
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Laboratory Memorandum; no. LM-2004-23, 2004

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=be2c93c7-edd5-4e74-b67e-fd3f8109761c

https://publications-cnrc.canada.ca/fra/voir/objet/?id=be2c93c7-edd5-4e74-b67e-fd3f8109761c

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.4224/8895984

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Computer room temperature alarm: design and implementation for UPS
O'Rielly, Barbara

https://doi.org/10.4224/8895984
https://nrc-publications.canada.ca/eng/view/object/?id=be2c93c7-edd5-4e74-b67e-fd3f8109761c
https://publications-cnrc.canada.ca/fra/voir/objet/?id=be2c93c7-edd5-4e74-b67e-fd3f8109761c
https://nrc-publications.canada.ca/eng/copyright
https://publications-cnrc.canada.ca/fra/droits

National Research
Council Canada

Institute for
Ocean Technology

Conseil national
de recherches Canada

Institut des
technologies océaniques

Title:
Computer Room Temperature Alarm: Design and Implementation for UPS

Prepared for:
Mr. Paul Thorburn, NRC
Mr. John Hudson, Co-op Education

Originating Organization:
Institute for Ocean Technology, NRC

Author:
Barbara O’Rielly

Date:
August 20th, 2004

Table of Contents:

1.0 Introduction…………………………………………………………………………3

1.1 Purpose ………………………………………………………………………4

1.2 Scope…………………………………………………………………………4

2.0 Design and Implementation of Alarm………………..……………………………5

2.1 Research……………………………………………………………………...5

2.2 Reading the Code…………………………………………………………….6

2.3 Reading the Buffer String……………………………………………………6

2.4 Writing the Code……………………………………………………………..7

2.5 Creating a web-based monitoring system…………………………………...10

2.6 Testing……………………………………………………………………….11

3.0 Conclusions…………………………………………………………………………13

4.0 Recommendations…...………………………………………………………...…...14

5.0 References…………………………………………………………………………..15

Appendix A: The Original Code

i) How to retrieve from string buffer

Appendix B: Ascii Conversion Table

Appendix C: The New Coding

i) The Creation of New Variables

ii) The GetAmbTemp Function

iii) System Code Call: Mail Loop

iv) The TempStamp Function

Appendix D: Output Code for the sprintf Command

Appendix E: MRTG & Python Code.

(i) MRTG Code

(ii) MRTG Daily Graph

(iii) Python Code

Ii

1.0 Introduction

C is the programming language that I chose to write the program for the computer

room temperature alarm. C is a general-purpose programming language that features

economy of expression, modern control flow and data structures, and a rich set of

operators. It has been closely associated with the UNIX system where it was developed,

since both the system and most of the programs that run on it are written in C. The

language, however, is not tied to any one operating system or machine; and although it

has been called a “system programming language” because it is useful for writing

compilers and operating systems, it has been used equally well to write major programs

in many different domains. C deals with the same sort of objects that most computers do,

namely, characters, numbers, and addresses. These may be combined and moved about

with the arithmetic and logical operators implemented by real machines.

The reason I chose C was because the original source code for the CheckUPS®

software was written with a C compiler (see Appendix A). CheckUPS® is a power

monitoring software package that allows UPS monitoring in OpenVMS, Windows, and

various UNIX environments. This software constantly monitors the status of the battery,

CPU temperature, ambient temperature, and AC power and alerts users of irregularities in

operation, or shutdowns due to malfunction through several different alarms. In the event

of a power failure, this software also has the capability to shutdown servers if available

runtime becomes too low before power is restored. In addition to these features, it also

creates logfiles of events for viewing by the user.

Lastly, to be able to monitor the computer temperature at all times quickly and easily,

I used a program called The Multi Router Traffic Grapher (MRTG). MRTG is a tool to

monitor the traffic load on network-links. This program generates HTML pages

containing graphical images, which provide a live visual representation of this traffic.

MRTG is based on Perl and C and works under UNIX and Windows NT. MRTG is

being successfully used within IOT to monitor the activity of various servers, clusters, as

well as fiber and copper connections.

