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description of delayed failure, two additional statistical
parameters describing the strength of this kind of glass were
established with the help of a separate stress-distribution

investigation. Several examples were worked to show application

in glass design.
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INTRODUCTION

Almost 50 years have passed since Griffith (1) brought
attentiﬁn to the weakening effect of pre-existing surface flaws
or scratches in glass. As a result of the stress raising effect
of these flaws, the measured failﬁre strength of glass in temnsion
is usually several orders of magnitude lower than its theoretical
strength. That this effect is real is borne out by the results
of many tests since Griffith's time which show that average
measured strengths and irequency distributions are altered by
deliberate surface conditioning; for example, sand blasting,
grinding, pollshing, or €tching. Surface roughening results
in reduced average strength and reduced variability, whereas
smoothing operations regult in increased strength with attendant
increased variability. It has been aptly pointed out that the
observed strength 1s not a property of the glass materials; it

is, rather, a derived functionm of both glass properties and flaw

geometiry.

Measured strength, however, is not solely dependent on
surface treatment; the average measured fallure stress in moist
air at room temperature 1s noted tco decrease with increased
duration of loading. This Iimportant phenomenon of delayed
failure as dependent on atmospheric moisture content and tem-

perature has been investigated in considerable detail,



particularly during the past decade. It 1s now generally
accepted that slow flaw growth takes place as a result of

stress corrosion combined with plastic-viscous flow,

The present work had modest beginnings in that it was
intended to improve upon the empiriclism of window design. It
became apparent, however, that while extensilve engineering tests
had recently become available, they had been carried out without
reference te contemporaneous sclentific investigations on the
effect of loading dufation; Furthermore, nelther the engineering
tests nor the load duration results offer a description of the
strength of glass; they ;nly yield measurements of the strength
of different glass objects under specific loading coanditions.
That the strength of glass has not been described, however, is
only due to the fact that load duration effects have not been
generalizgd and combined with probability theory. A complicating

factor is that of stress varlations over the glass surfaces.

The intent of the present work is to develop and
demonstrate a practicable formulation for the strength of glass.
By this 1is meant a straightforward mathematical scheme that
describes glass strength as a failure probability relationship
incorporating the most important ;spects of delayed faillure.
While the mathematical genéralization of delayed failure can

be confirmed by tests from several independent sources, it is
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the engineering tests which permit demonstration of the
practicabilility of the complete formulation, for it 1is only in
these tests that both loading rate and glass size were varied.
Nevertheless, the open literature has revealed only two
independent sets of tests that haQe.geen carried out in
sufficient detail for this purpose. (A third, limited set

of tests is alsoc avallable.) The very high cost of these tests
(* $5 x 105) justifies deriving as much value as possible from
them. The test results will be shown teo correlate on the basis
of the complete glass strength formulation, and to yield two
statistical parameters which describe the strength of large

elements of commercial, soda-lime plate glass, Several examples

are worked to show applicability in design.

Although the present analysis has been limited by
clrcumstances to consideration of plates of a specific glass
material, the general formulation should be e2qually applicable
to objects of any particular glass material with any particular

kind of surface treatment.



THEORETICAL

Delayed failure of glass in the presence

of water wvapour

For present purposes, 1t ig not necessary to review
again many important earlier investigations on glass behaviour.
An excellent resume 1s given by Wiederhorn (2), In order to
discuss and generalize the implications of experimental results
on delayed failure, however, 1t 1s first necessary to have
available a simple conceptual model for the process. Much of
this is already available 1in the work of Charles (3,4) and

Charles and Hillig (5,6).

Since water vapour induces chemical corrosion in glass

Charles (3,4) supposes a simple rate equatioh of the form,

42 | o ~YV/ET
i Ke (1),

Where: %% is the rate of progress of the glass interface

perpendicular teo its surface,

K is a pre-exponential constant,
R i8 the gas constant,
T is absolute temperature,

Y 18 an activation energy.




By direct measurement of the rate of corrosion
penetration In unstressed soda-lime glass (Corning 0800)
Charles obtalns an activation energy Y of 204 K cals/mol for

the initial stage of corrosion.

In applying equation (1) to corrosion in pre-existing
cracks in glass, Charles and Hillig (5,6) assume the activation
energy Y to be, additionally, stress-dependent and, as well, to
depend on the free energy of the corresicn reaction and possible
plastic or viscous deformation. These additional terms, of
somewhat speculative nature and magnitude, are considered to be
of importance only at low stresses where they result in a
fatigue limit stress below which failure will not occur.

Available test results, however, have been carried out in

e

Itreis ranrges where no limit is apparent; consequently, for
present purposes Y will be considered to be dependent on

stress alone.

Marsh (7), on the other hand, considers plastic-
viscous flow to be of major importance in the delayed failure
process. While 1t 1s not possible to reconcile this concept
in méthematical detail with Charles' and Hillig's subsequent
derivations, it can be shown, nevertheless, that identical

generalizations result.




Making use of a mathematical solution for the stress
distribution about a two-dimensional elliptical crack, Charles
and Hillig derive from equation (1) an expression for the rate

of change of geometry of a pre-existing flaw. With:
Y = Yy = Y3(0) (2)

thelir equation (7) reduces to!

a& «x 2 ¥, (o) =
P I % . o~YolRT _ '1 . Y1 (og)/RT
i " x & By RT ik e

for large x/p. Here x and p are the depth and tip curvature
radius, respectively, of the flaw; Kl 1s a constant; and Gm is
the tensile stress at the flaw tip. The form of Yl(c) is
unknown a priori, but
1/2
x *
— i
Gm s 20 (p) (&)

where 0 1is the applied stress at the glass surface.

There aré several possibilities for imperfection in
equation (3). Firstly, no allowance was made for changing stress
distribution as the flaw geometry changes, Secondly, the flaw
width at its tip may be, or may reach the limiting spacing of the
glass molecules. Thirdly, equation (4) may not apply well for

the very small dimensions and high stresses at a flaw tip.

