
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Research at the Advanced Construction Technology Laboratory
Thomas, J. R.; Cornick, S. M.; Leishman, D. A.; Vanier, D. J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=ac29787e-5f2f-473e-9c8a-a78d9dd752d9

https://publications-cnrc.canada.ca/fra/voir/objet/?id=ac29787e-5f2f-473e-9c8a-a78d9dd752d9

Research at The Advanced Construction

Technology Laboratory

R. Thomas, S.M. Cornick, D.A. Leishman, D.J. Vanier

National Research Council Canada, Institute for

Research in Constrution, Advanced Construction

Technology Laboratory, 6815, 8 Street North East,

Calgary, Alberta, T2E 7H7, Canada

Abstract

The Advanced Construction Technology Laboratory of the National Research
Council of Canada was set up to conduct research into the application of
computer techniques within the construction industry. This research has
focused upon improving the flow and integration of knowledge and information
throughout a structure's lifecycle. Central to this process is the explication of
models of the construction process as a mechanism for representing and
exchanging the knowledge within the industry. Current research in the
laboratory focuses on the development of tools and techniques which support
the use of building codes and the design process. These tools and techniques
include the development of hypertext building code documents, minicode
generators, systems for training building inspectors, plans compliance checking
systems and techniques to support the reuse of designs.

Keywords: Analogy, Codes, Construction, Compliance, Design, Design
Reuse, Hypertext, Knowledge Representation, Modeling, Regulations, SGML,
Training Systems. '"

1 Introduction

The Advanced Construction Technology Laboratory (ACTL) of the National
Research Council (NRC) of Canada's role is to support the construction
industry by conducting research into improving the flow of knowledge and
information throughout a structure's lifecycle. The design and manufacture of
artifacts, which include constructed objects such as buildings, is moving
towards an integrated and decentralized approach. Construction has always
been decentralized, having many different players and companies involved in the
process. However, unlike the design and manufacture of artifacts such as
automobiles, the construction process has yet to be integrated. If we wish to
establish a version of Computer Integrated Manufacturing for the construction
industry, Computer Integrated Building (CIB), the focus of current research
should be on knowledge and information technologies.

The penalties for the improper transfer of information and the lack of critical
or timely knowledge are prohibitive. Lack of understanding, ambiguity, and
errors can cause cost overruns and construction delays. Towards this end, the
development of knowledge and information models is paramount if appropriate

36 Artificial lntelligence in Engineering

or timely information is to be transferred from a designer to a contractor to a
building code official and ultimately to a worker or robot. This requirement for
better knowledge and information models has recently been realized by many
organizations around the world. The number of research groups working on
developing Building Product Models and information interchange standards
such as PDES and STEP (Warthen, 1991), and the efforts to computerize
regulations in many countries is testimony to recognition of a need for better
ways of handling knowledge and information.

ACTL is supporting the trend towards developing knowledge and
information based systems for the construction industry in three ways. The first
is by supporting and developing information based tools for building regulations
which make them more accessible and usable by designers and codes officials.
These tools provide designers and building officials with more flexible and
efficient means of accessing and applying regulations. They also provide a way
of integrating the body of codes and standards into a single information space.
This type of research improves the quality of regulations by restructuring them,
ensuring the consistency of content and terminology, and guaranteeing
completeness. The second way ACTL is supporting the push to better
knowledge and information representation is through the generation of Building
Product Models. Better knowledge and information models allows the
development of information-based products for training people, such as code
officials and designers. The third method of support is utilization of the building
product models as the basis for design tools such as automated compliance
checkers and design generation tools.

This paper outlines the ACf laboratory's current research activities. The
first topic deals with the building codes. This section discusses some of the
building code related activities including the low level representations used
within the code documents. The section continues by showing how these
representations facilitate access systems such as hypertext versions of the codes,
minicode documents and training systems. Design issues including design
evaluation and generation, is the second topic. The need for and the method of
producing building product models is explained first. Following this, we
outline how these models can be used to produce automated compliance
checkers and design reuse systems.

2 Details of Activities at ACT-Lab

2.1 Building Code Related Activities

2.1.1 SGML

Much of the information used by the construction industry is based upon textual
and graphical sources. The ability to access and exchange this information has
become an important factor in the efficiency of the industry. Although this was
first apparent in the manufacturing sector, it is now becoming increasingly
important to all industrial sectors. One of the major international standards for
the interchange of text based information is the "Standard Generalized Markup
Language" (SGML) (ISO 8879-1986). SGML is a metalanguage for describing

Artificial Intelligence in Engineering 37

the internal structure of document types and for tagging the structural elements
of documents.

