droplets. Other properties, such as ice accretion, LWC, and TWC, were also collected to
characterize bulk cloud microphysical properties. Here, a subset of data is used for the
selected two flight test cases with a rich variety of conditions. The following subsections
and Figures 2–4 provide an overview of those flight environments.

Atmosphere 2022, 13, x FOR PEER REVIEW 5 of 26 
 

 

quite well for homogeneous cases. However, it does not work in the case of an inhomoge-
neous cloudy environment within a 250 m range. Such issues may occur on cloud edges; 
however, since here we use the side antenna which is leveled on the plane of the in situ 
instruments, the probability of lateral inhomogeneity is much lower. 

Additional instruments, not listed here, were used for quality assessment of the char-
acterization outcomes. Some of those include but not limited to Airborne Elastic Cloud 
Lidar (AECL, [36]), Cloud Particle Imager (CPI, [37]) and other OAP images, as well as 
GOES satellite channels and other data, which are available in the ICICLE project reposi-
tory (see Data Availability Statement section). 

2.2. ICICLE Flight Campaign 
The data used in this study was collected during the In-Cloud Icing and Large-drop 

Experiment (ICICLE) flight campaign, led by the United States Federal Aviation Admin-
istration (FAA). It was conducted between January and March 2019, over the US Midwest 
and Western Great Lakes. An essential aim of this campaign was to study microphysical 
cloud properties in order to better understand how hazardous icing conditions (particu-
larly freezing rain, freezing drizzle, and ice pellets) form and evolve over time [20,24]. In 
these flights, the observed cloud composition (i.e., PSD and phase) varied between ice 
particles of various sizes and shapes, freezing drizzle, and freezing rain, and supercooled 
cloud droplets. Other properties, such as ice accretion, LWC, and TWC, were also col-
lected to characterize bulk cloud microphysical properties. Here, a subset of data is used 
for the selected two flight test cases with a rich variety of conditions. The following sub-
sections and Figures 2–4 provide an overview of those flight environments. 

 
Figure 2. Flight tracks of the NRC Convair-580 aircraft for two selected flights: F20 on 23 February 
2019 and F28 on 5 March 2019. Color coding shows UTC time progression along the flight track. 
Figure 2. Flight tracks of the NRC Convair-580 aircraft for two selected flights: F20 on 23 February
2019 and F28 on 5 March 2019. Color coding shows UTC time progression along the flight track.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 26 
 

 

  
(a) (b) 

Figure 3. GOES-16, 11.2 µm infrared satellite imagery of representative time windows, in the middle 
of the flights. (a) F20, (b) F28. The images were obtained from the Satellite Cloud and Radiation 
Property retrieval System (SatCORPS) Team, http://satcorps.larc.nasa.gov (accessed on 1 January 
2021). 

 
Figure 4. (a,b) Wind rose plots (top), (c,d) hydrometeor size distributions—pdf (bottom), (e) P-T 
profiles measured in flight (right) for two selected flights, F20 and F28. 

2.2.1. Flight 20, 23 February 2019 
On the morning of 23 February 2019, a strong area of low pressure over the Texas 

Panhandle area was lifting north-eastward into Kansas, encroaching into the western side 
of an area of high pressure centered over New England. The advancement of the precipi-
tation into southern Wisconsin led to the development of a deep layer dominated by ice 
crystals falling into a melting layer, then subsequently, into the near-surface sub-freezing 
layer to form classical freezing rain (FZRA) there during the morning hours [38]. These 
environments and the classical FZRA mechanism were the focus of this day’s mission. 

Figure 3. GOES-16, 11.2 µm infrared satellite imagery of representative time windows, in the
middle of the flights. (a) F20, (b) F28. The images were obtained from the Satellite Cloud and
Radiation Property retrieval System (SatCORPS) Team, http://satcorps.larc.nasa.gov (accessed on
1 January 2021).



Atmosphere 2022, 13, 1715 6 of 24

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 26 
 

 

  
(a) (b) 

Figure 3. GOES-16, 11.2 µm infrared satellite imagery of representative time windows, in the middle 
of the flights. (a) F20, (b) F28. The images were obtained from the Satellite Cloud and Radiation 
Property retrieval System (SatCORPS) Team, http://satcorps.larc.nasa.gov (accessed on 1 January 
2021). 

 
Figure 4. (a,b) Wind rose plots (top), (c,d) hydrometeor size distributions—pdf (bottom), (e) P-T 
profiles measured in flight (right) for two selected flights, F20 and F28. 

2.2.1. Flight 20, 23 February 2019 
On the morning of 23 February 2019, a strong area of low pressure over the Texas 

Panhandle area was lifting north-eastward into Kansas, encroaching into the western side 
of an area of high pressure centered over New England. The advancement of the precipi-
tation into southern Wisconsin led to the development of a deep layer dominated by ice 
crystals falling into a melting layer, then subsequently, into the near-surface sub-freezing 
layer to form classical freezing rain (FZRA) there during the morning hours [38]. These 
environments and the classical FZRA mechanism were the focus of this day’s mission. 

