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Dimitrijević, Vladimir Sreckovic

and Zoran Mijic

Received: 16 February 2022

Accepted: 29 March 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

data

Data Descriptor

Climate Data to Support the Adaptation of Buildings to Climate
Change in Canada
Abhishek Gaur * and Michael Lacasse

Construction Research Center, National Research Council Canada, 1200 Montreal Road,
Ottawa, ON K1A 0R6, Canada; michael.lacasse@nrc-cnrc.gc.ca
* Correspondence: abhishek.gaur@nrc-cnrc.gc.ca; Tel.: +1-613-998-9799

Abstract: Climate change will continue to bring about unprecedented climate extremes in the future,
and buildings and infrastructure will be exposed to such conditions. To ensure that new and existing
buildings deliver satisfactory performance over their design lives, their performance under current
and future projected climates needs to be assessed by undertaking building simulations. This
study prepares climate data needed for building simulations for 564 locations by bias-correcting
the Canadian Regional Climate Model version 4 (CanRCM4) large ensemble (LE) simulations with
reference to observations. Technical validation results show that bias-correction effectively reduces
the bias associated with CanRCM4-LE simulations in terms of their marginal distributions and the
inter-relationship between climate variables. To ensure that the range of projected climate change
impacts are encompassed within these data sets, and to furthermore provide building moisture and
energy reference years, the reference year files were prepared from bias-corrected CanRCM4-LE
simulations and are comprised of a typical meteorological year for building energy applications, a
typical and extreme moisture reference year, a typical downscaled year, an extreme warm year, and
an extreme cold year.

Dataset: https://osf.io/guwqc/ (accessed on 30 January 2022).

Dataset License: CC0.

Keywords: building simulations; climate data; climate change; global warming; building energy;
hygrothermal; overheating

1. Introduction

Climate change is one of the most significant challenges Canada and countries around
the globe have faced and are facing. Since 1948, average temperatures in Canada have
increased by 1.7 ◦C, at a rate about twice the global average. The total precipitation has also
increased in most parts of Canada. In addition to the changes in average climate, extreme
events such as heat spells, thunderstorms, flooding, and wildfires have increasingly become
more frequent and intense [1,2]. It is projected that climate change will continue to affect
Canada’s climate regardless of the amount of greenhouse gas emissions made by the global
community in the future. By the end of the 21st century, the average temperatures across
Canada will increase by 1.8 ◦C even under the most conservative projections of future
greenhouse gas emissions, and can increase by up to 6.3 ◦C under the least conservative
greenhouse gas emissions projections [3]. Similarly, the current 20-year return period
highest daily annual temperatures are projected to become 5-year return period events by
the mid-21st century even under the most conservative projections of future greenhouse gas
emissions, while they can become a 2-year return period event under the least conservative
projections of greenhouse gas emissions [3]. As a result, buildings and infrastructure across
Canada will be exposed to drastically different climatic conditions and extreme events
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than experienced historically, and need to be designed taking into account the long-term
non-stationarity in climate [4].

Building simulations are important tools for assessing the performance of buildings
under current and future projected climates. By undertaking hygrothermal simulations,
Ref. [5] from Sweden estimated potential moisture accumulation in the outermost layer
of the façade for a typical wood frame wall construction under historical and future,
projected wind-driven rain loads. In [6] the potential future impacts of climate change on
antiquities stored in two historic buildings, one located in the Netherlands and the other
located in Belgium, are assessed by undertaking building simulations. Increases in indoor
temperatures by up to 2 ◦C and indoor relative humidity by up to 2.6% are projected by
the end of the 21st century, highlighting the danger of moisture damage to artifacts stored
in the buildings. In [7] thermal performance of the Roland Levinsky Building in the UK
is analyzed under projected climate change influences by undertaking whole building
simulations. The results indicate that without additional cooling, indoor temperatures are
expected to rise in the building in the future, affecting the thermal comfort of the occupants.
Several other studies incorporating building simulations have been performed to assess
the performance of building envelopes [8–15].

Climate data incorporating the future effects of climate change are an essential compo-
nent when conducting building simulations that permit the assessment of the long-term
future performance of buildings [16,17]. Typically, hourly or more frequent time-series
of multiple climate variables are needed. Whilst building energy simulations can be con-
ducted with information on temperature, dew point, pressure, wind speed and direction,
and solar radiation, hygrothermal simulations additionally require rainfall to accurately
model the transport of moisture within the wall assemblies [18]. In an effort to reduce the
computational costs associated with running building models over long periods of time,
simulations are performed over subsets of long-term climate data, typically over one year,
referred to as reference weather years (RWYs) [13]. Depending on the application, either
typical or extreme years are chosen as RWYs. The Canadian Weather Year for Energy Calcu-
lation (CWEC) database from Environment and Climate Change Canada [19], for example,
used extensively by building practitioners in Canada for building energy applications,
contains typical RWYs prepared following the methodology outlined in [20]. Several other
RWYs such as Weather Year for Energy Calculations (WYEC) [21], International Weather
Year for Energy Calculation (IWEC) [22], Typical Meteorological Year 2 [23], and others
reviewed in [16] have been used for building energy applications.

Extreme RWYs have been used for assessing peak energy loads in buildings [24]. For
building overheating assessments, extreme RWYs are of interest and, again, a range of them
have been used, such as Design Summer Year [23], Design Reference Year [24], Summer
Reference Years [25], Extreme Meteorological Year [26], Summer Weather Years [14], and
others reviewed in [16]. For assessing hygrothermal performance of wall assemblies, an
extreme RWY with the greatest potential for moisture damage in buildings is chosen.
In [18] the year with the highest Moisture Index [27] is used as the RWY for evaluating the
performance of four hygrothermal simulation tools in simulating moisture-related damage
in four different wall assemblies for three (3) Canadian city locations: Ottawa, Vancouver,
and Calgary. In [28] the year with a 10% failure level in terms of Climatic index and RHT
index is selected as the RWY for assessing the hygrothermal performance of three different
wall assemblies in four cities located in Switzerland.