* This is the Inglis stress concentration relationship (8) for
large x/p.




In his earlier ﬁapers Charles (3,4) had assumed
empirically that
L d)

- . n, _~Yo/RT :
dt KZ c‘;m € o i (5)

The resultling integrated form was found to correlate
experiment with good precision. Almost the same result is
obtained by treating x/p and t as pilece-~wise separable in

equation (3), thus:

X
% _2+n/Z | “a e
(E)

wvhere n and & are constants.

Experimentally, n turns out to be large and constant
to high degree, thus, as pointed out by Charles, the value of
24n/2 :
(x/p) at or near failure is much greater than the initial

value. It follows that for a specific flaw which leads to

failure,
e“Yo/RT

dt = constant (7

Herg t:f i8 time to failure.

In order to accommodate Marsh's plastic-viscous flow

into equation (6) it 1is only necessary to assert that the



exponent on (%) remains large., It is then immaterial whether
flaw geometry changes occur as a result of changes in x or p

or both, and equation (7) applies és'before.

Experimental verification

Although implied, Charles did not complete the
generalization of equation (7). Rather, he carried out the
integration for the two cases of O constant, and O increasing
at constant rate. Charles experimental results for bending of
small rods of soda-lime glass (Corning 0800) in saturated
water vapour are given iq Figures 1 to 3. 1In Figure 1
(constant 0): it is only at temperatures below about -50°C
that noticeable deviation from the constant n form of
equation {(7) becomes apparent. This deviation is a result
of the presumably approximate nature of equation (6) and
neglect of the secondary term for % in integration of
equation (6). Figure 2 gives measured average failure
stresses at 25°C for constant rate of load application.
Figure 3 gives Charles' determination of Vg ™ 18.8 K cal/mol
as obtained by setting d = o0 in equation (7). In developing

equation (2), however, Charles and Hillig expanded Y as

Y.YO+—§%] O T anenoes (8)
Q



This form indicates a = 1 as a first approximation. As may be
seen from Figure 3, this assumption yields s P 25 K cal/mol
and gilves a correlation which 1s considerably improved in the
high temperature range. (Since the upper and lower limits of
Figure 3 have been obtained by extrapolation, there appears to

be no merit in attempting to obtain a more precise value for a.)

Wiederhorn (2,9) has observed the rate of progress of
large, artificial cracks. For relative humidities greater than
about 5% at room temperature and velocities (%%) less than about
0.01 mm/sec, his results are consistent with the forms of
equations (1) and (6) but not sufficiently detailed to dis-
tinguish between them. At higher velocitles Wiederhorn's
observations indicate an effect attributable teo the limitations
of diffusion of water vapour to the crack tip. At still higher
velocities, c¢rack progress becomes independent of relative
humidity. Obviously, however, high velocities will only be
operative for very short times in glass failure; consequently,
low velocity growth will ordinarily predominate overwhelmingly

in equation (7).

Wiederhorn (9) also investigated the effect of relative
humidity on crack velocity. His theoretical development indicates

velocity to be approximately proportional to relative humidity

———



raised to the power of the number of water molecules reacting
with a single glass bond. Experimentally, this number appears
to be i-fer relative humidity greatef than 1 to 107%; for lower
values of RH the number appears to bg 1/2. Charles (3) carried
out one series of tests at 50% RH'which ylelded strengths about
7% higher than at saturation. This appears to be consistent
with Wiederhorn's work indicating velocity directly proportional
to RH (this would indicate strength at 50%Z RH to be 4.6% higher

than at saturation).

Mould and Southwick'(lO) lnvestigated delayed failure
in constant lcad bending of wet, artificially roughened
microscope slides with various abrasions. Close inspection
of their results shows that while the individual series of
tests show some irregularity there 1is no recognizable deviation

from the form of equation (7) with n = 16 as found by Charles.

Some constant rate of loading results (constant
temperature, 296°K) by Kropschott and Mikesell (1l1) are given in

Table I and compared with preddction by equation (7)

Table 1
Loading rate Comparative average Predicted
8 failure stress (81137
1l psi/sec 1.00 1,00
10 psi/sec 1.11 1.14

800 psi/sec 1.48 1.49



On the basis of apparent general agreeﬁent with
experimental data, equation (7) appears to be adequate to
describe the delayed failure characteristics of glass in
water vapour. Introducing Wiederhorn's relative humidity
effect for soda-lime glass, in particular, the result is,

again, for any specifie flaw which leads to failure:

ftf RH e-Yc’/RT

o5 D
(=) dt = constant = S (9)
P T

g
Here, BH is the decimal relative humidity.‘ For the special

situation, in particular, of o = Bot, (80 constant), for one-
dimensiconal tensile stresses at constant temperature TD and

constant relative humidity RHO, equation {(9) becomes :

i}
t - n n+l
Qo = C{/ RH « e To/RT | (%) dt} (10)
o]
n g |
' , Bo To (n + 1) n+l
where: C = { } (11)
RH eHYO/RTO
0 ‘\
and OE is the failure stress for the condition ¢ = Bot.

From equation (lé), it may be seen that for samples
arbitrarily stressed in tension at temperature T and relative
humidity RH (all time-dependent) for time t there corresponds
a specific stress Oe and, consequently, a specific failure

probability P.




While it is clear that stress alone is not a failure
criterion, nevertheless, equation (10) makes it possible to
retain this simple concept in the sense of a stress~equivalent.

This concept will be used in most of the remaining portion of

this paper.

Appropriate mathematical statistics for glass

As indicated in the introduction, the initial flaw
size distribution 1n a set of samples will generally be
arbitrary, i.e. mnot confofming to any of the well known mathe-
matical distribution funqtions. Under the circumstances, it is
thus entirely permissible to choose a continugus function which
offers the simplest approximate mathematical description of test

results. This is the Weibull function.