In addition, SGML has also been adopted by many of the world's largest
publishers and by many governments around the world, including both the U.S.
Government and the European Parliament. SGML is used widely for industrial
documentation, particularly in those organisations where there are especially
difficult document management problems, such as the military, aerospace and
pharmaceutical industries.

NRC has recently converted all of its building code documents into SGML.
The Canadian Standards Association is also converting many of its construction
related documents to this standard. In part, the stimulus for this activity has
been the need to provide the base documents in a format which can be used in
support both traditional paper based and electronic formats. The advantages of
adopting the SGML approach are that it provides a mechanism for enriching the
information content within the document and provides the ability to treat the
document as an information database.

A number of the projects currently being undertaking by ACTL involve
either the adding of additional information, such as classification information for
specific clauses of the documents, or the inter linking of various sections of the
document to provide hypertext capabilities. For example, using the
functionality provided by SGML, ACTL is able to encode the Provincial variants
of the Prototype National Code Documents within a single document structure.
In the future, ACTL will also be able to provide the capability of viewing
temporal versions of the documents (previous versions), again within the
context of the base document.

In addition, ACTL is developing facilities to allow individual users of the
documents to add annotations to their own versions of the documents with the
ability to display or hide these annotations. This type of facility linked with
hypertext and "free text" search capability provides users with the ability to
locate information either on the basis of their own annotation or on the
documents content.

As part of this activity, ACTL has developed a number of tools for
supporting the code developers in their work. These have been based upon the
use of hypertext versions of the documents containing sophisticated search
capabilities. One important system that ACTL has been working on provides a
parallel view of both the English and French versions of the documents. This
allows the translators (English to French) to search the documents in either
language to see examples of how they previously translated similar terms in
other sections of the documents. This supports them in maintaining consistency
between and within the two language versions of the documents.

ACTL is also looking at a variety of software tools to increase the usability
of the document. These include the use of a more structured form of the
document and the use of a "simpler" language style/scope. Concurrently, ACTL
is augmenting the search capabilities with the use of imbedded construction
thesauruses (Davidson, 1978) within the search mechanisms, these will provide
access to synonyms and both broader and narrower terms for the search source.

38 Artificial Intelligence in Engineering

2.1.2 Hypertext

Infonnation sources such as the National Code Documents and their referenced
Standards represent a highly complex and interlinked knowledge base. The
need to search and navigate around these large infonnation sources require the
development of sophisticated search and navigation systems. Traditional texts,
both paper based and computer based, are sequential documents in which one
moves through them in a linear sequence. In contrast, hypertext documents are
designed to be used in a nonsequential fashion and a user is able to follow one
of an infinite number of paths through the documents (Nielsen, 1990). Some of
the current development of hypertext around the world are based upon the use of
SGML to provide structural and informational tagging within the hypertext
documents (cf. ISO HyTime Standard for multimedia systems).

Our original work in this area was based upon the use of early hypertext
tools which had limited capabilities. This work took place in the mid 80's and
investigated the use of hypertext for the presentation of the Canadian Building
Code Documents. Towards the end of the 80's, this work moved to more
powerful hardware platfonns and the use of more generic hypertext tools.

Using the Macintosh HyperCard system, ACTL has been able to develop a
number of sophisticated hypertext versions of the Code Documents (cf. Vanier,
1990). These incorporate a number of different methods for accessing
infonnation and navigating through highly complex documents. This work has
enabled the interlinkage between documents and thereby provides direct access
to a number of referenced documents (Standards, etc.).

Techniques utilized by ACTL for the hypertext system include the use of
thesauri to support search using synonyms and broader terms. This provides a
very powerful search mechanism. In addition, rather than using hard links

. between sections of the documents, the system locates the target material by
parsing the selected text and uses structural infonnation to locate the target
infonnation. Providing appropriate user interfaces to these systems is important
in ensuring the acceptance and usability of the systems. For example, tables and
diagrams are stored both as text and as graphic entities so that the search
mechanisms are able to locate information cont:lined within them and yet the
graphic files are used for presenting the material in a familiar fonnat. Within the
documents, defined tenns are visually indicated by the use of italics (as in the
paper versions of these documents) and the selection of a tenn by the user will
present the definition of the tenn in a separate window. Finally, a history
mechanism provides the user with the ability to return immediately to any point
in the documents that they have previously visited.

Our current hypertext systems are being moved to an IBM platform to ensure
wider dissemination of the technology. At the same time ACTL is investigating
the development of a version of the Hypertext Code Documents on one of the
new pen based computer systems. As further experience is gained with the
SGML encoded versions of the Code Documents, enhancements to the
Hypertext systems will utilise the tagged information to provide new
functionality.