As opposed to considering either a typical or an extreme year, Ref. [29] demonstrated
the need to select both typical and extreme years for building simulations, by selecting three
RWYs: typical, extreme cold, and extreme warm years based on dry bulb temperatures.
Such an approach effectively captures the range of climatic conditions and building energy
responses demonstrated by an ensemble of long-term climate projections from multiple
regional climate models. In [13] the selection of the three RWYs is made based on dry bulb
temperature, equivalent temperature, and precipitation, and it was found that in the case
of a pre-fabricated wooden frame wall, the RWYs selected based on dry bulb temperature
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were able to closely replicate the moisture content, relative humidity, temperature and
mould growth rate in the façade and insulation layers of the wall assembly obtained from
the long-term climate datasets. Since then, a number of studies have used this method to
identify typical and extreme RWYs, enabling users to effectively capture the uncertainty
from climate projections with substantially reduced computational costs [24,30,31].

Building simulation data have been prepared for locations around the globe. For
example, the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) weather data center (https://www.ashrae.org/technical-resources/bookstore/
weather-data-center (accessed on 30 January 2022)) provides, for a fee, typical-year building
simulation files for 3012 worldwide locations outside the United States and Canada. The
Pacific Climate Impacts Consortium (PCIC) provides “future shifted weather files” for
466 locations in Canada by means of a Wx file tool (https://services.pacificclimate.org/
demo/wx-files/app/ (accessed on 30 January 2022)). The Climate Change World Weather
File Generator for World-Wide Weather Data—CCWorldWeatherGen (https://energy.soton.
ac.uk/ccworldweathergen/ (accessed on 30 January 2022)) provides users with future
projected climate files and typical RWY files for locations across the globe. Several other
studies [32–36] have prepared building simulation files incorporating the future projected
effects of climate change.

The morphing method has been most often used to prepare future projected building
simulations files. In this method, “morphed” future projections are prepared by adjusting
observations based on future projected changes from a global or regional climate model. In
the present work, current and future projected building simulation datasets were prepared
for 564 locations widely distributed across Canada by using bias-corrected and dynami-
cally downscaled regional climate model projections. The unique aspects of this database
over similar existing databases are: (i) Each climate file includes variables sufficient for
undertaking both hygrothermal and whole building simulations—most existing databases
only include variables needed for whole building simulations; (ii) both typical and extreme
RWYs are prepared with indices relevant for different building applications, which will al-
low the use of data for several applications such as overheating, hygrothermal performance,
energy use, peak energy demand, and encompassing variability in projected climate change
impacts etc.—existing databases mostly provide typical or extreme RWYs; (iii) climate files
are prepared directly from regional climate model projections, which makes it possible to
account for complex distributional changes in future climate.

The layout of this paper is as follows: the locations considered for data generation are
described in Section 2, followed by the data and methods used in Section 3, a discussion on
the accuracy of key steps of the methodology in Section 4, and conclusions in Section 5.

2. Locations Considered for Data Generation

The building simulation files were generated for 564 locations, shown in Figure 1,
which were considered in the most recent 2020 version of the Canadian Weather Energy and
Engineering Datasets (CWEEDS)/Canadian Weather Year for Energy Calculation (CWEC)
datasets from Environment and Climate Change Canada (ECCC) (https://climate.weather.
gc.ca/prods_servs/engineering_e.html (accessed on 30 January 2022)). The locations were
carefully chosen in the CWEEDS/CWEC database to represent different climate types over
the Canadian landmass whilst making the best possible use of available observational
records from ECCC’s climate databases [19]. There is a higher number of locations in
the southern parts of Canada than in the northern parts, given the greater availability of
observational records for southern Canada. Of the 564 locations, 13 are located in the Yukon
Territory (YT), 32 in the Northwest Territories (NT), 37 in Nunavut (NU), 78 in British Columbia
(BC), 102 in Alberta (AB), 44 in Saskatchewan (SK), 39 in Manitoba (MB), 61 in Ontario (ON),
81 in Quebec (QC), 13 in New Brunswick (NB), 29 in Nova Scotia (NS), 7 in Prince Edwards
Island (PE), and 28 in the Newfoundland and Labrador (NL) provinces of Canada.

https://www.ashrae.org/technical-resources/bookstore/weather-data-center
https://www.ashrae.org/technical-resources/bookstore/weather-data-center
https://services.pacificclimate.org/demo/wx-files/app/
https://services.pacificclimate.org/demo/wx-files/app/
https://energy.soton.ac.uk/ccworldweathergen/
https://energy.soton.ac.uk/ccworldweathergen/
https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://climate.weather.gc.ca/prods_servs/engineering_e.html
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Figure 1. The 564 locations for which building simulation data are prepared in this study.

The elevation, historical wind speed, relative humidity, temperature, and global
horizontal irradiance amongst these locations vary from 1 to 2543 m, 1 to 10 m/s, 60 to 90%,
−17 to 12 ◦C, and 302 to 586 kJ·h/m2, respectively, between 1998 and 2017 as per the
2020 CWEEDS database.

3. Methodology

The generated building simulation data consist of typical and extreme RWY files for
564 locations forming part of ECCC’s CWEEDS/CWEC database. The climate variables
in the RWY files are sufficient for undertaking both hygrothermal and whole building
simulations, and include hourly values of air temperature (TEMP), relative humidity
(RHUM), atmospheric pressure (PRES), snow-cover flag (SNOWC), wind speed (WSP),
wind direction (WDIR), total rainfall (RAIN), total cloud-cover (TCC), and global (GHI)
as well as direct normal (DNI) and diffused horizontal (DHI) solar radiation, as listed in
Table 1. The data are generated for a historical time-period of: 1991–2021; future time-
periods are coincident with increases in global temperatures of: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
and 3.5 ◦C. The future time-periods with the aforementioned levels of global warming are
calculated after an analysis of global averaged temperatures modelled by the Canadian
Earth System Model, CanESM2, and are found to be: 2003–2033, 2014–2044, 2024–2054,
2034–2064, 2042–2072, 2051–2081, and 2064–2094, respectively.