Figure 4. (a,b) Wind rose plots (top), (c,d) hydrometeor size distributions—pdf (bottom), (e) P-T
profiles measured in flight (right) for two selected flights, F20 and F28.

2.2.1. Flight 20, 23 February 2019

On the morning of 23 February 2019, a strong area of low pressure over the Texas
Panhandle area was lifting north-eastward into Kansas, encroaching into the western
side of an area of high pressure centered over New England. The advancement of the
precipitation into southern Wisconsin led to the development of a deep layer dominated by
ice crystals falling into a melting layer, then subsequently, into the near-surface sub-freezing
layer to form classical freezing rain (FZRA) there during the morning hours [38]. These
environments and the classical FZRA mechanism were the focus of this day’s mission.
Vertical profiles were made at Janesville (KJVL) and Madison (KMSN), including missed
approaches to document the environment essentially down to the surface. In addition,
level flight legs were flown at select altitudes within the lower (3000–4000 ft) and upper
sub-freezing layers (10,000 and 12,000 ft) between the two sites and in the vicinity. Later, the
aircraft captured data at the higher altitudes to the west, near the Wisconsin-Iowa border, as
well as during the return to the operations base at Rockford, IL, USA (KRFD; Figures 2–4).

2.2.2. Flight 28, 5 March 2019

On the morning of 5 March 2019, an area of low pressure was present across the
northern Great Lakes, with a developing cold front moving rapidly from Wisconsin into
Michigan. West-northwesterly flow was present over this region, bringing cold temper-
atures and cold air advection across Lake Michigan. The mission was focused on the
boundary layer; lake effect clouds over and immediately downwind of Lake Michigan,
which had pockets of surface water temperatures on the order of 5 ◦C. The cellular stratocu-
mulus lake-effect clouds had rather cold (−22 to −24 ◦C), liquid tops, as was evidenced by
signals in the visible, long- and short-wave infrared satellite channels. There was a rapid
conversion from liquid to snow from the cloud tops downward and cellular streaks of
snow were present in reflectivity from the Grand Rapids, Michigan NEXRAD (not shown).
The layer of higher, weaker, similarly cold, mixed-phase clouds was also evident over the
southeastern part of Lake Michigan in satellite imagery (Figure 3).

The Convair-580 departed KRFD at ~11:54 UTC, climbed to ~8000 ft, then flew across
the southern part of the lake, briefly sampling the upper cloud layer near 9500 ft, then
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descending through the boundary-layer stratocumulus to perform a missed approach at
the South Haven airport at ~12:58 UTC. After performing a deep vertical profile while
flying to the north along the eastern lake shore, the aircraft performed a missed approach
at Muskegon at ~13:34 UTC. This was followed by a series of north-south and east-west
runs across the eastern half of the lake and just inland, while cycling altitudes through the
stratocumulus deck. Upon reaching the western-most point where sampling was possible,
the aircraft climbed into clear air above the stratocumulus deck and returned to the base at
KRFD, landing at ~16:28 UTC (Figures 2–4).

2.3. Classification Approaches

In this study, we composed a list of selected variables, derived from in situ single-
particle and bulk, as well as remote sensing measurements. Each of these variables on
its own is not sufficient for characterization without the others; aerosol information is
useful to cluster periods of clear-air and cloud-formation events; microphysical information
makes use of hydrometeor features to characterize clouds but provides limited information
about the physical processes. In many applications, such as remote sensing, knowledge of
the microphysics is essential. One key parameter in remote sensing interpretation is the
hydrometeor size distribution [31]. Here, we present clustering and other methods when
the end goal is classification of the environment. For simplification of the discussion and
the comparisons, we use the terms clustering and classification interchangeably. However,
the clustering method becomes classification only after the subsequent step of manual
attribution of class labels to the identified clusters.

2.3.1. Clustering Methods

Generally, clustering methods can be divided into two main groups: hierarchical
and non-hierarchical clustering. Hierarchical clustering algorithms group data points and
provide a natural graphical representation of data. The graphical representation resulting
from hierarchical clustering is a dendrogram representing the nested grouping of data
points and the similarity levels at which groupings change [39]. Non-hierarchical (also
known as partitional) clustering methods yield a single partition of the data instead of
a clustering structure. They perform the partition of data points into K clusters so that
data in the same cluster are more similar to each other than those in different clusters.
Partitional clustering methods can be categorized as either hard or fuzzy [22,40,41]. Hard
(also known as crisp) clustering assigns each data point to a single cluster, while fuzzy
clustering methods assign degrees of membership in several clusters to each data point.
A fuzzy clustering can be transformed to a hard clustering by assigning each point to the
cluster with the dominant degree of membership [22]. In the following subsections, we will
present briefly the clustering methods used in our study.

