

NRC Publications Archive Archives des publications du CNRC

Description of Seakeeping Experiments Carried Out on CCGA Roberts Sisters II Model IOT761

Akinturk, A.; Cumming, D.; Oates, C.; Bass, D.; Millan, J.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.4224/18227295 Technical Report, 2009-01-01

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=50e131d6-6cb1-4b9f-a41a-0129b71b7dd5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=50e131d6-6cb1-4b9f-a41a-0129b71b7dd5

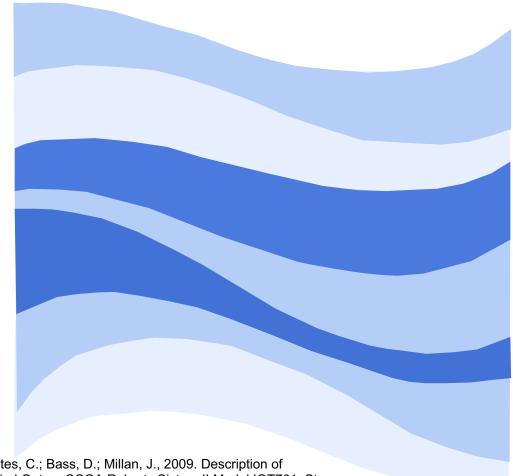
Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

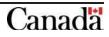
Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

National Research Council Canada


Institute for Ocean Technology Conseil national de recherches Canada Institut des technologies océaniques

TR-2009-24


Technical Report

Description of Seakeeping Experiments Carried Out on CCGA Roberts Sisters II Model IOT761.

Akinturk, A.; Cumming, D.; Oates, C.; Bass, D.; Millan, J.

Akinturk, A.; Cumming, D.; Oates, C.; Bass, D.; Millan, J., 2009. Description of Seakeeping Experiments Carried Out on CCGA Roberts Sisters II Model IOT761. St. John's, NL : NRC Institute for Ocean Technology. Technical Report, TR-2009-24.

DOCUMENTATION PAGE

REPORT NUMBER	NRC REPORT NUMBER	DATE		
TR-2009-24		May 2010		
REPORT SECURITY CLASSIFICATION		DISTRIBUTION		
TT 1 101 1	TT 11 1. 1			
Unclassified TITLE		Unlimited		
TILL				
	F SEAKEEPING TESTS CAP		ON CCC	GA
	BERTS SISTERS II MODEL	IOT761		
AUTHOR(S)				
A. Akinturk, D. Cumming, C. (Dates, D. Bass, J. Millan			
CORPORATE AUTHOR(S)/PERFO	RMING AGENCY(S)			
Institute for Ocean Technology	, National Research Council, St. Jo	ohn's NI		
PUBLICATION	, maionar Research Council, St. J	5, 1 1		
N/A SPONSORING AGENCY(S)				
STORUSORING AGENCET(S)				
IOT, SafetyNet				
IOT PROJECT NUMBER 42_2374_10		NRC FILE NU	JMBER	
KEY WORDS		PAGES	FIGS.	TABLES
Fishing Vessel, Seakeeping, Motion Induced Interruptions		ix, 26 App A-J	56	17
SUMMARY		rr		
This report describes a set of seakeeping experiments carried out during the summer and into the fall of 2009 as part of the Fishing Vessel Safety Project on a 1:10.67 scale model of the 65 ft (19.81 m) long fishing vessel CCGA Roberts Sisters II, designated IOT761, in the Institute for Ocean Technology (IOT) Offshore Engineering Basin (OEB). The data from these tests was used to correlate with the full-scale data acquired during sea trials carried out off St. John's, NL November 15, 2004. The objective of the experiments was to acquire quality model scale seakeeping data to correlate with full-scale data, as well as to validate numerical prediction software under development at Memorial University of Newfoundland (MUN).				
This document describes the model fabrication, instrumentation, data analysis procedure, provides the results of the sea trial /physical model/numerical model correlation exercise and recommendations to improve the overall correlation in future.				
Arctic Avenue St. John's, NL	ean Technology , P. O. Box 12093			