In his important paper, Weibull (12) proposes a
relationship between failure probability and stress of the form:

m-.
P = 1 ~ e-kce

Ao (122

for samples of a given surface area, Ao. Here kK and m are

experimental constants.

In actual fact, surface stresses will always be two-
dimensional. As shown in Appendix I, however, there exists a
one-dimensional stress-equivalent at every surface location.
Conééquently, accepting only that glass fallure 1s a weakest-

link, surface* phenomenon, the probability of failure of area

*A strength~volume effect of negligible magnitude is probably also
present, In addition, the cut edges of glass, 1f in tension,
experience a severe strength-line effect.




elements of size A = NAO, can be written:

P =1 - [—k(é—)'z ¥ e ™ !
A exp Ao g & (13)

Application to rectangular plates

For the special case of ‘rectangular plates, O, can be

written:

. . g% X :
o, =90 tE, ¥, 0 . (14)

whence, equation (13) becomes :

P, = 1 - exp[—k(%; B EN N (15)
vhere 1= st gl‘[f(g I, o1mad - ad (16)

Here, x and y are coordinates on a plate of width a
and length £, and f(f 4 % , t) symbolizes 0. varying with posi-
tion and time. GEC is a convenient refefence value for the

one~dimensional stress equivalent, usually that at the plate

center.

Approximation:
Some mathematical difficulty now arises in computing I
as a result of the fact that the relative stress distribution in

plates ordinarily changes with changing pressure load.* To avold

+The equivalent expression for a glass edge, obtainable with the
help of equations (10,11,12) is:
-

m
P, = 1 - exp[—ka(%—) él (&) ru - e Yo/RT 4.yn+l a)]
[s]

Here, 0 is the tensile stress on the edge of length 2, and %, is
a reference length. In general, k and m will differ from glass
surface values.

*The deflectlons of thin glass plates usually fall in the non=-

linear range where both bending and membrane stresses are
important.



obviously unwarranted amounts of computation, however, it is

shown in Appendix II that, as an approximation, the product
L] ' 'ln . ’

I .. 1in equation (15) can be replaced by

m
BT - Caw
Yo! TN i (17)

=R [ (pD3 P S(-38) 5 REee”

(The detailed definitions of r and I for equation (17) are given
in Appendix II.)

Stress distribution:'

For thin, uniformly loaded, rectangular glass plates
with edges free to move in their plane, elastic theory requires
a relationship between stress 0 and pressure locad q of the

general, non-dimensional form:

2 4 3
g (&) « q[d (2 Eh L

where: ¢ 1s any specific stress at surface location (% X)
E 18 Young's modulus

h is plate thickness

T
£ 18 an edge restraint constant, defined as f = %. gﬁ L
(8]
, o
(Mo is the edge bending moment and ggl is the slope

(o]
of the deflection surface at the edge. For present

purposes £ is assumed constant along all edges.)

Eh3 L "0 .a : .
for constant —E—E and = both E(K) and the product rI depend




4 : 4
only on %(%) . Thus, for a limited range of %(%) , it is
permissible to write:
n;1 n n h 2n q,.a 4 8 .
rI g, =BGy * BigGy 1 (19)
s . & 4g~2n 5
= B +« E o (E) . q (20)

Where B and s are constants for a particular range of %(%)

Inserting equation (20) into equation (17), and equation (17)

into equation (15) now gives:

m
n+1l

o & 4g-2n t

- n-s
PA = 1 - exp[-kC _}{: {B-E (=) i

]w
= =i

=

q®dt} 1 €21}

=
-

This 1s a practicable, generalized faillure probability relation-
ship for uniformly loaded rectangular plates, incorporating
effects due to plate geometry, area, load duration, relative
humidity and temperature. The constants B and s obtain from

elastic theory or elastic tests, while k and m must be determined

from failure tests.




CORRELATION OF TESTS ON PLATES

Avajlable experimental data

Only the following results (for commercial soda-
lime glass) have been reported in such a way that they are

amenable to analysis:

(1) Bowles and Suggrman (13) carried out detalled tests on
210 panels of 41" x 41" plate and sheet glass manufactured
by Pilkington Bros. (U.K.) with thickness varying between
0.11 inches and 3/8 inches. The glass was uniformly
loaded and edges were supported without restraint (simple
support). The tests were carried out at approximately
constant rate of change of deflection to cause breakage

in about 30 seconds. The results are summarized in Table II.

(2) A very extensive serles of proprietary tests on over 2000
lights of plate and sheet glass of various thicknesses up
to 3/4" and sizes up to 10 feet by 20 feet has been carried
out by the Libbey-Owens-Ford Glass Co. (U.S.A.) (14). The
test results have only been made public in the form of
charts (Figure 4) which, howéver, can be compared with the

Bowles and Sugarman work. These teats were also carried




out at approximately‘constant rate of changé of deflection:
actually center deflection was increased in increments of
0.1 inches and held for 60 to 75 seconds at each value (60
seconds nominal plus up to 15 seconds for adjustment.

Since deflection at failure wés about 1 inch for the

largér plates, the total loading time was about 35 times

greater than in the Bowles and Sugarman tests.

(3) More limited tests similar to the above on fewer, (20)
lights, (Pittsburgh Plate Glass Co., U.S.A.) are reported
in somewhat more detail by Orr (15)., Although very
limited in number, the results do not appear to differ
greatly from those of Figure. 4. The principal value of
Ofr's work here, however, 1s that it indicates the effect

that edge glazing may have on deflection and stresses.

Deflections in simply-supported sguare plates

In order to make use of equation (21) in comparing
the Bowles-Sugarman and L-0-F data, it is necessary to specify
théTvafiation of q with time. 1In both cases the plates were
loaded such that the centre deflection was_increased approxi-
mately linearly with time. Since Bowles and Sugarﬁan deter-
mined the relationship between load and deflection, it 1is thus

possible to establish the time variation of q.