1.1 Purpose

The purpose of this project was to create additional lines of code within the

CheckUPS® source code to alert the local computer systems group of high ambient

temperature in the computer room. This project was authorized by Mr. Paul Thorburn,

P.Eng., the head of the computer systems group at IOT. Currently, an alarm exists within

the code, however when triggered can only be recognized when within the computer

room. The proposed “new” alarm would send an e-mail message to those in the

computer systems group alerting them of the current temperature status, therefore

ensuring that the proper people are contacted immediately to remedy the problem quickly

and efficiently. This will be an important attribute to the existing software code since the

air conditioner in the room has been found to be unreliable at times, and hundreds of

thousands of dollars worth of electronic and technical equipment is contained within this

specific room.

1.2 Scope

The only limitation that was imposed on this project was time, since I was employed

with the Institute for Ocean Technology for a mere four-month term. The reading of

extensive amounts of documentation and source code began in the month of June and the

final lines of code were finished on Friday, August 6, 2004.

2.0 Design and Implementation of Alarm

2.1 Research

The first step that must be taken whenever initiating a project of any scale is to

perform some basic research into the subjects involved. For this particular project, there

were many aspects that needed to be explored before any groundwork could be

performed.

To begin, I requested documentation for both the CheckUPS® software and UPS

system. The CheckUPS® software documentation reviewed such topics as ‘installing

CheckUPS,’ ‘connecting to UPS,’ ‘CheckUPS messages,’ and ‘CheckUPS Files and

Procedures,’ as well as providing an excellent reference for troubleshooting common

problems. This allowed me to familiarize myself with the operations of the software, and

specifically, how it reads the UPS status. The UPS user manual generated important

information on the make and model of our particular UPS system, as well as normality’s

and default settings for certain alarm triggers.

In addition to becoming familiar with the software, I also had to educate myself in the

C programming language since I had never written any code in C before. Prior to this

work term, I had taken a course in C++ programming, which proved to be a valuable

resource when decoding C. To aid in my struggle to learn C, I requested some texts from

the CISTI (Canada Institute for Science and Technical Information) library, located

within IOT. I received three different books from the library and immediately began to

read them. In addition to this, I was also offered supplementary texts from co-workers in

the computer systems group that proved very helpful.

This extensive research took three to four weeks, since I had other ongoing projects

during the same time period as this one.

2.2 Reading the Code

The next step in the development stage of the alarm was to read the existing source

code. This program required the review of 3157 total lines, of which 2187 were actual

code. Within this code I identified several lines within the main loop, as well as function

definitions, that would be very useful in the writing of my own piece of code (see

Appendix A). Once these important portions of the code were identified, I copied them

to a text file (temp alarm.txt) for quick reference and closer scrutiny. I then found places

within the lines of code that would be optimal for the positioning of my own code. Since

I want to poll the UPS system at regular intervals of time, the best place to insert my

ambient temperature monitor would be within the main loop, which polls the UPS every

five seconds. I also concluded that to retrieve specific information from the UPS I would

have to use a string buffer, and the best way to achieve this would be by creating a

separate function definition for retrieving the ambient temperature.

2.3 Reading the Buffer String

In order to import the ambient temperature from the UPS, I first had to uncover the

position(s) the data occupied in the buffer string. To do this I polled the UPS to display

the buffer string and read the temperature from the control panel. The temperature on the

control panel display read to be 19 degrees Celsius. By analyzing the string, I realized

that there were two places within the string that displayed this value. To determine which

position would be used for polling for ambient temperature, I altered the temperature in

the computer room by opening all the doors, thereby allowing warmer air to circulate the

room and raising the temperature. Once the temperature increased, I watched the buffer

string output to see which value had been altered. The two positions that displayed the

ambient temperature were position 64 (the tens position) and 65 (the ones position).

Once this was done I could call the appropriate FstrBuff[#] command.