Artificial Intelligence in Engineering . 39

2.1.3 MiniCodes

Many users of the Code Documents are only interested in specific subsets of the
total documents. For example, a house builder is only interested in the sections
of the documents which refer to residential buildings. When a building official
examines a set of building plans she/he only needs those sections of the total
building code documents which relate to the task at hand. There have been a
number of attempts to develop more specialized paper based systems such as
"Housing Codes" but even these are still rather generic documents.

The development of computer-based "MiniCodes" which apply to a closely
defined class or prototypical building are currently underway. This system,
given a high level description of the building project, will identify the relevant
subset (clauses) of the code documents which apply. Although the system is
initially designed to deal with a closely defined class of building, further
development of the system to produce "Custom Codes" for individual buildings
is envisaged. Much of this work is based upon the tagging of the code
documents (using SGML) with detailed classification information and the
development of a selection engine.

2.1.4 Training Systems

As part of ACTL's objective to support the use of the National Code
Documents, a prototype training system for building inspectors has been
developed. Many existing traditional computer-based training systems
emphasise rote learning of the contents of the code documents and the
procedural application of the codes. In contrast, the system developed by
ACTL focuses upon training the inspector to identify the existence of a violation
first and then provides them with the tools (hypertext versions of the code
documents, etc.) to identify the correct citation.

The prototype system focuses upon a typical residential house inspection.
As an inspector's task is primarily visual, this system presents a number of
scenarios based upon pictorial representations of various stages of the
construction process. In each scene, the student is presented with a typical
construction detaiVscene and asked to identify if it contains any violation of the
code. At all stages the system provides the student with access to the necessary
information including the house documents (site plan, grade slip, etc.) and
hypertext versions of the code documents. If the student indicates that there is a
violation of the code in the scene, they are required to indicate which clause of
the code which has been violated. Once the student has inspected all the scenes
associated with a specific stage of the construction (foundation, framing,
fireplace or final inspection), they are required to submit their report for that
stage. The report is reviewed by the system and the student is invited to correct
any inaccurate code citations. If they fail to identify the presence of a violation,
they are invited to re-inspect the relevant scenes. If they are still unable to
correctly identify the violations, they are given corrective feedback.

The prototype system provides a correct and incorrect version of a scene for
each of the four items at each of the four stages of the construction inspection.
On the first occasion that a student uses the system, it randomly presents correct

40 Artificial Intelligence in Engineering

or in-correct versions of the scenes. On subsequent occasions it presents the
student with one of the remaining permutations of the correct/in-correct scenes.
In the future the system will be extended to provide a greater selection of
scenarios and to integrate with an existing text based codes tutoring system.
Although this system was initially developed for Building Inspectors, there are
plans to extend the system to cover Plans Checkers and to develop a similar
system for Fire Inspectors.

2.2 Design Evaluation and Generation

Researchers in the field of design can be roughly divided into two groups: those
seeking to understand the design process and those developing tools that make
designers more efficient. This later group concentrates on automating routine
design tasks and simplifying more complex tasks. At ACTL, there are two on
going projects in the design field, one focusing on design evaluation and the
other on design generation. Both projects are intended to enhance, automate,
and understand portions of the design process.

2.2.1 Modeling

The current trend towards computerizing the design and manufacture of artifacts
has led to a push towards generating standard ways of representing knowledge.
Knowledge includes such things as geometric data, topological data, attribute
information, and reasons for design decisions. Product models, which combine
various types of knowledge including attribute information and topological data,
can also be categorized as knowledge. Buildings are properly viewed as
products and consequently are not exempt from the move towards product
definition standards. In fact the construction process is so involved and
complicated that it is imperative that product models be developed before
computerization can significantly impact the.construction industry.

L

2.2.1.1 Building Product Models

Computer integrated building, the equivalent of computer integrated
manufacturing for the construction industry, will require the development of
building product models in order to provide neutral data exchange. De Waard
(1991), for example, describes two models to be used in computer-aided
compliance checking, an knowledge model of a building and an knowledge
model of a building regulation. In fact it has been shown that building
regulations themselves contain an knowledge model of a building (Cornick,
Leishman, and Thomas, 1990a).

A code of practice, such as the National Building Code of Canada, can be
viewed as comprising a set of models describing the domain of applicability,
buildings for example, and a set of constraints that define an envelop within
which a design must fall. However, regulations can only partially define a set of
models since a considerable amount of background knowledge is required.
Only a portion of a document such as the Code defines the domain. The
remainder of the National Building Code of Canada is a complicated set of
constraints on the domain it describes.