Elastic theory (e.g. (16)(17)) requires a relation-

ship between load and deflection of the form:

b W W o2 2 W 4

o 2 ol 2 o) ;
Y (E~)[1+C1(1-v )(E~) +C2(1—v ) (H—) e (22)

20.6E ,h
Sy T (Z{
(1=v7)

where WO is the plate centre deflection and v is Poisson's ratio
(=0.22 for glass).

W i 4
In Figure S,Eg has been plotted against %(%) for the

data of Table II, with E assumed to be 1.0 x 107 psl. Also
included in the fig;re are the deflection measurements of
Kaiser (18) which were carrled out on a steel plate (v = 0.33).
(In plotting, Kaiser's résults have been converted to equivalent
glass results by taking due account of the different v values
(17).) Kailser's experimental and theoretical values for Cl wvere
apparently identical (C1 = 0.176). For the Bowles-Sugarman results,
however, a considerably larger range of variables was covered and
retention of C2 in equation (22) improved correlation at high
values of Wo/h. The curve for wolh in Figure 5 is, (for glass):
4 W W2 W4
a@ = 2.15 x 10% (:2) (1+40.165(;2) -0.0007(:2) ) (23)
That the works of Kalser and of Bowles and Sugarman

agree so well is an indication that both studies were carried

out with true simple support.




Evaluation of experimental results

Both the L=-0-F and Bowles~Sugarman tests were such

that:
qQ = C3t W (24)

to a close approximation. Illere C3 and b are constants which

differ in each test series. From equation (24);

bq b-1
dt = —-‘15- dq . (25)
S3

Substituting (25) inteo (21) and performing the integration

gives, (assuming T, RH, constant):

m
. S Fb ——
= _,em,A (RH -yo/RT,  .n-s, ,a,4s-2n bt .q° .0+l .
P, = l-exp[-kC +z—{=e B E () Gy o) ) e
o T q
Here, t i1s the average time to fallure corresponding to q,
(equation (24)). b \

The average pressure at failure, q corresponds to a

specific, constant failure probability for all test seriles, thus

re-arranging equation (26) for q q there results:
1

1 n+
L-2n/s - = ms
- ,a bt 8 A
q (E) ((s+b)) Ao constant (21

The exponent b is obtained by differentiation of equation (23),

.

f1.e.:



“w 20 -

w2 W4

W .
+0. ==y =0, —
: H.l 0 ,165(h ) -0 000?(h )
2 W2 T4
1+3x0.165(§2) —5x0.0007(E3) (28)

..

None of the experimental studies reported temperature
or relative humidity -- it is, therefbre, necessary to assume
room temperature (21°C) and average relative humidity (50%Z) in

all cases.

The light edge restraint in the L-0~F tests consisting
of 1/8" x 3/8" neoprene gasketting in 1/8" x 3/4" aluminum
angles was roughly similar to that used by Orr (15), where
analysis shows it to have a considerable effect on the deflec~
tions of plates thinner than about 3/8" with shortest side
about 6 ft. As a result, consideration should be limited
approximately to these dimensions in Figure 4, to ensure \
nearly simple support for comparison with the Bowles and
Sugarman work. For square plates, however, there are two
factors that permit larger square plates to be considered.

These are: (1) the glazing has a smaller relative effect on
stresses in square plates than in rectangular plates; and
(2) the larger plates of given thickness deflect so far into
the large deflection range that membrane stresses (almost

independent of edge restraint) form a large pbrtion of the




combined membrane-bending stresses, This 1s indicated by the
four reported tests by Orr on 82" x 82" square plates which
have been included with the Bowles-Sugarman data in Filgure 5,

(Plate thicknesses 0.237", 0.240", 0.303", 0.301".)

Table III lists the pertinent sizes of square plates
for each of which 25 samples were tested by L-0~F, To deter-
mine ﬁo’ the values of q were taken off Figure 4 and inserted
into equation (23). The average times to failure were then
determined from the ioading rate (1.e. about 75 seconds per
0.1 inch of deflection). Values of b were then determined
from equation (28). Equ;tion {(28) was also used to determine

the values of b for the Bowles and Sugarman data of Table II.

Correlation procedure

First attention will be given to the Bowles and
Sugarman data since these are more thoroughly specified than
those of L-0-F. 1In equation (27) preliminary consideration
shows that s 1s a large number. Thus, the exponent on bt is
small and since bt (Table II) does not differ greatly for all
tests, a first estimate of s is obtained by plotting q vs h,
Figure 6. Bowles and Sugarman calculated the 957% confidence

range on q, the limits of which are also shown with the data.




Lo

The results for sheet and plate glass differ appre-
ciably in Figure 6; apart from the fact that sheet glass
appearé-to be about 25% stronger thah plate glass, however,
discussion will henceforth be confined to the plate glass
results since no other sheet glas; data 1s available for com-
parison. Accepting the apparent slope of 1.4 for the plate

glass in Figure 6, there results from equation (27): 4 - 2n/s

]

1.4, whence, with n = 16, s = 12.3.

Parameter m and coefficlent of variation

The fact that Bowles and Sugarman recorded the
coefficient of variation (v) on q and on W now permits an
estimate of parameter m for their data. Weibull (page 13)
gives an equation and table, Appendix III, relating the
exponent (n+l1l)/m(s+b) in equation (26) to the coefficient of
variation on q. Although there can be little precision on
determination of this coefficient for only 30 or 40 samples
in each set, nevertheless, the apparent increase in v with
increasing thickness in TablelIl zppears to be the result of
minor experimental error arising from over-lapping pressure
measurements on different gauges. This becomes apparent when
the coefficient on g 1s determined from that on W. Assuming
negligible variation in h (as reported by Bowles and Sugarman)

this requires vq - vw/b. The values of vq cAlculated in this




way are also given in Table II, where they show considerably
increased uniformity for plate glass but are inconclusive for -
the more limited sheet glass results., Accepting a mean value

of vq = 21.5% for all plate glass results,Table VI (Appendix III)

m(s+b) g _ :
glves 1 L
whence, m = 7,3.
n 1
The exponent on A/Ao in equation (27) thus becomes == ® T
. i 1 _ 1
In Filgure 7 values of a(%_)S.B(i§E%:E)12.3 have been

o
plotted against (%) for both the L-0-F and Bowles-Sugarman

data. (The reference area AO has been taken to be 1.0 sq ft.)}

Agreement between the twc sets of data is exceptional.