The methodology followed consists of four steps, outlined in Figure 2 and explained
hereafter.

3.1. Preparation of Database of Observations and Climate Model Simulations

A database of hourly observations and climate model simulations for the selected
locations was prepared. Observations of hourly global horizontal irradiance, station pres-
sure, dry bulb temperature, dew point temperature, and wind speed and direction were
taken from ECCC’s 2020 CWEEDS database (https://climate.weather.gc.ca/prods_servs/
engineering_e.html (accessed on 30 January 2022)). Observations of rainfall, total cloud-
cover, and snow depth were not part of 2020 CWEEDS datasets, and as a consequence,
they were collected from Environment Canada’s historical climate datasets, respectively:
HLY03-123, HLY01-082, and DLY04-013 (https://climate.weather.gc.ca/historical_data/
search_historic_data_e.html (accessed on 30 January 2022)). For the aforementioned vari-
ables, the historical observational records collected at climate gauging stations, and within
5 km of the CWEEDS stations, were merged by giving the greatest preference to those
observations recorded closest to CWEEDS stations and subsequently, a lower preference to

https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://climate.weather.gc.ca/prods_servs/engineering_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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observations recorded farther away from the stations. If missing values were present in the
merged observational time-series, they were supplied through quantile mapping of climate
estimates from the Climate Forecast System Reanalysis (CFSR) [37] on the observations.

Table 1. Configuration used for bias correction of CanRCM4-LE projections.

S.No. Climate Variable
(Shortname, Units) Method of Preparation Bias Correction

Method
Ratio

(Yes/No) Trace

1 Global horizontal
irradiance (GHI, kJ/m2/h)

Bias correction of CanRCM4-LE simulated
downward shortwave radiative flux QDM Yes 0.1

2 Direct normal irradiance
(DNI, kJ/m2/h)

Estimated from bias-corrected GHI

− − −

3 Diffuse horizontal
irradiance (DHI, kJ/m2/h) − − −

4 Total cloud cover (TCC, %) Bias correction of CanRCM4-LE simulated
total cloud-cover

MBCn

Yes 1

5 Rainfall (RAIN, mm)
Bias correction of CanRCM4-LE simulated
rainfall obtained from hourly precipitation

and daily solid precipitation
Yes 0.1

6 Wind direction (WDIR,
◦ from north)

Bias correction of CanRCM4-LE simulated
wind speed and direction obtained from

hourly u, v components of wind

Yes 1

7 Wind speed (WSP, m/s) Yes 0.1

8 Relative humidity
(RHUM, %)

Bias correction of CanRCM4-LE simulated
relative humidity Yes 1

9 Temperature (TEMP, ◦C) Bias correction of CanRCM4-LE simulated
dry bulb temperature No −

10 Atmospheric pressure
(PRES, Pa)

Bias correction of CanRCM4-LE simulated
atmospheric pressure Yes 10

11 Snow cover
(SNOWC, 0/1)

Bias correction of CanRCM4-LE simulated
snow-depth Yes 1
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For preparing the database of current and future projected climates for the selected
locations, a large ensemble of Canadian Regional Climate Model version 4 (CanRCM4-LE)
simulations was used. The CanRCM4-LE was prepared by the dynamic downscaling
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of Canadian Earth System model large ensemble simulations (CanESM2-LE). CanESM2
is a global climate model with interactive atmosphere, ocean, sea ice, land, and carbon
cycle components [38]. To prepare the CanESM2 large ensemble, a large initial condition
ensemble consisting of 50 simulations was randomly initialized starting on 1 January 1950
from the 5 historical ensemble members, by selecting 10 random sets of cloud physics
parameterizations in the model [39]. The historical simulations covered the time-period
1950–2004, and future projections over 2005–2100 were made using the Representative
Concentration Pathway (RCP) 8.5 [40]. The CanESM2-LE simulations were dynamically
downscaled from a geographical horizontal spacing of ~2.8◦ to ~0.44◦ using the CanRCM4
model to prepare the CanRCM4-LE. A subset of the CanRCM4-LE simulations comprising
15 realizations were archived in hourly time-steps by ECCC and were acquired for the pur-
poses of this study. The CanRCM4-LE simulations have been used extensively to integrate
climate resiliency in the design of buildings and core public infrastructure in Canada [41].

The CaRCM4-LE simulations for the 1991–2100 time-period, and comprising hourly
global horizontal irradiance, total cloud cover, precipitation, u and v components of 10 m
wind, relative humidity, temperature, atmospheric pressure, and daily solid precipitation
and snow depth, were collected for the grid closest to the 564 locations for the purposes of
this study [42].

3.2. Bias Correction of Climate Model Simulations

Bias-correction of climate variables was performed using trend preserving univariate
(QDM) [43] and Multivariate Bias Correction with N-dimensional probability density
function transform (MBCn) [44] methods. The QDM is a univariate bias-correction method
that preserves climate-model-projected relative changes in the quantiles while at the same
time correcting systematic biases in quantiles with respect to the observations. First, climate
model projections, de-trended by quantile, are mapped on observations following equation
1 by quantile mapping and xm,p,dt−bc(t) is calculated. Thereafter, climate-model-projected
relative Equation (2) or additive changes in quantiles ∆m(t) are obtained, and combined
with xm,p,dt−bc(t) using multiplicative Equation (3) or additive operations to obtain the
final bias-corrected future projections xm,p,bc(t).

xm,p,dt−bc = F−1
o,h

[
F(t)

m,p
[
xm,p(t)

]]
(1)

∆m(t) =
xm,p(t)

F−1
m,h

[
F(t)

m,p
[
xm,p(t)

]] (2)

xm,p,bc(t) = xm,p,dt−bc(t)× ∆m(t) (3)

where,xm,p(t), xm,p,dt−bc(t), xm,p,bc(t) are the raw, de-trended and bias-corrected, and final

bias-corrected climate projections at time t, respectively; F(t)
m,p, F(t)

m,h, F(t)
o,h are the cumulative

distribution functions (CDFs) of the climate model future projections, historical simulations, and
observations, respectively. Their respective inverse functions (F−1) follow similar nomenclature.