K-Means

K-means clustering [42] is an iterative data-partitioning algorithm which assigns input
data points to one of K clusters, where K is defined before the initialization of the algorithm.
In this study, we use the k-means clustering function from MATLAB. The cluster centroid
initialization is performed according to the K-means++ algorithm [43]. It is known that
the k-means output can strongly depend on the initialization [44]. Various initial cluster
centroid positions can eventually result in different k-means outcomes. To avoid such
instability, we set the ‘Replicates’ attribute of the MATLAB (version R2022a) function to
100, repeating the clustering algorithm a hundred times, using new initial cluster centroid
positions at each iteration.

K-means clustering serves as a primary tool for the multivariable characterization
of cloud phase in this study. However, one must keep in mind that the k-means is an
unsupervised learning algorithm that groups the input data into categories without labeling
them. Instead of determining the cluster labels, k-means algorithm can detect internal
structure in data and partition observations according to identified patterns. Unsupervised
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learning nature of this method has the advantages of simplicity and applicability to large
datasets; however, the k-means algorithm does not come without drawbacks. The apparent
shortcoming is the predetermined number of clusters K, the choice of which is generally not
explicit. Furthermore, each entity is assigned to one cluster, which assumes well-defined
class boundaries. Unfortunately, this is not the case in many real-life applications in which
the boundaries between classes may overlap and the entities may belong to more than
one cluster.

The optimal number of clusters in this method was established using the “elbow”
location [45], when the algorithm is run several times with a range of K values (e.g., from
1 to 15) and for each K value the cost function is calculated. The inflection point of the
resulting curve indicates the optimal number of clusters. It was found that the K value
for two selected flights is 5. As mentioned above, the biggest drawback is the lack of
labeled outputs. Therefore, a subsequent analysis of the clustering results is required to
label the clusters. In consideration of this limitation, we implemented a manual inspection
of the input parameters with individually assigned clusters and characterized the clusters
according to their physical significance, followed by validation using complementary data.

Fuzzy Clustering

Fuzzy clustering methods have been proposed to address the limitations of traditional
clustering methods. Particularly, fuzzy clustering methods have the advantage of being
able to deal with the complex relationships between samples, which can help in reducing
data noise. Fuzzy C-Means (FCM) is one of the most popular and frequently used fuzzy
clustering methods [41]. The FCM method alternately optimizes membership degrees and
centroids until the best clusters are found. In the FCM method, the fuzzy assignment of
samples to each cluster is essentially based on the relative distance between one sample
and all cluster centroids. The FCM method is a heuristic that aims to minimize the objective
function by optimizing the membership degree and the centroids [41]. The FCM method has
been proven to provide better solutions in many machine learning and pattern recognition
applications in comparison to hard clustering methods, such as k-means. Furthermore, the
Fuzzy J-means (FJM) method introduced by Belacel et al. [22] uses all possible centroids-to-
pattern re-locations in order to construct move-defined neighborhoods. The membership
values and centroids are calculated in the same way as in the FCM algorithm. Comparative
results previously published indicate that the FJM method outperforms the FCM method
for both simulated and real data sets [22,46].

To avoid the limitation of the predetermined clustering number, we have tried two
approaches: The first one is based on empirical experiments, as in the case of k-means. The
second approach applies the clustering based on hybrid metaheuristic SA-IAFSA algorithm,
to obtain the number of clusters instead of defining it a priori.

Decision Tree Dendrogram Classification Method

In this paper, we validate the k-means algorithm outcomes using complementary data,
e.g., AECL, NAX radar, and imagery observations and compare it to other classification
approaches. One of these classification approaches was developed to characterize the
flight conditions during the ICICLE campaign using aircraft in situ measurements with
1 s temporal resolution [20]. This method applies a set of conditional statements on
water content and temperature data to partition observations into five primary categories:
“liquid T < 0 ◦C”, “liquid T > 0 ◦C”, “mixed phase”, “glaciated”, and “clear air”. As such,
classification is based on a flowchart, we will further refer to it by its common name, a
Decision Tree (DT) classification [47,48]. The DT methodology in ICICLE is depicted in
Figure 5. LWC and IWC data for the DT classification are extracted from Nevzorov sensors
and the temperature is taken from static temperature measurements of one of the aircraft
Rosemount temperature sensors. The ‘liquid T > 0 ◦C’ category may generally contain
a portion of mixed phase clouds with melting ice. Here, only flight F20 had such flight
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segments of positive temperatures (Figure 4e); therefore we can expect a fraction of this
category in DT to include mixed phase.
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includes further sub-classification using particle diameters.