National Research Council Canada

Institute for Ocean Technology Conseil National de Recherches Canada

Institut des Technologies Océaniques

DESCRIPTION OF SEAKEEPING TESTS CARRIED OUT ON CCGA ROBERTS SISTERS II MODEL IOT761

TR-2009-24

A. Akinturk, D. Cumming, C. Oates, D. Bass, J. Millan

May 2010

TABLE OF CONTENTS

List of Tablesii
List of Figuresiii
List of Abbreviationsiv
1.0 INTRODUCTION
2.0 BACKGROUND 1
3.0 DESCRIPTION OF THE IOT OFFSHORE ENGINEERING BASIN
4.0 DESCRIPTION OF PHYSICAL MODEL IOT761
5.0 DESCRIPTION OF NUMERICAL PREDICTION PROGRAM 'MOTSIM'
6.0 DESCRIPTION OF INSTRUMENTATION
7.0 DESCRIPTION OF THE EXPERIMENTAL SETUP
8.0 DESCRIPTION OF SEAKEEPING TEST PROGRAM
9.0 DATA ANALYSIS
9.1 Online Data Analysis
9.2 Offline Data Analysis
9.3 ROLL AND PITCH DECAY ANALYSIS
9.4 INVESTIGATION OF AUTOPILOT PERFORMANCE
9.5 SEAKEEPING DATA VERIFICATION PROCESS
10.0 COMPARISON OF FULL SCALE, PHYSICAL MODEL AND NUMERICAL
MODEL DATA
11.0 DISCUSSION & RECOMMENDATIONS
12.0 ACKNOWLEDGEMENTS
13.0 REFERENCES
APPENDIX A: Hydrostatics for Ship & Physical Model
APPENDIX B: Model Swing & Inclining Results
APPENDIX C: Instrumentation Calibration Results
APPENDIX D: Wave Matching Results – Regular & Irregular Waves
APPENDIX E: Model Launch Positions
APPENDIX E. Model Lauren Positions APPENDIX F: Run Log/Video Log
APPENDIX F. Run Log/ video Log APPENDIX G: Example Online Analysis Data Product
1 2
APPENDIX H: Example Time Series Plots APPENDIX I: Example Time Series Plots Comparing Motions From Different Sensors
1 1 0
APPENDIX J: Example Time Series Plots Comparing Filtered/Unfiltered Data
DVD to be included with this report:
DECAY.DIR – all pitch & roll decay results

REG_STAT.XLS – file with regular wave statistics & plots.

IRREG_STAT.XLS – file with irregular wave statistics & plots.

TR-2009-24.PDF – includes test report, figures, tables, appendices.

PHOTOS.DIR – directory of model photos.

LIST OF TABLES

Table

List of Signals Measured1
Regular Wave Details – Beam Seas Runs2
Regular Wave Details – Quartering Seas Runs
Typical Regular Wave Basic Statistics File (CASE5_4)4
Typical Irregular Wave Basic Statistics File (Quartering Seas, Trawl Speed)5
Summary Tables of Regular Wave Standard Deviation Basic Statistics
Summary Tables of Irregular Wave Standard Deviation Basic Statistics7
Summary of Roll/Pitch Decay Results
Comparison of Motions by Different Sensors9
Comparison of MotionPak II & Bow Tri-Axial Accelerations10
Data Repeatability Analysis Results11
Comparison of Full Scale Trials, Numerical Model and Physical Model Data12 - 17