The MBCn method extends the application of the QDM method in a multivariate
context. First, the univariate distributions of climate projections were bias-corrected using
the QDM method. Thereafter, the dependence structure of climate variables was corrected
using an iterative process. At each iteration, the data were multiplied by random orthogonal
rotation matrices to partially de-correlate the climate variables requiring correction. The
QDM corrections were applied to the partially de-correlated data before they were re-
correlated using the inverse random matrices. This process of rotation, QDM correction,
and back-rotation was repeated until convergence was reached between the multivariate
distributions of climate simulations and the reference dataset [45].

The climate variables from CanRCM4-LE simulations were bias-corrected with ref-
erence to observations. In this study, MBCn was chosen as the preferred method for
bias-correction over QDM as it is able to correct the marginal distribution of variables as
well as the dependence structure between them. All climate variables except GHI were
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bias-corrected using MBCn, as shown in Table 1. The QDM is preferred over MBCn to
bias-correct GHI because the reshuffling of values in MBCn is found to modify the diurnal
characteristics of GHI, resulting in unrealistic values for global, diffuse, and direct solar
radiation. The QDM and MBCn methods were implemented using the MBC package [41]
in the R programming language [44]. The bias-correction methods were calibrated indi-
vidually for each month using data from the three months surrounding it. This implies
that to calibrate the MBCn/QDM method for the month of January, data for the months of
December, January and February were used and so on.

Finally, previous studies have shown that it is important to account for the internal
variability of climate when applying bias-correction algorithms to an ensemble of climate
model projections [45–47], otherwise, bias-correction can lead to an artificially reduced
ensemble spread. In an effort to account for this, bias-correction methods were calibrated
and predicted over different realizations of CanRCM4-LE to preserve the internal variability
of climate simulations in the bias-corrected data.

3.3. Estimation of Direct and Diffused Components of Global Solar Radiation

As shown in Table 1, the direct (DNI) and diffuse (DHI) components of solar radiation
are estimated from the bias-corrected GHI. The following steps were performed to achieve
these values:

1. Hourly clearness index (kT) was calculated as the ratio of hourly GHI and extra-
terrestrial solar radiation, which was calculated using equations provided in [48].

2. The values of kT were used to calculate the diffused fraction kd using Equation (4) [49].

kd =


1 − 0.249kt f or kT < 0.35

1.557 − 1.84kT f or 0.35 ≤ kT < 0.75
0.177 f or kT ≥ 0.75

 (4)

3. The DHI was calculated using Equation (5).

DHI = GHI × kd (5)

4. The values of DNI were calculated using Equation (6).

DNI =
GHI − DHI

sinθ
(6)

where, θ is the hourly solar elevation angle.
It is known that in the early mornings and late evenings, when the solar elevation

angle is low, global radiation is primarily comprised of diffuse radiation. To limit the
amount of direct radiation as may be estimated at low solar elevation angles, previous
studies, such as those by [15,19], have considered solar angle thresholds (such as 5◦) below
which the global solar radiation is considered to be fully comprised of diffuse radiation.
If a limiting threshold value is not used, it can result in unrealistic DNI values in the
early-morning and late-evening hours.

In this study, instead of using a user-defined threshold for solar angle, the approach
adopted by International Energy Agency Annex 80 [50] was used to calculate the limiting
(maximum) value of DNI for each hour of the day, as it allows for a physically based (de-
pendent on local turbidity and elevation) estimation of direct and diffused components of
solar radiation which can be uniformly applied at locations around the globe. The approach
uses the Linke turbidity factor and elevation of a location to calculate the limiting value
of DNI [51]. The Linke turbidity factor is an approximation to modelling the atmospheric
absorption and scattering of solar radiation under clear skies. It describes the optical
thickness of the atmosphere due to absorption by water vapor, and the absorption and
scattering by aerosol particles relative to a dry and clean atmosphere, and thus permits
summarizing the turbidity of the atmosphere and hence the attenuation of direct beam
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solar radiation [52,53]. The larger the value of the Linke turbidity factor, the larger the
attenuation of radiation by a clear-sky atmosphere.

The estimates of Linke turbidity values for the 564 CWEEDS locations were taken
from the 2010 gridded estimates provided in Solar Radiation Data (SoDa; http://www.
soda-pro.com/help/general-knowledge/linke-turbidity-factor (accessed on 30 January
2022) [51]. The limiting value of direct irradiance on a horizontal surface (or limiting direct
irradiance) for clear sky, DNIlim, is calculated as:

DNIlim = I0 × ε × sinγs × e−0.8662×TL×m×δRayleigh(m) (7)

where I0 is the solar constant, ε is the correction used to allow the variation in sun−earth
distance from its mean value, γs is the solar elevation angle, TL is the Linke turbidity factor
for an air mass equal to 2, m is the optical air mass at sea level, and δRayleigh(m) is the
integrated Rayleigh optical thickness due to pure molecular scattering.

If the value of DNI calculated from equations 4–6 is above the hourly DNIlim value,
the DNI value is replaced by DNIlim and DHI values are recalculated to ensure diffuse and
direct components add up to the value of GHI.