2.3.2. Data Preparation

Selecting and preparing the input parameters for multivariable characterization of
atmospheric environment is a challenging task. In recent literature, a wide variety of in
situ and remote sensing measurements have been used for similar classification objectives
(see Section 1). There are numerous studies on input feature set selection in machine
learning problems (e.g., [49–51]). Unfortunately, there is no universal procedure for input
parameters selection that could be applied to most classification problems. Here, we use
the assumption that coincident and collocated data from both in situ and remote-sensing
instruments in the vicinity of the aircraft, which makes the atmospheric environment
analysis, along the flight path, more coherent [31]. In addition, aerosol was included in the
analysis as it is often involved in cloud processes e.g., as condensation and ice nuclei [52]
while the static temperature plays a major role in cloud formation and phase determination,
and it is often used in IWC parameterization (e.g., [53,54]).

Atmospheric data collected in flight with complex instrumentation, normally, has
to pass numerous steps of data processing and corrections to reduce bias in the analysis.
For example, OAP probes have corrections for out-of-focus particles, inter-arrival time
correction for shattered particles, numerous options of sizing projected images of particles
(e.g., [55,56]). Bulk probe data corrections include but not limited to reference-signal
corrections, dead-time correction during deicing, collection efficiency corrections, latent
heat release corrections [32,57]. Temperature can be corrected with a combination of
readings from multiple sources. Airborne aerosol corrections include sampling efficiency,
refractive index corrections, sizing corrections. Radar signal can include pointing vector
correction, ground signal clutter correction, close-range bias correction, noise subtraction.
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Here, we show that with minimal to no data treatment, it is possible to achieve a valid
approximation of the flight conditions. The steps of data preparation we have taken are
listed below.

First, data from all the different probes and instruments were temporally aligned with
matching temporal resolution of 1 s in the overlapping flight segments. The variables were
then tested for interdependence and those with high interdependence across numerous
flights were removed from the input set to enhance variable complementarity and eliminate
redundant features which presumably do not provide much additional information. Next,
we selected the optimal input parameters, which provide the most valuable information to
determine the phase of the detected clouds. From the atmospheric physics perspective, most
commonly measured parameters include size, shape, and concentration of hydrometeors;
bulk water content; atmospheric state; aerosol; and radar measurements. Hence, for
clustering objective, bulk parameters such as LWC and TWC from Nevzorov sensors,
static temperature, FSSP and OAP droplet concentration, mean volume diameter (MVD),
W-band radar reflectivity, LDR and ZDR, concentration of aerosols, and RID voltage signal
were taken as inputs (Table 1). A correlation matrix of the selected input variables is
depicted in Figure 6. Red color indicates higher correlation, while blue color indicates
higher anti-correlation.
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The next step in data preparation is to filter the input set, which can have biased values
remaining as a result of instrument noise, icing, or malfunctions. For example, values of
LWC and TWC from Nevzorov detectors were removed if LWC was larger than TWC or
one of the variables was less than the sensitivity of the Nevzorov sensor. Such unphysical
values of data may occur because LWC and TWC are measured independently by different
detectors, therefore their values may not always obey the physics of LWC ≤ TWC, even if
properly calibrated. LWC and TWC are calculated by subtracting measured power and a
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baseline corresponding to clear air power [14], when the latter might have some error that
in turn could lead to negative values of LWC or TWC.

The hydrometeor number concentrations from a scattering probe and OAP (Figure 4c,d)
are merged into a composite concentration, ranging from 2 µm to 2 cm in particle diameter.
Concentration of the full-size spectrum were used for the derivation of the mean volume
diameter (Equation (1)),

MVD =

(
∑ NiD3

i
∑ Ni

) 1
3

(1)

where Ni and Di are the number concentration and middle point of the i-th size
bin, respectively.

The size distribution of the hydrometeors has a direct impact on the W-band radar
variables, recorded using the side-pointing antenna (see Section 2.1.1). In order to avoid
unreliable and noisy signal, all three radar variables (i.e., Z, ZDR, LDR) were masked using
a SNR threshold of 0 dB. Differential reflectivity exhibited close range biases within 1-km
distance from the aircraft (not shown) and was calibrated using flight segments in small
liquid drops, where ZDR is approximately 0 dB.

Further steps in data preparation addressed the issue of missing values. Keeping
missing input values (e.g., NaN, Inf) induces large voids in each input parameters dataset,
which will remain unclassified, a scenario that would lead to a larger data void in the
clustering product because of the overlap of multiple input datasets. A common practice is
to fill the gaps in observations with the mean of the non-missing values or some predefined
constants. However, such data manipulation does not work well and in most cases will
likely result in the ‘cloud’ class inflation during the time intervals when the instrument was
legitimately not in operation, or the signal was below its sensitivity threshold and hence
could not be detected. Rather than ignoring missing data in the input dataset or replacing
it with mean values, we impute the missing values for each input variable, independently,
according to the following procedure: LWC, TWC, aerosol concentration, MVD, and
number particle concentration missing values were replaced with 0; measurement gaps
from the RID were equated to the nearest non-missing value, temperature was subjected
to linear interpolation of neighboring non-missing values; W-band radar reflectivity, ZDR
and LDR voids were substituted with −35 dBZ, −5 dB and −40 dB, respectively.