Implications of the correlation

The simplest way to i1llustrate the direct implications
of Figure 7 is to compare the actual breaking pressures q of
Table III (L-0-F) with those that would be obtained by designing
from the Bowles and Sugarman data with the unreliable ad hoc
assumption that fallure occurs independently of load duration
ahd plate area when the stresses are the same in both cases.

For this purpose, equation (18) shows it 1is only necessary to
enter Figure 6 with an equivalent thickness he = h(40.5/a),
(where h and a are the actual thickness and plate width in

inches in the L-0-F tests). The results are summarized in




Table IV where column (3) gives the indicated bréaking pressure
and column (4) gives the ratio of indicated to actual breaking
pressufés. The ratio has the significantly large range of 1.4
to 1.9 depending on the plate size.__This means that the smaller,
more rapidly loaded plates of the‘Bowlea—Sugarman tests will
withstand loads 40% to 90%Z greater than the largef, slowly
loaded plates of the L-0-F tests, Column (5) shows that
approximately 1/3 of the load increase is attributable to load
duration differénces; while the remainder (between about 1/4 and
1/2, column (6)) is due to area differences. Column (7) gives
the combined calculated effect ofrioad duration and area. The
values are sufficiently close to those of column (4) that
further attempts at refinement do not appear warranted at this

time.

It appears likely that most of the residual difference
of about 15% between the two sets of data in Figure 7 is attri-
butable to the edge glazing in the L-0-F tests. This beilng so,
then Figure 7 may fairly represent universal strength charac-
teristics for ordinary soda-lime platé glass. As pointed out
previously, the limited tests by Orr (15) using plate glass from
a third (PPG) scurce indicate essential agreement with the L-0~F
results. It seems then that tﬁere is sufficient evidence

supporting the universality of Figure 7 to pirsue the problem




further to obtain, in addition to m, a value of k (equation
(12)): thereby, the strength characteristics of this type of .
glass Qill be completely determined for the structural usage
range. Determination of k is made possible by the investiga--
tion of Kaiser (i8) who measured ghe two—dimensiona; stress
distribution over the surface of a thin, square plate. With
k determined, any plate glass structure may subsequently be
designed after determining surface stress distribution either
by strain measurements or from elastic theory. No further

failure tests are necessary.

Should it turn out, on subsequent investigation,

‘that Figure 7 is not representative of all plate glass, then

the values of k and m here established apply, in any event,
specifically to the commercial glass tested by Bowles and

Sugarman.

The procedure for determining parameter k is given

in Appendix IV, and all parameters are summarized below:




Strength characteristics of large
areas of soda-lime plate glass

Based on one~dimensional tensile tests onlspecimens

of one square foot area, at a rate of stress 1increase

of Bo = 100 psi/second at 295°K and 50% relative

humidity: m= 7.3
. - This paper
AL E il i
YOIR = 12,600°K
' Charles (3)
m = 16

Insertion of these values into equation (21) gives
the probability of failure of a plate as dependent on the
strength parameters, the plate geometry and the manner and
duration of uniform pressure loading. In design, interest
centers on maintaining a low value for fallure probability.

In this case, equation (21) simplifies to, after inserting all

parameters;

2 16-5 a,4s-32,t RH , 0,16 43

= ~-28 a s
P, = 1.23x10 A[B E (h) ) (0.5)(T

"R o 8 ¢ 3
! e q dt]

(29)
Equation (29) can also be re-arranged to permit an estimate of
the required glass thickness to withstand a given load with a

given'failure probability, 1.e.3
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(30)
Here the thickness h and plate width a are in consistent units.,
A 1s the plate area 1in sq ft, q and E.are in psi, and time t 1sg
in seconds. " TO is the absolute reference temperature, assumed
to have been 295°K in the reported tests. B and s are general

parameters dependent on edge restraint and plate shape.

Examples

Ideally, all design should be based on a pre-established
probability of fallure dufing the lifetime of a structure. In
this section, a simple comparison will be made of the thickness
of glass plates with different edge support which have the same
failure probability under a given, arbitrary, uniform pressure

loading of specified duration.

Other than the work of Kaiser for simply supported
square plates, the literature does not immediately appear to
contain stress distribution solutions, that are pertinent to
the types of edge support encountered with real plates. At
present, then, examples are necessarily limlted to somewhat
arbitrary conditions. A simple solution is available, however,
for rectangular plates supported on two opposité sldes. Since

.

this solution approaches that of long narrow plates supported




on all sides, it will be useful for illustrative purposes to
compare its thickness requirements with those for simply

supported square plates.

For rectangular plates identically supported only on

two opposite slides, the surface stress distribution 1is as

folliows:
.cx.azﬂaA % x. & 1
ke Il = (=i 02) ] (31)
E “h E h’ a a 6(1+2%£)
g = vC z (32)
.y x
Eh3 -
where D = —=————, is the modulus of rigidity; (33)
12(1-v")
£ = 0 represents fixed support and £ = ® represents simple
support.

The relative tensile stresses of equation (31)
occurring with simple, medium (edge stress equals centre stress),

and fixed support are shown in Figure 9.