-

Artificial Intelligence in Engineering 41

Currently, models are constructed by analysing the document under
consideration, the National Building Code of Canada for example, and building
models from the text of the document. At an abstract level these models are
represented as concepts and relations. Models are simply concepts linked by
relations. In addition, concepts are organized in type hierarchies and the
relations are defmed in a catalogue of relations. Taken together the models, type
hierarchies and relations form a semantic net which forms the basis for
reasoning about a particular code (Cornick, Leishman, and Thomas, 1990b;
Cornick, Leishman, and Thomas, 1991).

-

2.2.1.2 Knowledge Representation

A new generation of design systems has recently become available to designers,
for example, Design++ and Wisdom (Weinstock, 1990). These systems
combine geometric modelers with an object-based programming language.
Usually they also include a constraint propagation language, a truth maintenance
system, and some tools to create and organize objects. The appearance of such
design systems has made it possible to begin the development of advanced
design tools such as compliance checkers. In order to implement these tools
however another level of representation is needed.

Tasks such as compliance checking require the ability to define object type
hierarchies and recognize objects using those hierarchies, as well as the ability to
define and reason about aggregate objects and their parts. To perform these high
level reasoning tasks knowledge models are required. Current design systems
do not provide a level of representation adequate for constructing knowledge
models. Another layer of representation must be added to express the necessary
concepts and relations.

At an abstract level a knowledge model can be viewed as a semantic net.
The net consists of concepts (nodes) linked together by relations (arcs). Many
knowledge representation schemes have been developed from this model. For
example, conceptual graphs provide a way of representing the information in a
semantic net by using directed acyclic graphs (Sowa 1984). Our initial approach
to automating the compliance checking process was to represent the models
derived from the building code as conceptual graphs. A type hierarchy of
concepts was defined as well as a catalogue of relations. Models were
constructed from these elements and subsequently incorporated into the type
hierarchy. The advantages of using conceptual graphs are: I) parts of the
compliance checking process can be done with graph operations, 2) the
recognition of objects can be done using graph operations and the type
hierarchy, and 3) selectional constraints can provide type checking (Cornick et
al, 1991).

Initially models were built manually in an ad hoc fashion. We found this
approach unsatisfactory because it did not lend itself to generating consistent
models, primarily because of the flexibility of the representation. Consequently
our approach has shifted towards using tools that, while still based on semantic
nets, are more specialized in their representation. However building models
manually did allow for a critical examination of the contents and structure of the
National Building Code of Canada. This analysis revealed the modal nature of

42 Artificial Intelligence in Engineering

the National Building Code of Canada and the fact that large parts of it could be
modeled using exception hierarchies.

Subsequent attempts at building models have used KSSn (Gaines, 1991), a
variant of CLASSIC (Brachman, McGuinness, Patel-Schneider, Resnick,
Aplerin & Borgida, 1991), a KL-ONE type knowledge representation language.
KSSn was used to construct models from the building regulations. KSSn, like
.ts ancestors has a uniform, compositional language, with term forming
operators for creating descriptions of concepts and individuals. The tool
provides a more formal method for defining type hierarchies and reasoning in a
constrained environment as well providing tractable reasoning mechanisms,
unlike conceptual graphs. The trade off is that KSSn is not as expressive as
conceptual graphs.

An important development in knowledge representation for building product
models has been the growing acceptance of NIAM as a representation scheme.
NIAM (Meersman, 1988) was originally developed as a mechanism to model
databases. There is a similarity between NIAM and the conceptual graph
representation. Many researchers are beginning to look towards NIAM as a
basis for building information models (Turner, 1988; de Waard, 1991; Vanier,
1991). There is also a possibility of combining both conceptual graphs and
NIAM into an ISO standard on information modeling. We plan to continue
using a conceptual graph approach and incorporating more specialized
representational schemes such as KSSn. Future models will also borrow some
of the elements defined by other building product models, such as those defined
using NIAM.

2.2.2 Plans Compliance Checking

The main objective of the plans compliance checking project at the Advanced
Construction Technology Laboratory is to develop strategies and mechanisms to
enable the implementation of computerized code checkers The intent is not to
replace plans checkers but to remove the burden of the routine tasks. The
overall goal is to reduce the time taken during the plans checking process as well
as to reduce the number of errors and inconsistencies in interpretation.

2.2.2.1 The Compliance Checking Process

Building codes and standards define an envelop within which designers must
create proposed designs. Compliance checking is the process of determining
whether or not the design falls within the envelop. A design, or more
specifically a set of architectural drawings, represents a model of a proposed
design. The process of compliance checking consists of comparing the
designers model with the models derived from the building regulation in
question. A model, derived from a building code, will have a set of constraints
associated with it. If the constraints associated with that particular model are
satisfied by the design then the design is said to comply.