The input variables (Table 1) are not commensurate and had to be normalized to the
range 0–1 to avoid biases in the classification due to the span in orders of magnitudes
between absolute values of different variables.

3. Results

In this section, we present two independent flight-case analyses as well as an inter-
comparison between several different classification approaches, such as k-means, DT, and
fuzzy clustering. 2D-S imagery and lidar measurements were used for manual validation
of the classification results.

3.1. Variety of Conditions in Flight

Two flights with different conditions of interest were selected for multivariable atmo-
spheric environment characterization: flight F20 on 23 February 2019 and flight F28 on
5 March 2019 (see Section 2.2). Bernstein et al. [20] summarized the environmental condi-
tions of interest, highlighting cases with high IWC, supercooled LWC, freezing drizzle and
freezing rain, small drops, and mixed phase. Figure 7 depicts the percentages of occurrence
of each of the five primary categories using the DT approach. Flight F20 is characterized by
the significant IWC amount detected above the layer of freezing rain, shown as a dominant
portion of glaciated conditions throughout the flight [38]. Flight F28 represents a case with
a wide variety of sizes and shapes and the presence of supercooled liquid water below
−20 ◦C.
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3.2. Flight 20

The results of our analysis based on the probability distribution functions (PDF) and
assigned clusters suggest that the blue cluster represents a clear-air environment as it
has low signatures in the Nevzorov sensors and missing values in radar measurements.
Moreover, the absence of imagery data from the 2D-S probe between 15:33 and 15:37 UTC
supports the clear-air labeling in this time interval. Concentration of larger aerosol may be
detected in this period by the optical probe and the aerosol instruments. Glaciated phase
(green color) is notable for the low LWC/TWC ratio, RID signal below 3 V, temperatures
below 0 ◦C, smaller concentration and larger MVD of the particles, and ZDR shifted to
positive values. Mixed phase identified here by the algorithm (purple color) is characterized
by LWC/TWC in the range 0 to 0.5, temperatures below and above the freezing point,
and wider range of RID and number concentration. Interestingly, in many studies the
choice of an LWC/TWC phase fraction threshold is dictated by the type and accuracy of
the instrumentation, such as 0.1 and 0.9 [14]. There are two purely liquid phases observed
during flight F20 corresponding to the red and yellow clusters. The main difference
between these two liquid conditions is seen in number concentration, temperature and RID
measurements. Yellow cluster is characterized by temperatures below 0 ◦C and oscillating
RID signal indicating supercooled liquid water freezing and accretion, whereas red cluster
implies liquid above 0 ◦C (Figure 8). It is worth noting that some studies show that pure
liquid droplets larger than 100 µm may be misclassified by Nevzorov as mixed phase [58].
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We have selected a couple of flight periods to examine cases with more scrutiny. Fig-
ure 9 shows the time series plots of the aircraft pressure-altitude and six input variables 
between 13:41 and 13:57 UTC during flight F20. The NRC Convair-580 aircraft climbed 
through four different cloud conditions during this time interval, from freezing rain layer 
(A), through a warm nose (B), into mixed phase and more ice-laden layers above (C, D). 

Figure 8. Time series plots of in situ measurements collected in flight F20 on 23 February 2019. Color
coding denotes different clusters assigned by k-means algorithm. From Top to Bottom, the panels
illustrate probe measurement from the temperature sensor, LWC/TWC ratio, RID, combined FSSP
and OAP concentration and MVD, and aerosol number concentration. Due to the 1 Hz temporal
averaging cloud particle concentration and size often appear as bimodal on the fulltime scale of
the flight.

We have selected a couple of flight periods to examine cases with more scrutiny.
Figure 9 shows the time series plots of the aircraft pressure-altitude and six input variables
between 13:41 and 13:57 UTC during flight F20. The NRC Convair-580 aircraft climbed
through four different cloud conditions during this time interval, from freezing rain layer
(A), through a warm nose (B), into mixed phase and more ice-laden layers above (C, D).
The K-means algorithm separated the supercooled liquid state into a yellow cluster, as seen
in flight section ‘A’ in Figure 9. This separation is supported by the increasing RID reading
and sub-zero temperature. Next, in period B (dominated by red cluster) we observe positive
temperatures and mostly a small-droplet environment, also seen in the 2D-S imagery. In A
and B, the LDR value is near the detection limit of −30 dB (not shown). An LDR reading
in raining spherical drops is likely a leaked co-pol signal measured in cross-pol channel.
In the subsequent transition from B to C, we see a detectable signal increase as large ice
appears. The transition between mixed and glaciated environments (C and D in Figure 9)
is characterized primarily by changes in RID readings, temperature, and LWC/TWC ratio
while W-band radar LDR value in ice remains above the values seen in section A, B.