2.4 Writing the Code

 Now that all the groundwork had been laid and the initial obstacles overcome, it was

time to start writing the code. For the rest of the project I was paired with co-worker

Doug Walsh who is versed in C programming and has a degree in CS from Memorial

University of Newfoundland. The first step was to identify a ‘game plan’ by writing

some pseudo code (the "plain english" explanation of the code). Once this was done we

could analyze the specifics of the code we wished to write. To begin we started to write a

function that would remove the polling data from the string buffer. We created a new set

of function definitions, and declarations and paired these with a function call located

within the main loop. The first function that was written, GetAmbTemp

(see Appendix C, i), was written to actually pull the ambient temperature from the string

buffer and convert it to a manageable integer value. Our plan of attack was to read the

two values from the string located at positions 64 and 65 (see Section 2.2). We then

stored these two values in separate int (integer) variables with the names AmbTempTens

(logically named for the tens position) and AmbTempOnes (logically named for the ones

position). Once we had these values, we needed to return only one integer value from the

function. Through testing (see Section 2.5, i), we discovered that our buffer output was

in ascii, rather than integer values. To remedy this problem we subtracted 48 (see

Section 2.5, i) from both string buffer readings, and made our singular return value

calculation by multiplying the AmbTempTens by 10, and adding AmbTempOnes.

 The next part that was to be written was the commands that printed the temperature

and status every time the checkUPS® polled the UPS system (every 5 seconds). To do

this, we located the main while (a statement in C programming) loop in the program and

inserted our code at the end of the loop. The first step that was taken was to place the

output of the function GetAmbTemp into a variable (WhatAmbTemp), this way we would

not have to keep calling the function. After this, we used the command sprintf (which

prints formatted data to a string), using the buffer variable errorbuf (buffer to store the

resulting formatted string) and the format “Temp OK on UPS1” (string that contains the

text to be printed). This took care of the need to print the status of the UPS system. At

this stage, the if statement did not contain the line which decremented the MailTimer

variable, this was written at a later date. However, the if statement was implemented to

create an alarm status string within the loop. When the temperature rises above 23

degrees Celsius, the program will enter the if statement and change the errorbuf message

from “Temp OK on UPS1,” to “UPS1 Temp Alarm !!!”

 The next line in the main loop allowed for the printing and logging of the UPS

temperature. This again utilized the command sprintf, except in this case, the buffer

variable used was msgbuf, and the format was “%d is the UPS1 temp.” This piece of

code inside the sprintf command was then followed by the variable name WhatAmbTemp,

which stores the value from the function GetAmbTemp. The value that is contained

within this variable will then be printed in place of the %d in the format portion of the

string because the ‘%’ placeholder contains the following:

% [flags][width][.precision][modifiers]type (where type is the most
significant and defines how the value will be printed).

Since the letter after the % is d, this signifies that the output will be a signed decimal or

integer (see Appendix D).

 Also found within the if and else statements, is a call of the function TempStamp. The

TempStamp function (see Appendix C, iv) was created to enter the temperature from the

UPS into a file. The parameters that were entered into this function for manipulation

were the directory and name of the logfile (the file that the information will be written

into), errorbuf, and msgbuf, which were temporarily stored within the function in the

variables char *logname , char *logtext1, and char *logtext2 respectively. Within this

function, a logfile entry into the file UPStemp.log was created containing the following

information; a) the time stamp (a.k.a. the date and time the log entry was created);

b) the sprintf command to print the status string; c) the sprintf command to print the

temperature in the computer room. It then outputs a dotted line to separate the logfile

entries. This part of the code is located within the if and the else statements so that no

matter what the ambient temperature, the program will create a logfile entry.