The designers model and building code model should overlap to some
degree. The first task in compliance checking involves determining from the
designers model which constraints apply. This task involves recognizing
objects in the drawing and determining which building code model it most
closely resembles. If objects in a design are labeled then the recognition task is

Artificial Intelligence in Engineering 43

straight forward. A more difficult task is where the building code contains some
part of the design which is not likely to be labeled, such as a means of egress.
Building code models are structural descriptions of some real world objects and
contain slots for attributes and role playing information. Once an object has
been recognized it can be expanded by filling in the slots obtained from the
building code model. For example, if an object in a drawing is labeled as a
building then the following slots become associated with that object: area,
height, occupancy, and class.

The values for height and occupancy may be given but the values for area
and class will have to be derived. Once an appropriate model is recognized then
the set of constraints that must be satisfied can be identified. The constraints are
checked against the actual data or derived data obtained from the designers
model (the drawing). (Cornick et aI, 1991; Coyne, Rosenman, Radford,
Balachandran and Gero, 1990).

A model for the compliance checking process is:
1. Identify the building object in question, building.
2. Fill in any slots now associated with the object,

occupancy, height, sprinklered, number ofstreets facing.
3. Derive data when required, area, building class.
4. Constrain attributes of the model, construction type,

fire-resistance rating.
5. Compare the constrained attributes against the real data.
6. Flag any inconsistencies.
7. Look for permissions that override obligatory

requirements.

2.2.2.2. Constraints

The function of a code of practice is to ensure life safety and health. A code also
serves to describe models in the domain of applicability and imposes constraints
on those models. The constraints are usually provisions or limitations that
provide for a degree of life safety and health. There are several types of
constraints imposed on the models defined by these codes. A large number of
constraints in a building code deal with specifying or limiting the values that a
particular attribute or characteristic can have. A building regulation, however,
may also specify that certain relations must hold (or conversely a relation must
not exist) between various concepts. Many of these types of constraints are
topological in nature, such as adjacency constraints of various occupancy types.
Finally a constraint may specify the addition or deletion of a particular concept
that comprises a model.

The representation of constraints brings to focus the issue of how they are to
be incorporated into the semantic net and in a system used for compliance
checking. There are three possibilities, 1) incorporating constraints directly into
the models, 2) letting them live somewhere outside of the concepts and semantic
net, or 3) attaching them to the models as rules. Our attempts at using a model
and constraint based approach to compliance checking has shown that a
combination of the three ways of representing constraints is needed.

2.2.2.3 Exception Hierarchies and Deontic Logic

44 Artificial Intelligence in Engineering

A large number of requirements in the National Building Code of Canada are
expressed in the form of antecedent/consequent rules and have the following
form:

if <conditions>
then <requirements>
except<exception conditions>
then <exception requirements>

The models derived from the National Building Code of Canada are
encapsulated to a certain degree. Constraints that deal specifically with a
concept, such as a firewall, are pointed to or attached to the specific object type.
If the rules are organized into exception hierarchies then the number of rules can
be reduced and the reasoning process somewhat simplified.

Exception hierarchies were initially developed to represent generalized
knowledge (Lange 1987). For example suppose that in most cases a firewall is
required to have a 2 hour frre-resistance rating.

rule 1
if <type> is-a frrewall
then <type> has-a <frr> = 2 hours.

There is however an exception to this general rule, namely that if a building
contains a high hazard occupancy then the rating should be 4 hours.

rule 2
if <type> is-a frrewall

<building> contains <occupancy> type <high hazard>
then <type> has-a <fIT> = 4 hours

In an exception hierarchy the rules are linked together.

rule 1
if <conditions>
then <requirements>
except <rule 2>

rule 2
if <conditions>
then <requirements>
exceptions <>

In most cases the most general rule holds and the 2 hour requirement is
asserted. However, if it becomes known that a building contains a high hazard
occupancy then the two hour requirement must be retracted and the 4 hour
requirement asserted. This is a kind of a default reasoning that states unless
otherwise known then assume the general case. Lange (1987) claims this form
of reasoning to be more representative of how experts reason.