3.3. Flight 28

Figure 10 depicts the PDFs of each input variable recorded in flight F28 where color
coding denotes the number of clusters assigned by the k-means algorithm. The low values
of liquid and total water content, hydrometeor concentration and size, as well as distinct
detached peaks in the W-band radar reflectivity, ZDR, and LDR indicate that the blue
cluster signifies clear-air flight segments. LWC/TWC ratios differentiate glaciated phase
from liquid and mixed conditions. Lower concentration and higher MVD suggest that
the purple cluster, likely, represents an ice-dominated environment. Positive radar dBZ
values and mean volume diameter larger than 100 µm indicates the presence of large ice
aggregates within the glaciated class. It is interesting to note that the concentration of these
samples has a multimodal distribution, implying different types of ice particles. Time series
of concentration and size in the purple cluster and 2D-S images confirm this assumption,
showing spheroids, columnar crystals, and aggregates of ice corresponding to the time
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intervals of glaciated conditions (Figures 11–13). RID response greater than 4 V indicates
the presence of supercooled liquid water in two of the clusters, which we refer to as “Mixed
2” and “liquid” (Figure 10). When liquid water is present, the increase in RID signal in
the time series is notable (Figure 11), whereas flat or decreasing RID signal correspond
to the absence of liquid water or a LWC below the sensitivity threshold of the detector at
temperatures consistently below −10 ◦C throughout this flight. “Mixed 1” class identified is
distinct from other classes for its lower values in the LWC and TWC sensors and in the RID
detector and can be interpreted as mixed phase with greater portion of ice. Therefore, green
and red clusters represent mixed phase clouds with different proportions of liquid and ice
particles. Green cluster (Mixed 1) has also lower hydrometeor concentration compared
to the red cluster (Mixed 2), indicating that the green cluster could be a transition phase
between clear air and mixed phase.
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After analyzing the individual variables, identifying the five clusters assigned by the
k-means algorithm using physical interpretation (Figures 10 and 11), and validating the
labels with complementary information, we can now describe the overall flight conditions.
Figure 12 shows the NRC Convair-580 aircraft pressure-altitude flight profile on 5 March
2019 during flight F28. The color-coded parts of the trajectory denote five clusters assigned
by the k-means algorithm and further manually labeled. On ascent, the aircraft passed
a clear air segment of the flight and made transition into a mixed phase, at 12:22 UTC.
It entered the narrow interval of liquid prevalent conditions at cloud top at 12:33 UTC,
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followed by a descent into a mixed phase environment and a missed-approach maneuver
in the glaciated cloud phase at 12:41 UTC. The NRC Convair-580 then ascended from
the glaciated to mixed phase environment and subsequently from mixed phase to liquid
layers and ultimately to the clear air environment. The almost symmetrical occurrence of
clusters at different altitude levels, over ~1 h segment, over the east coast of Lake Michigan
(Figures 2 and 3), suggest a persistent cloud layer and composition. After these transitions,
in the interval 13:10–13:22 UTC, we observe a few patchy periods of liquid water between
clear air segments. It is discernible that the glaciated layers were present at the lower
altitude, mostly below 850 hPa, whereas the mixed phase and the liquid conditions were
observed near cloud tops during the porpoising maneuvers of flight F28 in the interval
14:00–15:18 UTC.

In a deeper analysis of the first missed approach segment, we notice a layered macro
structure. Figure 13 shows the aircraft pressure-altitude flight profile, its corresponding
W-band reflectivity, color-coded according to the identified clusters, and complementary
lidar signal and depolarization ratio plots. The lidar depolarization ratio used here as an
auxiliary qualitative tool for validation, since it was not calibrated for absolute values. In
section A of this flight segment, identified as liquid by the k-means algorithm, we observe
mostly 10 µm droplets, depicted as single dark pixels recorded by the 2D-S probe. Lidar’s
low depolarization ratio is another indicator of the liquid phase observed at 3 km altitude.
Next, in section B, radar reflectivity is increased, and the segment is classified mostly as
“mixed 1”. Lidar plots indicate a transition between layers on descent, where a larger
variety of ice particles is detected by the 2D-S probe. Lidar depolarization ratio is medium
to high when the aircraft enters section C of the flight, classified as “mixed 2” by the k-
means algorithm. The 2D-S probe images show 10 µm droplets together with larger 100 µm
hydrometeors. At the warmer temperature, in section D (identified as “glaciated”), radar
reflectivity is further increased in correlation with the 2D-S imagery of larger ice aggregates.
The RID constant reading (Figure 11) indicates limited to no additional accretion and
therefore we conclude prevailing ice composition.