3.4. Extraction of Reference Years from Long-Term Time-Series Data
3.4.1. Moisture Reference Year (MRY) for Hygrothermal Applications

When performing hygrothermal simulations, the wall assemblies are typically con-
ditioned over a typical climate year before they are tested against an extreme climate
year. A number of studies performed on Canadian cities have used this approach, and the
conditioning and extreme years were selected based on the value of the Moisture Index
(MI) [17,18,54–57]. The MI is referenced in the National Building Code of Canada [58] and
the Guideline on design for durability of building envelopes in Canada [59] as a climate-
based metric that permits conveying, for example, to building practitioners, the potential
for moisture damage in wall assemblies.

The MI is an indicator of the potential for moisture damage in wall assemblies when
exposed to an exterior climate [27]. The wetting and drying processes in a wall assembly,
as indicated through the MI, are accounted for by means of the Wetting Index (WI) and the
Drying Index (DI), respectively. The WI is defined as the average annual free wind-driven
rain calculated using Equation (8), normalized across all years.

f wdr(h) = wsp(h)× rain(h) (8)

The DI, representing the drying processes, is defined as a function of the difference
in the humidity levels between the saturation (wsat) and ambient air conditions (wamb) in
the outdoors. The drying capacity at each hour is calculated following equation 9 before
averaging to the annual time-scale, and normalizing across all years.

∆w(h) = wsat(h)− wamb(h) (9)

Finally, the MI is expressed as a combination of WI and DI as:

MI =
√

WI2 + (1 − DI)2 (10)

Following the previously mentioned work and recommendations, for the present
study, the median ranked year was selected in terms of MI as the conditioning year and the
10%-year (3rd year out of 31 years) as the extreme year for hygrothermal applications.

http://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor
http://www.soda-pro.com/help/general-knowledge/linke-turbidity-factor
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3.4.2. Typical Meteorological Year (TMY) for Building Energy Applications

For building energy applications, TMYs are prepared using the Sandia method [20] by
concatenating twelve typical meteorological months selected based on Finkelstein−Schafer
(FS) statistics. To calculate the FS statistic, daily values of climate parameters listed in Table 2
were compiled from the hourly time-series of global horizontal irradiance, temperature,
dew point temperature (estimated from relative humidity and temperature), and wind
speed. The climate parameters were attached with the relative weights provided in Table 2
following [20] to reflect the relative contribution of different climate variables in affecting
the energy performance of buildings, and combined to calculate the daily FS statistic.

Table 2. Relative weights assigned to climate parameters in the calculation of the FS statistic.

S.No. Climate Parameter Weight (%)

1 Maximum dry bulb temperature 5

2 Minimum dry bulb temperature 5

3 Mean dry bulb temperature 30

4 Maximum dew point temperature 2.5

5 Minimum dew point temperature 2.5

6 Mean dew point temperature 5

7 Maximum wind speed 5

8 Mean wind speed 5

9 Daily global solar irradiance 40

To prepare the TMY from daily FS statistic values, the cumulative distribution function
(CDF) of daily FS statistic values from all long-term data was compared with the FS statistic
CDF of each year and CanRCM4-LE run. The month with a CDF most closely matching
the CDF of all long-term data is selected as the typical meteorological month. The CDFs
are compared in terms of absolute mean difference in quantiles with 100 evenly spaced
probabilities between 0 and 1, similar to what is reported in [29]. This process is repeated
for all months from January to December to obtain the typical meteorological month for each
calendar month. Finally, all typical meteorological months are combined to obtain the TMY.

3.4.3. Temperature Reference Years (TRYs) to Capture Climate Uncertainty

The TRYs were selected following the method demonstrated in [13,29], where a “typi-
cal downscaled year (TDY)”, “extreme cold year (ECY)”, and “extreme warm year (EWY)”
were prepared by concatenating twelve typical, extreme cold, and extreme warm months,
respectively. The typical, extreme cold, and extreme warm months were identified by
following a procedure similar to that used in the preparation of TMY. For each month, the
CDF of air temperature was compared with the CDF from all long-term data. Again, the
difference in CDFs was calculated with the help of quantiles corresponding to 100 evenly
spaced probabilities between 0 and 1. The year and CanRCM4-LE run with the least abso-
lute difference from the CDF of data from all years was considered as the TDY. The ECY
was chosen as the year having the minimum real (not absolute) difference from the CDF of
data from all years, and the EWY is the year with the maximum real difference.

4. Results and Discussion
4.1. Efficiency of Bias-Correction

Use of the MBCn and QDM methods effectively reduces the bias associated with
CanRCM4-LE-simulated climate variables. This is shown by means of Figures 3 and 4, in
which the Probability Density Functions (PDFs) of observations (black), raw CanRCM4-
LE (blue), and bias-corrected CanRCM4-LE values (red) are shown, respectively, for the
Toronto International Airport and Whitehorse International Airport locations. The PDFs
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presented are for air temperature, wind speed, relative humidity, and total cloud-cover,
and were prepared for the time-period 1998–2017, over which observations as well as
CanRCM-LE projections were available. It can be seen that the distribution of climate
variables in bias-corrected CanRCM4-LE data is closer to the observations than the raw
CanRCM4-LE data.

The performance of bias-correction over all 564 locations is summarized in Figure 5,
where scatterplots of observations vs. raw (blue) and bias-corrected (red) climate model
data for all locations are shown. The climate indices presented are comprised of means and
extremes of the climate variables of interest and include mean GHI, mean TCC, annual
total rainfall, maximum rainfall, mean wind speed, maximum wind speed, mean relative
humidity, mean temperature, maximum temperature, minimum temperature, mean station
pressure, and mean annual number of snow days. The raw and bias-corrected CanRCM4-
LE values are mean values across the 15 realizations. The CanRCM4 model is found
to demonstrate acceptable proficiency in correcting all climate variables, with greater
proficiency demonstrated for TEMP, PRES, and GHI, than in correcting other variables such
as WSP, RAIN, SNOWC, and TCC. Between the means and extremes, higher proficiency is
demonstrated for means of variables (for example mean temperature) as compared to their
extremes (minimum and maximum temperature); nevertheless, a reasonable proficiency is
demonstrated in correcting both the means and the extremes. The mean bias associated
with raw and bias-corrected CanRCM4-LE simulations averaged over all 564 locations is
presented in Table 3 which, as was previously discussed, permits us to demonstrate that
the bias-correction effectively reduces bias associated with all climate variables.
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Table 3. Bias averaged across 564 locations in raw and bias-corrected CanRCM4-LE simulations.