Regulatory documents also tend to contain a significant amount of modality
(Moulin, 1990). The National Building Code of Canada is no exception.
Deontic logic introduces permission and obligation operators to account for may
and ought modalities. A quick reading of the National Building Code of Canada
reveals that many of the requirements contain these types of modals, expressed
as X shall be Y or X may be Y. The requirements that contain exceptions
exhibit a definite pattern. They tend to be in the form of obligations whereas the

Artificial Intelligence in Engineering 45

exceptions tend to give pennission to the designer to ignore the obligation. An
updated fonn of a typical requirement is shown below:

if <conditions>
then <requirements> (obligation)
except <exception conditions>
then <exception requirements> (permission)

By putting together conceptual graphs, exception hierarchies, and deontic
logic, a framework, within which some methods for automated compliance
checking can be tested, has been constructed. The conceptual graphs provide a
mechanism for recognizing objects, deriving infonnation, and constructing and
completing objects, essentially perfonning steps 1 through 4 in the compliance
checking process described above. Rules and exception hierarchies provide a
means of reasoning about parts of designs and models as well as posting and
checking constraints (steps 5 and 6). Modal operators, such as ought and may,
provide a mechanism for reasoning about conflicts between the building code
models, the designs, and constraints that have been posted by the rules (step 7).
To date we are continuing to experiment with defming models of the compliance
checking process and trying them out in the framework we have developed.

2.2.3 Design Reuse

Design generation can be defined as finding an artifact description that satisfies
various types of constraints (Mostow, 1989). Design is also a goal oriented
activity that involves search in a potentially infinite space. Neither this process
of search nor the space within which the search proceeds is well understood.
How to aid designers in making this search efficient while producing "good"
designs is the challenge for future computer aided design systems. One way to
aid designers in their task is to reuse past designs and histories of design
decisions. This reuse has the potential to reduce search complexity and has been
shown to be part of a designers expertise (Akin, 1988). In this way, designs
and parts of designs that have worked in the past can be reused under similar
situations in the future. As well, there is the potential to alleviate duplication of
past failures if records are kept and are easily accessible.

Reuse as described above, can be characterized as a fonn of analogical
reasoning which Broadbent states is a central mechanism used by designers
(Broadbent, 1973). Analogies can be drawn between two different types of
models of design in order to facilitate reuse; 1) analogies between process
models, and 2) analogies between structural models of designs.

2.2.3.1 Process Models

Analogies drawn between design processes makes use of decisions made during
previous designs to aid synthesis of new designs or for redesign. Psychological
studies have shown the extent to which analogy is used by architects in tasks
such as room layout and states that the use of analogy can often result in better
quality designs that more completely satisfy constraints (Akin, 1988).

Derivational analogy is one area of design that has dealt explicitly with
drawing analogies between processes as a way to gain efficiency (Mostow,
1989; Blumenthal, 1990). This type of analogy gains power from utilizing past

..

46 Artificial Intelligence in Engineering

decisions about design actions as well as the action sequences of a design
process (Carbonell, 1986). These include how certain constraints were satisfied
or how some constraints were traded-off against others. In this way, decisions
made and actions taken in past designs which are appropriate for a current
design are reused to save doing the same work from scratch.

Another approach taken to the reuse of the design process is that of design
rationale capture (Gruber, Boose, Baudin and Weber, 1991). Design rationale
refers to the knowledge or reasoning underlying a design. Researchers in this
area see the problem as a knowledge acquisition task and center on issues such
as relationships between formality and expressiveness of representations and
kinds of automated support for elicitation and analysis of knowledge.

2.2.3.2 Structural Models

Use of structural models refers to the use of descriptions of the actual artifacts
that have been produced rather than the process of producing the artifact.
Typically these will be CAD drawings of designs which are subsequently built.
Analogies are often drawn between an artifact to be produced and a previously
produced successful artifact or case. One area of research into reuse of
structural models consists of analogical reasoning from prototypes (Gero and
Rosenman, 1989). Here prototypical examples of buildings and their sub-parts
are used to set up expectations and templates of designs which are then modified
to fit the current design situation. Much of the work in Case-Based Reasoning
in design can also be characterized as drawing analogies between artifacts
(Navinchandra, 1991). Most case-based systems emphasize how best to store
cases in memory to be able to retrieve only relevant cases when needed. The
cases are parameterized versions of a design and reasoning from cases means
changing the parameters to fit the current design situation.

2.2.3.3 Design Reuse in Spatial Layout Tasks

One of the projects being pursued at the ACT laboratory is research into the
reuse of designs and design histories as described above. More specifically, the
research is focussing on the reuse of spatial layouts of rooms in a building. This
particular domain was chosen because layout tasks are central to much of design
in general. For example, in the layout of rooms, electrical wiring, and
plumbing. Other domains outside of building also deal with spatial layout such
as the field of VLSI design where layout of components on circuit boards is a
central task. As well, this particular domain was chosen because a body of
work already exists dealing with the automated layout of rooms (Coyne, 1990;
Coyne et al, 90). In this way room layout using analogical techniques can be
compared to other more algorithmic methods which tend to work fine on small
problems but often have difficulty scaling up to larger problems.