Such validation analyses show that the k-means algorithm cluster assignment cor-
responds well to the physical cloud structure observed with the complementary tools in
flight F28. From the clustering results, we can infer some valuable information on the
characteristic range of instruments’ values corresponding to different cloud phases. For
example, the glaciated phase in this flight has an LWC/TWC ratio below 0.25, large MVD
in the range of 100–1000 µm, fairly flat (non-accreting) RID signal, and enhanced aerosol
concentration about 103 cm−3. As opposed to the glaciated environment, liquid conditions
in flight F28 have lower MVD and radar reflectivity values, larger hydrometeor concentra-
tion and an LWC/TWC ratio greater than 0.8. Undoubtedly, future studies will need to
combine observations from numerous flights with various conditions to obtain universal
thresholds for each cloud category.

3.4. Classification Intercomparison

In the previous section, we focused on k-means classification however, different
approaches for atmospheric classification exist for applications along the flight track (see
Section 1). In this section, we compare the results from four such classification techniques
using data from flight F28, namely: k-means, DT, fuzzy clustering, and image sphericity
derived classification produced by ECCC and distributed with their dataset (see Data
Availability Statement section). The latter method is based on particle size distributions for
Liquid and Ice categories, classified using area equivalent diameter and maximal diameter
for any imaged particle, a mixed phase is classified when both categories are present and
clear-air is classified when none of the categories are present. In fuzzy clustering method
for this flight, the optimal number of 4 clusters was determined through the SA-IAFSA
algorithm (see Section 2.3) after the data preparation procedure. Figure 14a–d illustrates
the intercomparison between time series of the four selected methods. The fractional
occurrence of each cluster for a selected period is shown in Figure 14e.
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Figure 14. Time series of aircraft pressure-altitude on 5 March 2019 (F28) color-coded according to
class assignments by four methods: (a) k-means algorithm with manual labeling; (b) decision tree;
(c) fuzzy clustering without manual labeling; (d) sphericity derived classification. In the bottom
panel, (e) histogram for a selected segment of the flight (11:55–15:55), illustrating the differences in
the occurrence of the classes in each method.
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Overall, in this flight, while fuzzy clustering captures well the transition between
clear air, mixed and glaciated environments, it fails to capture the pure liquid phase with
the same accuracy as k-means or DT algorithms. On the other hand, k-means clustering,
and DT classification also have noticeable distinctions between them. For instance, one
can notice the difference in clear-air classification, around 13:16 UTC where the k-means
algorithm underestimated the clear-air class occurrence in comparison to DT, instead
classifying some of the segments as mixed phase. This can be explained by the inclusion of
the radar measurements in the input parameters set, an increase in LDR signal from −40 dB
to −25 dB was found for the samples of mixed phase while other input parameters showed
no significant difference between clear-air and mixed-phase around 13:16 UTC (Figure 11).

One other distinction of the k-means output in comparison to the DT classification is
the segregation of two mixed-phase classes from glaciated conditions. To examine these
discrepancies between the two methods with higher scrutiny, we selected a test case be-
tween 13:01 and 13:05 UTC in ascent above 800 hPa pressure-altitude level (Figure 15).
We show the time-series of the NRC Convair-580 aircraft pressure-altitude flight profile
color-coded with the classes assigned by the k-means and DT algorithms (Figure 15a,b)
temporally aligned with lidar depolarization ratio (Figure 15c), and selected input variables
time series (Figure 15d,e). Comparing mixed phase 1 (green cluster) in k-means with the
corresponding glaciated (purple cluster) classified in DT in the period where the aircraft
ascends from mixed-phase 2 (red cluster), we notice a significant increase in the comple-
mentary lidar depolarization information. The highly attenuated lidar depolarization ratio
becomes less attenuated with medium to high depolarization ratio values. Another major
change identified during the ascent is the decrease in the bigger diameter hydrometeors
(>1 mm) (Figure 15d) and stronger fluctuations in their concentration. Other variations
were observed also in a decrease in radar reflectivity in comparison to the glaciated phase
earlier in the flight and a significant decrease in the aerosol concentration (Figure 15e).
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The sphericity derived classification is in good agreement with the k-means clustering
for clear-air and glaciated periods. However, the pure liquid phase is almost not present
in the former method, instead it is classified as mixed phase (Figure 14e). This is due
to the lowest manual threshold set to classify as ‘mixed’ cases when both ice and liquid
classes contain concentration larger than zero. The challenge of setting such thresholds is
addressed in depth by Korolev et al. [59] and it is discussed in the next section.

4. Discussion and Practical Applications

In cloud phase characterization, the scientific community is currently relying on a vari-
ety of definitions. Korolev et al. [59], in their review paper, stated that there is no consensus
regarding what defines “liquid”, “mixed phase”, and “ice” conditions. As an example, they
illustrated the complexity in defining extreme ratios between hydrometeor phases, spatial
clustering of phases (i.e., two types: genuine and conditional volumetric mixed-phase), and
longevity of the phases. They listed the known instrumental limitations (both in situ and
remote) and concluded that in the future, only the synergy of in situ measurements with
different platform remote sensing will lead to an advanced understanding of mixed-phase
clouds across the globe, even though the mixed-phase definition might change.