Data Mean GHI
(kJ/m2)

Mean
TCC (%)

Annual
RAIN (mm)

Mean
WSP (m/s)

Mean
WDIR

(◦ from North)

Mean
RHUM (%)

Mean
TEMP (◦C)

Mean
PRES (Pa)

Mean
Annual

Snow Days

Raw 21 −2 312.1 1 25.5 8 1 −1107.7 −14

Bias-
corrected 2 1.4 3.1 0 0.9 −0.2 −0.2 −4.5 −7

As discussed earlier, multivariate bias-correction methods such as the MBCn reshuffle
values of climate variables, these having been corrected for marginal distributions, to
permit correcting the biases in inter-variable relationships. The value added by this step is
demonstrated in Figure 6, in which the Pearson correlation coefficient between different
climate variables from observations, raw, and bias-corrected CanRCM4-LE datasets is pre-
sented for the two representative locations: Toronto International Airport and Whitehorse
International Airport. A comparison of the correlation coefficients obtained for observations
with raw CanRCM4-LE simulation results shows several inconsistencies, such as higher
correlation magnitudes of atmospheric pressure and cloud-cover with other variables. Such
inconsistencies are reduced in the bias-corrected CanRCM4-LE results.
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4.2. Future Projected Changes in Climate

The bias-corrected CanRCM4-LE simulations were used to calculate future projected
changes in climate variables for different levels of global warming. The findings are
summarized in Table 4. The values presented are the mean values of the 15 ensemble
members of the CanRCM4-LE and provide maximum, minimum, and mean projected
changes across the 564 locations analyzed. The degree of projected future changes in climate
varies with the extent of global warming. In terms of the average across all locations, and
as a consequence of 0.5–3.5 ◦C of global warming, the expectation is for the GHI to decrease
by 1–10 kJ/m2, annual rainfall to increase by 13–73 mm, mean temperature to increase by
1–5 ◦C, atmospheric pressure to increase by 7–64 Pa, and the total number of days in a year
with snow to decrease by 2–22 days. In contrast, changes in mean TCC, WSP, RHUM, and
WDIR are found to be inconsequential as compared to other variables.

There is considerable variability in the projected changes, spatially, temporally, and
at a distribution level. Figure 7 shows the spatial variability in the projected changes for
temperature and rainfall. The top sub-figures show the historical average temperature and
average annual total rainfall for the 564 locations and the bottom sub-figures show the
projected future changes under 3.5 ◦C global warming. It can be noted that although the
locations in the north historically have the lowest temperatures, they are projected to have
the largest increases in temperature in the future, suggesting unprecedented impacts for
this region in the future. In respect to rainfall, the east and west coastal regions experience
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the highest rainfall historically. These regions are also projected to have the most increases
in rainfall (up to 360 mm) in the future as a consequence of global warming.

The projected changes also differ for different quantiles of the climate variables and
amongst the 15 CanRCM4-LE runs. To demonstrate this, the probability density func-
tion of air temperature at Toronto International Airport from 15 runs of bias-corrected
CanRCM4-LE simulations are shown in Figure 8 for the historical time-period (green)
and global warming scenarios of 2 (blue) and 3.5 ◦C (red). It can be seen that the future
projected increases in temperature are higher in the lower and upper quantiles (lowest and
highest temperatures, respectively) than the middle quantiles, suggesting larger increases
in temperature extremes than in the means. In addition, the internal variability in the
projected changes between the 15 CanRCM4-LE realizations is also evident.
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Table 4. Future projected changes in climate variables as a consequence of 0.5 to 3.5 ◦C of global
warming. The values presented are mean values obtained from the 15 CanRCM4-LE simulations.

GW
Level

Spatial
Statistic

Mean GHI
(kJ/m2)

Mean
TCC (%)

Annual
RAIN
(mm)

Mean
WSP (m/s)

Mean WDIR
(◦ from
north)

Mean
RHUM

(%)

Mean
TEMP

(◦C)

Mean
PRES
(Pa)

Mean
Annual

Snow Days

0.5

Min −9 −1 −3 0 −1 0 1 −34 −19

Mean −1 0 13 0 0 0 1 7 −2

Max 3 1 81 0 2 1 1 43 2

1.0

Min −16 −2 −4 0 −1 −1 1 −62 −41

Mean −2 0 22 0 0 0 1 15 −4

Max 5 1 134 0 2 1 3 86 5

1.5

Min −24 −3 −8 0 −2 −1 1 −83 −60

Mean −3 0 32 0 0 0 2 20 −6

Max 7 2 199 0 3 1 4 123 5

2.0

Min −33 −3 −4 0 −3 −1 2 −110 −76

Mean −5 0 42 0 −1 1 3 30 −9

Max 8 3 234 1 4 2 5 168 6

2.5

Min −40 −4 −2 0 −3 −1 2 −135 −85

Mean −6 0 51 0 −1 0 3 36 −11

Max 9 3 283 1 5 2 6 199 6

3.0

Min −45 −4 3 0 −4 −1 3 −168 −94

Mean −7 0 60 0 −1 1 4 48 −15

Max 11 4 316 1 6 3 7 247 7

3.5

Min −55 −5 5 0 −5 −2 4 −213 −105

Mean −10 0 73 0 −1 1 5 64 −22

Max 14 5 359 1 8 4 9 314 7
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4.3. Reference Year Data