Since, for plates supported on two opposite sides, the
stresses are linearly proportional to load q, there results s = n
= 16 and evaluation of B becomes a relatively simple matter.
Values of B for simple, fixed, and intermediate support (centre
stress equals edge stress) were calculated and found to be

3 8 -8

respectively: 1.04 x 107°, 1.31 x 107°, 1,02 x 107 °,




A reasonable design failure probability might be 0,001,
i.e. 1 in 1000. Inserting this wvalue of PA’ the several values
of B, t;o values of A, a uniform pfeésure load of 0.20 psi and
two duration times of 60 seconds and 1 x 108 seconds into
equation (30) gives the results of'Table V. These particular
values of q and time can be considered to correspond only
approximately to wind loading on a window and perhaps to snow

loading on a skylight or to an aquarium window.

Because the examples are arbitrary, it 1is of more
importance in Table V to @iscuss comparative, rather than actual
thicknesses. In extending load duration from 60 seconds to 108
seconds, the thickness requirement is approximgtely doubled
(2.3 times for support ;n all edges and 1,6 for two edge support,
Changing plate area from 4 sq ft to 100 sq ft increases the ratio
h/a by 54% for 4-edge support, but by only 26% for two-edge
support. Decreasing the temperature from 21°C (68°F) to 0°C (32°F)
decreases the thickness by 14% for 4-edge support and by 7% for
2-edge support. Two other interesting features arise: (1) for
2-edge support, the required plate thickness becomes approximately
constant provided the edge stress is greater than that at the
centre; and (2) since the time and area effect are different for
2- and 4-edge support, it is possible te have situations where

the thickness requirements are the same in both cases.




DISCUSSION

The correlation of Figure 7 for soda-lime plate glass

indicates the practicability of describing glass strength by

equations (10) and (13). It appears likely that similar

results can be obtained for glass of different compositions

for which n and To presumably differ from those used herein for

soda-1lime glass.

A number of further comments are in order concerning

strength and design:

(1)

(2)

(3)

For correlations of the type of Figure 7, it is worth
recalling that statistical populations may be chosen

at will, for example, glass from all or from individual
manufacture sources. It should also be emphasized that
laboratory investigations on limited numbers of small
samples will not yield strength results which are applicable
to large plates of practical size which may be 100 times or
more larger than the laboratory samples.

Equation (10) does not consider very long-time delayed
failure for which limiting stresses would be expected.
Consequently, design on the basis of equation (10)

will ordinarily prove somewhat conservative.

It is important teo avoid over-refinements to any single
aspect of glass stremgth. Thus, for example, even though
existing experimental data is limited, it would not appeaf

reasonable to undertake further extensive and costly

A



experimental programé while little information 1s available
on loads and climate (including the possibility of surface
we;thering damage and the mundane effects of dirt
accumulation and periodic cleaning). In addition,
residual stresses (tension an& compression) of several
hundred psi are usually present in large glass areas as
a result of non-uniform heating and cooling during manu-
facture. On the other hand, as indicated by Table V,
surface st;ess varlations for real situatilons deserve
further attention (most stress-analysis work of the past
has tended to concentrate on maximum stresses, ignoring
cumulative probability effects). Possiblf, the
simplest method to obtain these surface stresses will
prove to be experimental (e.g. by direct measurement
wilith strain gauges, in the manner of Kaiser). Since
electronic computation will be involved 1n converting
the results to failure probabilities, however, it may
prove feasible to obtain entirely theoretical solutions
from elastic theory. For plates. in particular, the
procedures developad by Levy (19) bear consideration:
although complex they appear to offer great generality
for large deflections with any type of edge support:
ﬁeanwhile, equations (29) and (30) shcu%d prove of

. conceptual value in design.



(1)

(2)

(3

(4)

(5)

(6)

(7)

- (8)

(9)

(10)
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Appendix I - One-dimensional stress equivalent of a
two-dimensional stress

For principal stresses Uu‘ Gv’ the normal stress at

angle ¥ to Uu 1s:

& ety s'in"z‘) (A1)

nor u Uu X
and, from equation (12)
1
t g n ——

o, = cls =25 RHre~Yo/RTqp3ntl (A-2)
nor 0o

Following Weibull (12), p. 14, ¢ contributes

E
nor

partially to failure probability: the integrated probability

is 2
+X O n L
¢®r O((-ROry ,pg.e~Yol/RT  yntl

P = 1 - exp[-2k
-X T
o]

g dX (A"B)

Here, the integration limit x_ 1is m/2 when both

principal stresses are tensile, otherwise: B

o g
v
Now, for a one-dimensional stress ¢ _ , i.e. O = 0,
, u v
1 1
o m mn
t u, n = — +X
P=1= exp[-Zklcm{f (*Tl) *RH"e YO/RTdt}n+l£ 0(coszx)n+l dx]
< “ Ao

(A=3)

iR



Also,
SRR, -., 2m1+1
f Xo(coszx)n+l dy = ¥/7 ;%-:;-)—— (A-6)
-Xo .y g
_mn i
where ml = Py
) { T —_
Setting: C{s (—2) +Ru-e YolRBT ot o o, (A=7)
o
and equating (A-3) and (A-5) gives:
1
I'(m,+1) +¥ to n g n - = ot
= C[T:'?‘_z—r%—;—lg f 0{(T_u) (cosz)( + 6’2 Sinzx) ‘RH*e YO/RTdt}n+ldx]m
i -XO 9 ; u
I‘(_'2 ) (A-8)

This 1= the one dimensional stzrzess-equivalent of a two-

dimensional stress for the conditions of equations (10) and (12),




Appendix II - Approximations

In general, the surface stresses for most plates will
not vary linearly with applied load, thus leou will be time
dependent. To avoid the computation difficulties which this

introduces into evaluation of equation (A-8), quasi-linearity

will be assumed. Thus, with

1
t 0 n
c{f (%) -ruee Yo RTqr)n¥l o g (A-9)
o Tue
equation (A-8) becomes:
j Flm,¥l) 4%, o O g By 2
UE e Gue{ﬁ'wﬁf (cos™x + i sin” ) dx] (A-10)
2
m, ¥ 8] m
o 1s o(coszx + — sinzx) 4 dy
UE: m u —XO Uu
and; (E~—) = . 0 ~ = (A-11)
€c 5 lf o(coszx 4 Y& Sinzx) 1 dy . .
uc e’ ‘ ch k v
X o o
= £E, D]

Here, subscript ¢ signifies a reference location.