 The final part of writing the code involved getting the program script to actually send

an alert to computer systems personnel. This is where the extra lines of code come into

play. Before we could write the code containing mailx (mailx helps you read and send

electronic mail messages to specified users) we first had to create an alias within the

mailx command that contained all the correct addresses for our contact list. To do this we

enlisted the help of coworker Gilbert Wong (CS degree from Memorial University). He

added two aliases to the system, one which contained all the addresses for the computer

systems employees, as well as text message addresses for their cell phones (alias =

checkups), and a second test alias containing only Doug’s @nrc.ca address and cell

phone text address (alias = walshd). Once this was completed we discussed the problem

concerning the frequency of mailing, since we did not want our alarm to be triggering a

sendmail command every five seconds (for obvious reasons). We decided upon once an

hour after the initial triggered mail message for the program to send out additional

warning mail. The trigger for the mailx command was through the variable MailTimer,

which was initialized to a value of 1. When the temperature rises above 23 degrees, the

variable is decremented once every 5 seconds until it reaches zero, since the variable is

initialized to a value of one, there will be a mail message sent the first time the

temperature rises over 23. Also, once MailTimer reaches 0, it will be reset to a value of

720 (this represents a period of one hour since one loop completes every 5 seconds).

Once this happens, the cycle starts again; it will decrement every 5 seconds until it

reaches zero, send a mail message, and reset to 720. This will continue until the

temperature drops below 23 degrees.

2.5 Creating a web-based monitoring system

 The only problem with our program was that all the data was written into a log file,

which was both tedious to view, and not easily accessible. To solve this problem we

decided to take advantage of a piece of software that is readily available within the CS

group called MRTG (Multi Router Traffic Grapher). To ensure that this program would

properly analyze our data, we performed several tests using static data (see Section 2.6,

iii). We copied existing MRTG code from another device that was being monitored and

edited this code to suit our specific needs. The highlighted sections of the code in

Appendix E, (i), are places in the code where we manipulated the variables and titles to

make the analysis of the graph both easier for those viewing, and more logical for those

analyzing the data. We then created a piece of code containing the data from the

checkUPS® software that is continually updating. To create this code we used another

programming language, Python, which is an interpreted, interactive, object-oriented

programming language similar to Java. We then copied this data into the MRTG

directory and allowed it to access this varying data, updating once every three minutes.

Once this was completed all members of the computer systems group could readily view

the html graph by simply entering the user name and password at the local MRTG page

(see Appendix E).

2.6 Testing

The crux of any good program is testing to ensure that all major errors have been

ironed out. During different phases of our coding we conducted tests of the existing lines

to ensure that we were receiving correct results and values.

(i) The first test that we conducted occurred early in our program writing. We tested

our function, GetAmbTemp to see if it printed the correct ambient temperature value.

However, when we compiled our program and did a test run, we discovered that we were

receiving an error in our ambient temperature value. The displayed value was telling us

that the temperature in the computer room was 546 vs. the actual temperature in the

computer room of 18 degrees Celsius. Quickly we came to realize that the problem did

not lie in our coding techniques, but in the output of the buffer string. It seems that the

values stored in the buffer array were written in ascii code (the code that computers use

to represent characters as binary numbers). To fix this problem we initially tried to use a

call within the program called atoi (ascii to integer). To do this we wrote the following:

AmbTempTens = atoi(ups -> FStrBuff[64]);
AmbTempOnes = atoi(ups -> FStrBuff[65]);

However, the atoi function only works on information that is type char (character) and

the information that is extracted from the buffer string is of type int (integer). This

caused an error when the program was compiling. We decided that we would try and

force the output from the string buffer to become a char type, however this was not

successful and we still received a compiler error.

Example:
 AmbTempTens = atoi(char(ups -> FStrBuff[64]));
 AmbTempOnes = atoi(char(ups -> FStrBuff[65]));

 Finally, we realized that in ascii code, the difference between the actual number

and its binary representation is 48 (see Appendix B). Therefore, if we wrote the code to

subtract 48 from the string buffer readings, the ambient temperature calculation would be

valid. This was the approach that worked for all numbers, therefore, this was written into

the return value for our function (see Appendix C, ii).