In this study, a typical meteorological year (TMY) was prepared for use in building
energy applications based on FS statistic, in which temperature-based reference years
(i.e., typical downscaled year (TDY), extreme cold year (ECY), and extreme warm year
(EWY)) were prepared to capture the climate variability within the CanRCM4-LE. Figure 9
shows the cumulative distribution function of temperatures from 31 individual years
in the historical time-period in the 15 CanRCM4-LE runs (grey), along with the CDFs
of temperatures from the reference years: TDY (blue), ECY (green), and EWY (red) for
the Toronto Airport location. It is evident from the figure that the three reference years
collectively are able to capture the range of temperatures simulated in the full, bias-corrected
CanRCM4-LE dataset. It needs to be noted that the TDY and ECY temperatures are greater
and smaller, respectively, than the temperatures of all individual years of CanRCM4-LE
because they are synthetic years, i.e., prepared by concatenating 12 extreme months and
hence much more extreme than the individual real years. Nevertheless, Figure 9 shows
that the three reference years—TDY, ECY, and EWY—are able to capture the variability in
temperatures communicated by all CanRCM4-LE realizations.

The reference years TMY and TDY are able to capture the average climatic conditions
in the full, bias-corrected CanRCM4-LE dataset also in terms of climate variables beyond
temperature. This is clear from Figure 10, which shows the scatterplots of historical mean
values of climate variables from full, bias-corrected, ensemble-averaged CanRCM4-LE
on the x-axis and historical means of climate variables from TMY (blue) and TDY (red)
reference years on the y-axis for all 564 locations. The average climate conditions in terms
of mean DRI, DHI, DNI, GHI, TCC, annual RAIN, WSP, RHUM, TEMP, PRES, and SNOWC
are found to be well-captured by both the TMY and TDY reference year datasets.

The year that corresponds to the median MI value across all CanRCM4-LE runs was
selected as the conditioning year and the 10%-year was chosen as the extreme year for
building hygrothermal applications. The selected moisture reference years for the Toronto
International Airport location are shown in Figure 11 along with the MI values of individual
years of the bias-corrected CanRCM4-LE dataset.

Finally, summaries (means/totals) of climate variables from the full 31-year climate
time-series (Full) from all 15 CanRCM4-LE runs is presented along with the summaries
from the selected climate reference years in Table 5. It can be noted that the climate variable
summaries are similar in the Full, TMY, and TDY datasets, indicating that both TMY and
TDY provide good approximations of the average climate profile in the Full datasets. As
expected, the EWY is associated with higher values of GHI and TEMP, and lower values of
RHUM and SNOWC, whereas ECY is associated with lower values of GHI and TEMP, and
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higher values of RHUM and SNOWC as compared to the Full/TMY/TDY dataset. The
MRY-C reference years are associated with annual RAIN values close to the Full dataset,
whereas MRY-E years are associated with annual rainfall higher than in the Full and typical
reference year datasets.
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Table 5. Summary of climate variables in the full time-series of bias-corrected CanRCM4-LE (full),
and extracted typical meteorological year (TMY), typical downscaled year (TDY), extreme warm
year (EWY), extreme cold year (ECY), moisture reference year—conditioning (MRY-C), and moisture
reference year—extreme (MRY-E) for historical and future time-periods.

Time-
Period Data

Mean
GHI

(kJ/m2)

Mean
TCC
(%)

Annual
RAIN
(mm)

Mean
WSP
(m/s)

Mean WDIR
(◦ from
North)

Mean
RHUM

(%)

Mean
TEMP

(◦C)

Mean
PRES
(Pa)

Mean
Annual

Snow Days

Hist.

Full 496 70 478 4 183 75 2 97,299 136

TMY 495 70 484 4 183 75 2 97,289 135

TDY 496 69 493 4 183 75 2 97,281 138

EWY 531 65 398 4 177 70 9 97,381 91

ECY 479 74 449 4 185 78 −5 97,342 186

MRY-C 495 70 471 4 182 75 2 97,300 137

MRY-E 474 72 720 4 182 77 2 97,270 140

GW0.5

Full 496 70 491 4 182 75 3 97,306 134

TMY 494 70 495 4 184 75 3 97,298 134

TDY 496 69 503 4 182 75 3 97,299 135

EWY 531 65 398 4 177 70 9 97,381 92

ECY 477 74 477 4 184 78 −4 97,358 182

MRY-C 497 69 485 4 183 75 3 97,301 133

MRY-E 474 72 735 4 181 78 2 97,273 138
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Table 5. Cont.

Time-
Period Data

Mean
GHI

(kJ/m2)

Mean
TCC
(%)

Annual
RAIN
(mm)

Mean
WSP
(m/s)

Mean WDIR
(◦ from
North)

Mean
RHUM

(%)

Mean
TEMP

(◦C)

Mean
PRES
(Pa)