The approach taken so far in this project is to look at analogical reasoning
over both the structural and process models of design and at how the two can be
combined. Along these lines we are concentrating on derivational analogy
techniques for reuse of the processes of design and case based techniques for the
reuse of structural models of designs. It is felt that both structure and process
need to be considered when deciding what parts of past designs can be reused as
well as how they are to be reused. The important issues that need to be

Artificial Intelligence in Engineering 47

addressed are those noted by Mostow (Mostow, 1989) in his overview paper on
derivational analogy techniques including:

1) Representation - What information about the
original design decisions and structure is needed in order
to reuse them.
2) Acquisition - How can this information be captured?
3) Retrieval - Given a problem, how can relevant
previous designs be found?
4) Correspondence - Which objects, constraints, etc.
in the new design correspond to which ones in the old
design?
5) Appropriateness - When should a part be reuse?
6) Adaptation - How can a previous design be altered to
fit a new problem?
7) Partial reuse - Which parts of a design can be reused
by themselves?

This research is just beginning but is meant to utilize the same structural
building models consisting of objects, relationships and constraints as described
in section 2.2.1 above. In this way it is felt that design synthesis can be aided
by reuse of past designs which can then be checked for compliance by the
automated system also described above in section 2.2.2. Both design aids and
compliance checkers can then be related to object based CAD packages through
these same structural models.

3 Conclusions

The ability to utilize the knowledge and information that is created by and exists
within the construction industry will be critical in the coming decades. Much of
the work that we have outlined above represents some of the firsts critical steps
in this endeavor. Without good models of the construction process the industry
will be unable to take full advantage of the new information based technologies.
Providing access to information is important but it is equally important to
provide the tools to ensure that the information is correctly interpreted and
applied. During the design stage this involves the ability to help the designer
"reuse" previous successful design solutions and the provision of code
verification tools. In situations such as building inspections where we are
dependent on the inspectors visual skills we need to support the human inspector
with tools such as training systems and hypertext documentation.

There is clearly a lot of work to be undertaken in the development of tools
and techniques to enable the construction industry to take full advantage of the
"Information Age". We have presented just a few of those first steps that we are
currently undertaking within our laboratory.

@Government of Canada

III

48 Artificial Intelligence in Engineering

References

Akin, Orner. (1988) Expertise of the Architect. Chapter 7. In Expert Systems
for Engineering Design. Edited by Michael D. Rychener. Academic Press, Inc.
Boston: USA.

Blumenthal, Brad. (1990) Empirical Comparisons of Some Design Replay
Algorithms. Proceedings of AAAI90. pp.902-907.

Brachman, R., J., McGuinness, D., L., Patel-Schneider, P., Resnick, F.,
Aplerin, L., & Borgida, A. (1991). Living with CLASSIC: When and How to
Use a KL-ONE Type Language. In J. F. Sowa (Eds.), Principles of Semantic
Networks: Explorations in the Representation of Knowledge (pp. 401-456). San
Mateo, CA: Morgan Kaufmann.

Broadbent, Geoffrey. (1973). Design in Architecture. John Wiley and Sons,
London.

Carbonell, Jaime. (1986). Derivational Analogy: A Theory of Reconstructive
Problem Solving and Expertise Acquisition. Chapter 14 in Machine Learning
Volume II. Edited by Ryszard Michalski, Jaime Carbonell, and Tom Mitchell.
Morgan Kaufmann Publishers, Los Altos.

Cornick, S. M., Leishman, D. A., & Thomas J. R. (1991). Integrating Building
Codes into Design Systems. In First International Symposium: Building
Systems Automation-Integration, (pp. 4.7.1-4.7.26). Madison, Wisconsin:

Cornick, S. M., Leishman, D. L. & Thomas, J. R. (l990a). Incorporating
Building Regulations in Design Systems: An Object Oriented Approach. In
ASHRAE Transactions, 96 St Louis, Missouri: American Society for Heating,
Refrigerating, and Air-Conditioning Engineers, Inc.

Cornick, S. M., Leishman, D. L. & Thomas, J. R. (1990b). The Integration of
Regulatory Codes with Design Systems. In A. Gulliver (Ed.), Canadian
Conference on Electrical and Computer Engineering: Ten Years to 2000, 1 (pp.
14.4.1-14.4.5). Ottawa, Ontario: Canadian Society for Electrical and Computer
Engineering.

Coyne, R. D.. (1990). Logic of Design Actions. Knowledge-Based Systems.
V3 (4). pp. 242-257.