The large exponent n = 16 indicates weak time=-
dependence. Thus, instantaneous stress values could be inserted
into equation (A-11l) for determination of I by equation (16).

The pfocedure can be lmproved, however, as follows:



In equation (15) set;

m
i n 1 Uec

thus, by virtue of equations (9) and (A-10)

n

t a
mo_ o pl Tue " . .~Yo/RT
. n/L C r[i‘(—f~) RH e

I'{m,+1) +x o]
1 1 o] 2 ve
b= g (cos“yx +
Yom . 2m1+1 -Xo O'uc
T (—5—)

m
where r =

sin?'x)

(A-=13)

_m_
ag™tl (A=14)
dx] . (4-15)

Now, re—insert I and ¥ under the Integral sign in

(A_lé)' 1-&-:
n+l

Sy n

m

t , m_
no= ™S (rI) B ¢ (=€)  RH .« e~ Yo/RT ,.3nt (h=18)
Q
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Parameter - Coefficient
_fm(s+b) © -z of
" n+l ; é N .q? . Varlation
1 1.000 1.00
2 0.886 0.52
3 0.896 0.36
4 0.908 0.28
8 0.940 0.16
16 - 0.965 0.09
o 1.000 0.00




Appendix IV - Determination of Parameter k

Using Weibull's development (12) page 13, it can

readily be shown that:

m m n+l m
+1 n+l ,.. m ba~2n _ - a+l
1 _ 1.RH, ~Yo/RT\" " m n-s, " A" a bt ___s :
X = i{ =g } c {B E '} {A (h) e } (A-17)
T o Y
m{s+b) m{s+b)
Here: i = {J exp[~z nl ldz} el 0.651,
o

where the integrated value is obtained from Table VI for

m{s+b)

n+1 = 5.5.

A value of 9.33 x 1018 for the last bracketted term

raised to its exponent 7.3/17 in equation (A-17) is determined

directly from Figure 7.

Because Kaisey measured the two-dimensional stress

distribution over the plate surface, it is possible to obtain

n+l

an independent value of rI (equation (17)) or of (rI) ™ Gcn
for insertion into equation (19) to obtain B: this is the

last remaining unknown in equation (A-17).

Kaiser measured both-bending and membrane
stresses at 49 locations on a steel plate surface. Mean values
were then determined giving the stresses at 10 locations on a

one-eighth (i.e., symmetrical) segment of the. plate.



For present purposes, the stresses were first con-
verted by the method (17) to account for the difference in

Poisson's ratio for glass and steel, " With a value of

m, = 6.9, equation (A-11) was then calculated for all loca-
tions. The integration indicated in equation (16) was then
performed to obtain a value of I. 1In the case of a square

plate, the factor r (equation (A-15)) 1s a permanent constant

n+l m

since O = 0. . The product rlo $a? o {(r1) ™ ¢ n}n+l was
uc ve . uc uc

then computed and pleotted agailnst the corresponding value of

%(%) in Figure 8. All computations were carriled out electroni-

cally with occasional rough checks by hand.

In the form of equation (19), Figure 8 yields B =
3.02 x 10_'6 for the extreme right of the figure; this 1s the
range corresponding to bowles and Sugarman's tests on 1/4" and
3/8" plates. (Note: the corresponding slope in Figure 8 gives

221 = 4.8, in moderately good agreement with the earlier

determined value of 5.3.)

Reference conditions:
Room temperature (295°K) and 50% relative humidity

are sultable reference environment conditions.




An easlly remembered standard lcading rate of

Bo = 100 psi per second is suitable.

With these two conditions, the factor

_m %
n+i : LB
{&E-'e"Y°/RT} «¢™ in equation’ (l‘..—l7)becomes{80(n+l)}n+1 =
T P
m
1760°*L, from equation (10).

Inserting the various constants,

and with E = 107'psi, equation (A-17) yilelds :

k'= 5 x 13“30 painy'3



plate
glass

TABLE II--TEST DATA BY BOWLES AND SUGARMAN (13) FOR

41" x 41" GLASS PLATES#*, UNIFORMLY LOADED
Coeffil- Mean Coeffi- Average b b

Mean clent of Center clent of Time 1 2 “q

Mean Bursting  Varia- Deflec- Varia- to (equa- (2) v

Nominal Thickness No., of Pressure tion (%) tion tion (%) Failure tion + EE
Thickness (inches) Samples (psi) (1) (inches) (2) {(secs) 28) (1) 1
( 1/8 1in. 0:122 40 0.754 17:3 0.760 8.6 35,0 0.42 0.50 21
§3/16 i, 0.197 30 L4112 18.0 0.726 3.2 34.1 0.44 0.50 Z1
“{ 14 %u. 0.245 30 1.811 25.0 0.651 12.1 30.9 0.49 0.47 25
E 3/8 in. 0.373 30 3.625 23.7 0.610 14.0 29.% 0.63 0.58 22
{( 24 oz, 04110 30 0.692 14.0 0.807 7.6 37.0 0.45 0.56 17
—E 32 oz, 0.158 30 1.369 354 0.870 7.2 881 .42 0.4% 17
(3/16 in. 0.195 30 1.910 20.5 0.860 11.0 .37.6 - 0.42 0.52 26

* Plates were tested in a 40" x 40" opening on a rubber gasket.
Thus, the effective plate size is close to 40.5" x 40.35",




TABLE III - SELECTED SQUARE PLATES TESTED
IN DEVELOPMENT OF FLGURE (4)