LIST OF FIGURES

Figure

Body Plan, Profile & Plan Drawings of CCGA Roberts Sisters II Model IOT7611
Photographs of Completed Hull for Model IOT7612
Sketch CCGA Roberts Sisters II Model Anti-Roll Tank Design
Photograph of Model IOT761 Propeller/Rudder Arrangement4
Photograph of CCGA Roberts Sisters II - Propeller/Rudder Arrangement5
Photograph of Model IOT761 Instrumentation & Battery Layout
Photograph of Model IOT761 in Cradle with Lifting Chains Attached7
Sketch of Offshore Engineering Basin Layout8
Target Irregular Wave Spectral Density and Direction Data
Photographs of Model Launching Arrangement10 - 12
Photographs of Model IOT761 in OEB During Testing
Example Time Series Plot of Heave Acceleration With/Without Band Pass Filtering16
Plots of Regular Wave Accelerations/Angles vs. Average Wave Period17-26
Plots of Regular Wave Roll Angle vs. Encounter Wave Freq. With/Without ART27 – 30
Plots of Irregular Wave Accelerations/Angles vs. Heading With Respect to Nominal Wave Direction
Plot of Irregular Wave Roll Angle vs. Heading With Respect to Nominal Wave Direction With/Without ART Filled
Typical Pitch Decay Run Results
Typical Zero Speed Roll Decay Run Results
Typical Roll Decay Results – 8 Knots With ART Filled
Investigation of Autopilot Performance
Plots of MOTSIM, Sea Trial, Model Test Data Comparisons

LIST OF ABBREVIATIONS

Accel.	acceleration(s)
AP	aft perpendicular
ART	anti-roll tank
ARTB	anti-roll tank with baffles in place
В	beam, breadth
CD	compact disc
CCGA	Canadian Coast Guard Auxiliary
CCGS	Canadian Coast Guard Ship
CG	center of gravity
cm	centimetre(s)
COG	course over ground
DAS	data acquisition system
DC	direct current
deg.	degree(s)
DOF	degree(s) of freedom
DV	digital video
FFT	Fast Fourier Transform
ft.	feet, foot
FS	full scale
FW	fresh water
g, G	acceleration due to gravity
GDAC	General Data Acquisition and Control

LIST OF ABBREVIATIONS (cont'd.)

GEDAP	General Data Analysis Package
h	water depth
H _{m0}	significant wave height (based on zeroth moment for a narrow banded spectrum)
Ht.	height
H _S	significant wave height (based on zero crossing period)
hw	wave height
Hz	Hertz
IMU	Inertial Measurement Unit
ΙΟΤ	Institute for Ocean Technology
kg	kilogram(s)
kts.	knots
L	length
LCB	longitudinal center of buoyancy
LCF	longitudinal center of floatation
Lm	model length (LWL)
Lw	wave length
LWL	length water line
m	metre(s)
MII	Motion Induced Interruptions
mm	millimetre(s)
MP	MotionPak
MS	model scale

LIST OF ABBREVIATIONS (cont'd.)

MUN	Memorial University of Newfoundland
NRC	National Research Council
OEB	Offshore Engineering Basin
OMAE	Offshore Mechanics and Arctic Engineering
rad.	radian(s)
RMS	Root Mean Square
rps	revolutions per second
s, sec.	second(s)
SAR	Search And Rescue
S(f)	energy spectrum (function of frequency)
SNAME	Society of Naval Architects and Marine Engineers
SOG	Speed Over Ground
STBD.	starboard
StDev., S.D.	standard deviation
SW	salt water
t	tonne(s), time
Т	draft
T1,T2	start/end time
T _{pd}	period of spectral peak calculated by the 'Delft Method'
T _E	wave encounter period
Tz	zero crossing period
W	circular frequency

LIST OF ABBREVIATIONS (cont'd.)

we	encounter wave frequency
wn	nondimensional wave frequency
ZCA	zero crossing analysis

DESCRIPTION OF SEAKEEPING EXPERIMENTS CARRIED OUT ON CCGA ROBERTS SISTERS II MODEL IOT761

1.0 INTRODUCTION

This report describes a set of seakeeping experiments carried out during the summer and into the fall of 2009 as part of the Fishing Vessel Safety Project on a 1:10.67 scale model of the 65 ft (19.81 m) long fishing vessel CCGA Roberts Sisters II, designated IOT761, in the Institute for Ocean Technology (IOT) Offshore Engineering Basin (OEB). The data from these tests was used to correlate with the full-scale data acquired during sea trials carried out off St. John's, NL November 15, 2004 - described in Reference 1. The objective of the experiments was to acquire quality model scale seakeeping data to correlate with full-scale data, as well as to validate numerical prediction software under development at Memorial University of Newfoundland (MUN).