Coyne, R. D.,Rosenman, M. A.,Radford, A. D.,Balachandran, M., & Gero, J.
S. (1990). Knowledge-Based Design Systems. Sydney, Australia: Addison­
Wesley.

Davidson, C. (1978) Canadian Thesaurus of Construction Science and
Technology. IndustIy Science and Technology Canada (Formerly Department of
Industry Trade and Commerce Canada), Ottawa, Canada.

Artificial Intelligence in Engineering 49

de Waard, M., & Tolman, F. (1991). Modeling of Building Regulations. In K.
Kahkonen & B.-C. Bjork (Eds.), Computers and building regulations: YTT
Symposium 125, (pp. 195-209). Espoo, Finland:

Gaines, B. R. (1991). An Interactive Visual Language for Term Subsumption
Languages. In IJCAI'91: Proceedings of the 12th International Joint Conference
on Artificial Intelligence, Vol. 2 (pp. 817-823). Sydney, Australia: Morgan
Kaufmann.

Gero, J. and Rosenman, M.A. (1991) A Conceptual Framework for
Knowledge-Based Design Research at Sydney University's Design Computing
Unit. In Artificial Intelligence in Design. Edited by D.T. Pham. Springer­
Verlag, Berlin.

Gruber, T., Boose, J., Baudin, C., and Weber, J.(1991) Design Rationale
Capture as Knowledge Acquisition: Tradeoffs in the Design of Interactive Tools.
Machine Learning Proceedings: Eighth International Workshop. Evanston,
lllinois. .

International Standards Organization (1986). ISO 8879: Information Processing
- Text and Office Systems - Standard Generalized Markup Language (SGMU.
Geneva, Switzerland.

Lange, R. (1987). Exception Hierarchies as a Knowledge Representation for
Expert Systems. In D. Sriram & R. A. Adey (Ed.), International Conference on
Applications of Artificial Intelligence in Engineering Problems C2nd), (pp. 1­
10). Cambridge, Mass: Computational Mechanics Publications, Boston, USA.

Meersman, R. A. (1998). Towards Models for Practical Reasoning About
Conceptual Database Design. In R.'A. Meersman & A. C. Sernadas (Eds.),
Data and ｋ ｮ ｯ ｷ ｬ ･ ､ ｾ (DS-2), (pp. 245-263). North Holland.

Mostow, J. (1989). Design by Derivational Analogy: Issues in the Automated
Replay of Design Plans. Artificial Intelligence 40. pp. 119-184.

Moulin, B., & Rousseau, D. (1990). Designing deontic knowledge bases from
regulation texts. Knowledge-Based Systems, Vol. 3 (2), pp. 108-120.

Navinchandra, D. (1991). Exploration and Innovation in Design. Springer­
Verlag, New York.

Nielsen, J. (1990). Hypertext and Hypermedia. Academic Press, San Diego,
CA.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and
Machine. Don Mills, Ontario: Addison-Wesley.

Turner, J. A. (1988). A systems approach to the conceptual modeling of
buildings. In P. Christiansson & H. Karlsson (Ed.), Conceptual Modeling of
Buildings: cm Proceedings. (pp. 179-187). Lund, Sweden: International
Council for Building Research Studies and Documentation.

50 Artificial Intelligence in Engineering

Vanier, DJ. (1990) "Hypertext - A computer tool to assist building design", In,
The Electronic ｄ ･ ｳ ｩ ｾ Studio, Eds. MIT Press, Cambridge MA.

Vanier, D., J. (1991). A Parsimonious Classification System to Extract Project­
Specific Building Codes. In K. Kahkonen & B.-C. Bjork (Ed.), Computers and
｢ ｵ ｩ ｬ ､ ｩ ｮ ｾ ｲ ･ ｾ ｵ ｬ ｡ ｴ ｩ ｯ ｮ ｳ Ｚ YTI Symposium 125, (pp. 134-145). Espoo, Finland:
VIT.

Warthen, B. (1991). PDES/STEP: The coming cornerstone of CAD/CAM
Integration. In First International Symposium: ｂ ｵ ｩ ｬ ､ ｩ ｮ ｾ Systems Automation­
InteiTation, . Madison, Wisconsin:

Weinstock, N. (1990). The Complete Directoty of Automated Desilm Software.
New York: Simon & Shuster.

s

Applications of Artificial

Intelligence in

Engineering VII

Editors: D.E. Grierson, University of Waterloo, Canada

G. Rzevski, The Open University, U.K.

R.A. Adey, Wessex Institute of Technology,

University of Portsmouth, U.K.

f-

Computational Mechanics Publications

Southampton Boston

Co-published by

Elsevier Applied Science

London New York

CMP

ELSEVIER