W
(mﬂ
Area . _ . B W o 3 b &
5 (sq. N 3(§)4 (equn. o t (equn. bE(bt )s
Plate Size ft.)  gq(Fig.4) E‘h 24) . (inches) (sec) 25) s+b
(1) 8' x 8' x 3/4" ’ 64 1.85 51 1.65 1.24 930 0.62 580 1.36
. ' . j

(2) 6" x 6' x 1/2" © 36 1.70 74 2.05 1.0Z F 770 0.55 420 1.33
(3) 8.94' x 8.94" x 1/2" 80 0.77 165 3.05 1:52 1140 0.47 540 1.36
(4) 10' x 10" x 1/2" 100 0.62 205 3.40 1.70 1270 0.45 570 1.36
(5) 6' x 6" x 3/8" 36 1.17 160 3.00 1.12 840 0.47 390 1.32
(6) 8' x 8" x 3/8" 64 0.66 285 3.85 1.44 1080 0.44 470 1.34

(7) 10' x 10' x 3/8" ‘ 100 0.42 445 4.75 1.78 . 1340  0.42 560 1.36




1)

2)
3)
4)

©5)
6)
7)

10" x 10°'

TABLE IV - EFFECT OF LOAD DURATION AND PLATE AREA

Plate Size
(L-0-F tests)

8' x 8' x 3/4"

6 = 6" x 1J2"
8.94" x 8.94'
10' x 10" x 1/2"

x 3/8"
x 3/8"
x 3/8"

6' x 6'
8" x 8'

x 1/2"

k*%

(1) (2) (3)
Indicated
Mean Bursting
Bursting ‘o + Pressure
Pressure e Fig. (6)
_psi g (dinches) g '
1.85 0.32 2.9
1-70 0-28
i | 0.19 .4
0.62 D.17 "
1.17 0.21 1.6
0.66 0.16 Lad
0.42 0.13 0.82

Bowles-Sugarman tests,.

i c oy
i*‘nDefinedEasr. {£i2'3+b]LOF i [
: ) 5‘3
Defined as: {ALOF / ABS}
+ h = e x h, {.e. h
e 40.5 =R T

12.3¥+h"BS

(4) l (5) 6) (7)
Load*
Ratlo Duration Area*%*
/7 ” Effect Effect (5)x(6)
1.5 1.34 1.38 1.8
. 1.31 1.24
k‘ 1.34 i, 44
. 1.34 1.51 =
.4 1.30 1:2%
1.33 1.38
1.9 1.34  1.51
B .
bt } }12-3

(a is the plate width in inches)

is the equivalent thickness for the



TABLE V - PLATE GLASS THICKNESSES T6 WITHSTAND

A CONSTANT UNIFORM PRESSURE LOAD OF 0.2 psi

WITH FAILURE PROBABILITY OF 1 IN 1000

10" x 10' plate

2' x 2' plate
60 sec 10° sec i 108 sec 60 sec 10% sec 10° sec
Duration Duration Duration Duration Duration f Duration
gt 21°c¢ ag 21%'c at 0°C . at 21°C at 21°C at 0°C
. h/a h h/a h h/a h h/a h h/a h h/a h
Type of Support x10%| (in.) x103 (in.)l x103{ (in.) x10% ! (dn.) x103 (in.)' x10%| (in.)
Simple 3.2 0.08 7.31 0.18 63 Q<15 4.9 0.59 11,11 1.34% 9.7 115
(all edges)
Simple 7:3 <18 1.5 28 10.7 0.25 9.3 1.31 14.6| 1.74 13.5 1.60
(2 opposite edges) ‘

Medium 5.2 «12 B:2] .21 7.6 | 0.18 65 .78 - 10,2] 1.22 9.4 I 1.13
(2 opposite edges) ' . ; ‘
Fixed 5.2 2 8.2| .21 7.6 | 0.18 6.4 .78 10.1 | %.92 5.4 | 1.%8

. (2 opposite edges) r 8
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FIGURE 1

EXPERIMENTAL RESULTS FROM STATIC
FATIGUE TESTING OF SODA LIME GLASS
RODS (CORNING 0080) IN SATURATED
WATER VAPOR. AFTER CHARLES (3)
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FIGURE 2

EFFECT OF CONSTANT LOADING RATE ON AVERAGE
FAILURE STRESS AT 25°C (After Charles (4))
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FIGURE 4

STRENGTH CHART (LIBBEY - OWENS - FORD GLASS CO. (14))
(Note: Manufacture Tolerances as Indicated in (14) Have
Been Re-applied)
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FIGURE 3

TEMPERATURE DEPENDENCE OF THE DELAYE.D FAILURE PROCESS
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LOAD DEFLECTION RELATIONSHIP FOR UNIFORMLY
LOADED, SQUARE GLASS PLATES WITH SIMPLE
SUPPORT
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FIGURE 6

MEAN BREAKING PRESSURE AS DEPENDENT
ON PLATE THICKNESS. SIMPLY-SUPPORTED
SQUARE PLATES, (BOWLES & SUGARMAN )
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FIGURE 7

CORRELATION OF STRENGTH OF UNIFORMLY
LOADED SQUARE GLASS PLATES FROM TWO
INDEPENDENT SOURCES (SODA-LIME PLATE
GLASS)
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FIGURE 8

PROBABILITY PARAMETERS DERIVED FROM STRESS

DISTRIBUTION DATA OF KAISER (18).
SUPPORTED SQUARE GLASS PLATE.
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RELATIVE TENSILE STRESS DISTRIBUTION FOR

IDENTICAL PRESSURE LOAD

0.

2

, £ | |

)

SIMPLE SUPPOR

MEDIUM SUPPORT |

=
\ ——
b
-~

SUPPORT
! l

RELATIVE DISTANCE FROM EDGE

FIGURE D

TENSILE STRESS DISTRIBUTION IN
RECTANGULAR PLATES SUPPORTED
ON TWO OPPOSITE SIDES.
(CORRESPONDS TO LONG NARROW
PLATES)
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