Mean
Annual

Snow Days

GW1.0

Full 495 70 501 4 183 75 4 97,314 132

TMY 493 70 504 4 183 75 4 97,307 133

TDY 494 70 501 4 183 75 4 97,307 133

EWY 530 65 410 4 177 70 10 97,383 92

ECY 475 74 481 4 184 78 −3 97,381 178

MRY-C 494 70 497 4 182 75 4 97,315 132

MRY-E 470 73 754 4 181 78 3 97,289 135

GW1.5

Full 493 70 510 4 182 75 5 97,319 130

TMY 492 70 514 4 183 76 5 97,315 129

TDY 493 70 511 4 183 76 5 97,311 130

EWY 528 65 414 4 177 71 11 97,366 93

ECY 474 73 510 4 184 78 −2 97,407 175

MRY-C 492 70 503 4 182 76 5 97,319 129

MRY-E 469 73 759 4 181 78 4 97,298 132

GW2.0

Full 492 70 520 4 182 76 5 97,328 127

TMY 490 70 521 4 182 76 5 97,328 127

TDY 492 70 524 4 182 76 5 97,322 128

EWY 527 66 413 4 177 71 11 97,346 92

ECY 473 73 522 4 184 77 −1 97,379 172

MRY-C 492 70 513 4 182 76 5 97,334 127

MRY-E 467 73 771 4 181 78 4 97,313 131

GW2.5

Full 491 70 529 4 182 76 6 97,335 124

TMY 489 70 532 4 183 76 6 97,328 124

TDY 490 70 541 4 182 76 6 97,329 124

EWY 526 66 420 4 176 70 12 97,342 88

ECY 464 74 542 4 182 78 −1 97,391 170

MRY-C 491 70 520 4 182 76 6 97,334 126

MRY-E 468 72 796 4 181 78 5 97,318 128

GW3.0

Full 489 70 539 4 182 76 7 97,347 121

TMY 488 70 535 4 182 76 7 97,339 122

TDY 489 70 541 4 182 76 7 97,345 121

EWY 527 66 424 4 176 71 12 97,362 85

ECY 465 74 546 4 184 78 0 97,405 165

MRY-C 489 70 525 4 182 76 7 97,350 121

MRY-E 466 72 813 4 180 79 6 97,328 124

GW3.5

Full 487 70 551 4 182 76 8 97,362 114

TMY 485 70 542 4 182 76 8 97,356 115

TDY 487 70 559 4 182 76 8 97,364 115

EWY 528 66 425 4 178 71 13 97,386 75

ECY 466 72 550 4 184 78 1 97,440 160

MRY-C 487 70 546 4 182 76 8 97,363 115

MRY-E 462 73 832 4 180 79 7 97,340 116
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5. Conclusions

In this paper, historical and future projected building simulation reference year climate
files are described as prepared for 564 locations in Canada. The files contain climate data
in hourly time-steps for the historical time-period of 1991–2021, and future time-periods
corresponding to 0.5 ◦C, 1 ◦C, 1.5 ◦C, 2 ◦C, 2.5 ◦C, 3 ◦C, and 3.5 ◦C increases in globally
averaged temperatures from the historical time-period. Data for the following climate
variables are given: global horizontal irradiance (GHI), direct normal irradiance (DNI),
diffused horizontal irradiance (DHI), total cloud cover (TCC), rainfall (RAIN), wind speed
(WSP), wind direction (WDIR), relative humidity (RHUM), temperature (TEMP), pressure
(PRES), and snow-cover flag (SNOWC). These variables are sufficient for undertaking
hydrothermal and whole building simulations. The climate files are based on climate
simulations from a large (15 members) ensemble of Canadian Regional Climate Model
version 4 (CanRCM4-LE), which has extensively been used to integrate climate resiliency
in building design codes and standards in Canada [60].

The methodology followed to prepare the datasets is comprised of four steps. First,
a database of observations and climate model simulations is prepared. The observations
are primarily taken from the 2020 CWEEDS database, with additional variables such as
rainfall, snow-depth, and total cloud-cover taken from ECCC’s historical climate database.
Second, the climate model simulations are bias-corrected with reference to observations
using a combination of Quantile Delta Mapping (QDM) and N-dimensional probability
density function transform (MBCn) methods. Third, the direct and diffuse components of
global solar radiation are estimated using the approach of [49] with Linke-turbidity-based
limits for Direct Normal Irradiance, following the approach adopted by the International
Energy Agency Annex 80 [50]. Fourth, the full 31-year time-series is used to extract ref-
erence years using established methods. Three different types of reference years were
prepared: (i) Typical Meteorological Year (TMY) following the Sandia method [18] for
building energy applications; (ii) Temperature reference years: Typical Downscaled Year
(TDY), Extreme Cold Year (ECY), and Extreme Warm Year (EWY) following [13,29] to
capture the variability within the ensemble of climate model simulations; and (iii) Condi-
tioning and extreme Moisture Reference Years (MRYs) based on the Moisture Index [27] for
hygrothermal applications.

The results from the validation of the generated data indicate that the QDM and MBCn
bias-correction methods effectively reduce the bias associated with the raw CanRCM4-
LE simulations. In terms of mean bias, averaged across all 564 locations, the bias is
reduced in GHI from 21 to 2 kJ/m2, in TCC from −2 to 1.4%, in annual total rainfall from
312.1 to 3.1 mm, in wind speed from 1 to ~0 m/s, in wind direction from 25.5 to 0.9 degrees,
in relative humidity from 8 to −0.2%, in temperature from 1 to −0.2 ◦C, in pressure from
−1107.7 to −4.5 Pa, and in annual number of snow days from −14 to −7 days. Beyond
the means, the bias-correction methods also effectively eliminate bias associated with the
entire distribution of climate variables as well as the inter-dependency structure between
the climate variables. As a consequence of global warming ranging from 0.5 to 3.5 ◦C,
it is expected that the GHI will decrease by 1–10 kJ/m2, annual rainfall will increase by
13–73 mm, mean temperature will increase by 1–5 ◦C, atmospheric pressure will increase
by 7–64 Pa, and the total number of days in a year with snow will decrease by 2–22 days on
average across all locations.

The climate files prepared in this work are based on the hourly CanRCM4 large
ensemble, and can be further expanded to account for climate simulations from other
state-of-the-art regional or global climate projections. However, climate projections for a
wide variety of climate variables needed for hygrothermal and whole building simulations
are not abundantly available on fine temporal scales (hourly or more frequent), which limits
the ability to include projections from more climate models in the preparation of future
building simulation files. One way to overcome this limitation is to temporally disaggregate
more abundantly available daily climate model simulations to prepare larger ensembles
of hourly or sub-hourly climate projections and use them in the preparation of building
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simulation files. This is the intended future direction of this work. Nevertheless, the
building simulation reference year files prepared in this study utilize widely used models
and methods, and will provide building practitioners in Canada with useful information
for evaluating the performance of buildings under current and future climates.
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