(ii) The second test that was conducted was on the mail commands to ensure that they

not only sent messages, but also sent them at regular intervals. To do this, we set the

temperature trigger to 14 degrees (since this was lower than the temperature in the

computer room); this way the program would enter the mail loop. We also adjusted the

frequency of the mailer, changing it from every 720 cycles (one hour), to 12 cycles (one

minute). We then opened the file UPStemp.log and forced it to update every 5 seconds so

we could constantly monitor the log entries. As you can see, there are two lines

commented out (blue font) within the MailTimer if statement. These lines were

uncommented for the test, and the actual mail script that is used became commented.

This was done so that we would only receive a printout in the logfile to verify that the

loop was executing at regular intervals instead of a myriad of emails. Once this was

confirmed, we allowed the mail script to run again and replaced the mail alias from

checkups to walshd. This ensured that the mailx script was executing properly without

unnecessarily disturbing the entire mailing list. We allowed the loop to run with all these

test conditions and once it executed properly, we reset the conditions to meet the original

specifications. The script was then forced to execute one more time and it was concluded

that the results that were obtained were desirable.

(iii) The third test was of the web-based monitoring system created through the use of

the MRTG. To test this system of monitoring, we created a static text file in notepad, and

used this as the input for the MRTG. It created a graphical representation of the test

value, which was a linear graph of 20 degrees Celsius. Once we knew that the MRTG

program was reading from the correct directory and had applied the correct variable

labels and titles, we inserted the correct file with the correct code into the MRTG input

and watched the html output graph through Internet Explorer.

3.0 Conclusion

 The computer room temperature alarm has been implemented for the UPS1 system

and is functioning as per Mr. Thorburn’s specifications. The project was completed on

August 6th, 2004, and the monitoring system has been running since August 10th, 2004.

Several revisions to the code have been made since the completion date; they do not

change the operation of the program, but make the coding ‘tighter,’ and more compact.

These lines of code operate on startup of the operating system with the existing

checkUPS® software. Also, documentation on the operation of our additional code and

procedures for execution have been made accessible to the other members of the CS

group via network drives.

4.0 Recommendations

 There are several recommendations that could be made to improve the efficiency and

practicality of this project.

1.) Revision of source code: The existing source code is at times convoluted and

confusing. A closer inspection of this code by trained programmers could result in not

only ‘tighter’ lines of code, but also fewer lines of code. This not only makes the

program more visually appealing, but also allows for easier troubleshooting should the

need arise.

2.) Additional String Buffer Manipulation: This program script does not only have to be

used to monitor the status of the ambient temperature of the UPS1 system, it can also be

implemented to monitor such things as frequency, number of watts, VA output, and

battery status.

3.) Additional UPS monitors: Presently, the temperature alarm and UPS monitoring

system only monitors UPS1 in the building. There is currently one other UPS system

managed by the CS group at IOT. This system (UPS2) could be set up with the same

monitoring capabilities using this code.

References:

1. Cooper, James W.; & Richard, Lam B., A Jumpstart Course in C++ Programming,
John Wiley & Sons, Inc. (1994)

2. Holub, Allen I., Enough Rope To Shoot Yourself In The Foot: Rules for C and C++
Programming, McGraw-Hill (1995)

3. Kerninghan, Brian W., The C Programming Language, Second Edition, (1988)

4. Porter, Anthony, The Best C/C++ Tips Ever, Osbourne McGraw-Hill (CA,1993)

Appendix A:

The original code

i) How to retrieve data from string buffer:

Appendix B:

Ascii Conversion Table

Appendix C:

The New Code

(i) The Creation of New Variables

(ii) The GetAmbTemp() Function

(iii) System Code Call: Mail Loop

(iv) The TempStamp() Function

Appendix D:

Output Code for the sprintf

command

Appendix E:

MRTG & Python Code

(i) MRTG Code

(ii) MRTG Daily graph

(iii) Python Code

#! /usr/bin/env python

f=open('/var/log/local1.log', 'r')
f.seek(-17,2)
c = f.read(2)
f.close()
print c
print c
print "a while ;) "
print "UPS1"

	Security:
	Report Type: Laboratory Memorandum
	Report Number: LM-2004-23
	Title: Computer Room Temperature Alarm: Design and Implementation for UPS
	Authors: B. O'Rielly
	Date: August 2004