Nguyen et al. [31] have implemented this approach and demonstrated its efficiency in
unprecedented, collocated, airborne in situ and radar measurements, including in character-
ization of mixed phase and riming events in the Arctic clouds and showed agreement with
models. In the study presented here, we used the same sampling methodology, focusing
our effort on the vicinity of the aircraft. While simultaneous collection of data using mul-
tiple measurement techniques should potentially improve the characterization of clouds,
the subjectivity inherent in interpreting results from multiple techniques also introduces
the potential to misinterpret results and/or introduce bias in order to find agreement with
predisposed opinions [59]. In order to minimize the aforementioned opinions, we tested
a number of taxonomy techniques, which resulted in a split of the mixed phase category
into Mixed1 and Mixed2, as predicted by Korolev et al. [59]. It should be noted that this
analysis is based on a limited number of flight hours and while it requires further scrutiny,
the advantage of the different capability of lidar and radar to detect various sizes of liquid
droplets and ice crystals and the detection capability of in situ instruments in a convoluted
product is profound and can provide a more consistent definition of various types of
mixed-phases than the definitions derived from each individual instrument separately.

In some numerical models, the cloud phase is still separated by simplistic thresholds
assumptions, e.g., temperature threshold, size threshold, or concentration threshold, into
liquid and ice. However, the reality is much more convoluted with the presence of coun-
terintuitive, small spheroidal ice, large rain drops, supercooled liquid (down to −40 ◦C)
and high ice concentration (e.g., after ice multiplication events). Misclassified phase will
essentially propagate into errors in the derived properties like the optical depth of the cloud
as well as cloud longevity, timescale and nature of cloud chemistry taking place in a certain
cloud phase.

Finally, it is worth noting that due to its multi-instrument nature, the presented classi-
fication approach produces useful output even in the absence of exceedingly sophisticated
quality-control or corrections of input parameters that would normally be required for
quantitative analysis of cloud microphysics measurements.

The classification of events is a common problem crossing many fields. The outcome of
this study has an additional practical application for the classification of icing environments
using an impartial approach. A development of cloud masking method based on the
classified portions of the flight would enable determination of cloud boundaries and cloud
types, subsequently paving the path for characterization of hazardous conditions via
multiplatform analyses, i.e., airborne, spaceborne, ground, and models.
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5. Conclusions

In this work, we have presented a multivariable characterization of the atmospheric
environment with data collected in flight. The data was collected onboard the NRC Convair-
580 aircraft in two selected flights during the ICICLE campaign in 2019. We implemented
a multivariable classification approach to facilitate segregation of cloud analyses into dif-
ferent atmospheric state categories as well as to develop a tool for operational decision
onboard the aircraft. The variety of sampling technologies installed on our aircraft (e.g.,
optical, electrical, vibrational, remote sensing, thermal) enabled us to validate the results
of a common k-means clustering characterization approach with complementary inde-
pendent measurements e.g., imagery and lidar. This new capability was compared with
other advanced classification methods. The number of identified classes agrees with the
lowest number of expected categories of the physical atmospheric content in these flight
environments (e.g., clear-air, liquid, glaciated, mixed-phase/multimodal). An additional
cluster was identified, indicating a split of the mixed-phase category. The pristine classes of
clear-air and glaciated clouds have shown an excellent agreement with the ECCC phase
separated datasets, which passed a manual expert evaluation of the phase.

The time demanding processing of individual datasets collected by each of the in-
struments and the subsequent quality assessment often requires high scrutiny. Our study
shows that untreated and uncorrected data can be used in some methods to produce an
adequate representation of the flight environment, validated with complementary tools,
therefore potentially saving time and cost of processing.

This single-flight, individual, classification approach can be expanded, with more
computing power, to include a greater number of flights for an offline study of sampling
features across a higher variety of environments. The findings of this study have enabled
the identification of the minimal number of key input parameters for objective classification
of the environment. Those will be used in a development of a Convolutional Neural
Network (CNN) approach for real-time implementation (e.g., [60]) in flight. However,
the selection of the best methodology to use still strongly depends on the backend user
application of the classification results.

Icing studies onboard NRC’s Convair-580 have been ongoing for decades (e.g., [4,19,61]) and
will continue in the foreseen future. The methodology presented here has the potential to
become an operational tool for the NRC aircraft fleet, which is heavily used in international
atmospheric science missions and can be transferred to other aircraft that have a similar
suite of common instruments onboard.

Combining this approach with ground, modeling, and satellite datasets in this project
will help to develop more accurate modeling tools for weather forecasting and ground
detection of icing hazard.
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