This document describes the model fabrication, instrumentation, data analysis procedure, provides the results of the sea trial /physical model/numerical model correlation exercise and recommendations to improve the overall correlation in future.

2.0 BACKGROUND

The Fishing Vessel Safety Project is just a small component of the overall SafetyNet initiative to understand and mitigate the health and safety risks associated with employment in a marine environment. SafetyNet is the first federally funded research program investigating occupational health and safety in historically high risk Atlantic Canada marine, coastal and offshore industries. The Fishing Vessel Safety Project is conducting research on the occupational health and safety of seafood harvesters. Fishing is the most dangerous occupation in Newfoundland and Labrador and is increasingly so: over the past ten years, the rates of reported injuries and fatalities nearly doubled. These trends have the effect of reducing the sustainability of the fishery, increasing health care and compensation costs, and straining the available SAR resources. The development of effective solutions, to prevent or mitigate injury, fatality or SAR events, has been seriously hindered by the scarcity of the research needed to understand the factors that influence seafood harvester occupational health and safety.

The Fishing Vessel Safety Project is a multi-disciplinary, inter-departmental and intersectorial research project. The broad-based and multi-factorial approach in investigating the inter-related factors that influence fishing safety including: fishery policy and vessel regulations, vessel safety design and modeling, human relationships on vessels and health and safety program development, implementation and evaluation. The Fishing Vessel Safety Project is composed of six integrated components:

- 1) Longitudinal Analysis: A statistical analysis of all fishing injuries, fatalities and SAR incidents from 1989 to 2000 to determine trends and influencing factors of seafood harvester occupational health and safety;
- 2) Perceptions of Risk: An interview-based study, conducted with seafood harvesters, on the perceptions of causes of accidents and near-misses and the effectiveness of existing accident prevention programs;
- Motion Induced Interruptions (MII's): Sea trials, physical and numerical modeling of the effects of MIIs, sudden vessel motions induced by wave action, on crew accidents and development of criteria to reduce MIIs;
- 4) Delayed Return to Work: an interview-based study on the psychological and social factors that delay previously injured seafood harvesters from returning to work;
- 5) Education Program: The development of an interactive, community-based occupational safety education program for seafood harvesters; and
- 6) Comparative Analysis: A comparative analysis of accident and fatality rates, and regulatory regimes for fisheries management and fishing vessel safety in Canada, the United States, Iceland, Norway, Denmark, France and Australia.

Several of the project components will yield results that can be directly used by stakeholder organizations for designing and implementing injury and fatality prevention programs. The applied nature of the overall project will be represented by a series of recommendations that will provide accessible and applicable information needed to make informed decisions. Additional information on SafetyNet may be found by visiting their web site (Reference 2).

The effort described in this report is part of Component #3 of the overall Fishing Vessel Research Project. Seakeeping trials on a total of five Newfoundland based fishing vessels ranging in lengths from 35 ft. to 75 ft. (10.67 m to 22.86 m) were completed in 2003/4 (References 1, 3 to 6). Data was acquired on some of the vessels with and without roll damping devices deployed. Standard seakeeping parameters such as ship motions, speed, rudder angle, and heading angle were recorded along with data on the ambient environmental conditions (wave height/direction, wind speed/direction). Free-running physical model experiments on the 35 ft. CCGA Atlantic Swell were carried out early in 2005 (Reference 7) as well as on the 65 ft. CCGA Miss Jacqueline IV in late 2006 (Reference 8). Project participants at the MUN Faculty of Engineering will derive numerical models of all five hull forms and run simulations using their non-linear time domain ship motion prediction codes. Validated simulation tools will then be used to predict the expected level of MIIs for different fishing vessel designs.

Additional information on human factors in ship design is provided in References 9 to 12.

3.0 DESCRIPTION OF THE IOT OFFSHORE ENGINEERING BASIN

The IOT Offshore Engineering Basin (OEB) has a working area of 26 m by 65.8 m with a depth that can be varied from 0.1 m to 2.8 m. Waves are generated using 168 individually computer controlled, hydraulically activated, wet back wavemaker segments fitted around the perimeter of the tank in an 'L' configuration. Each segment can be operated in one of three modes of articulation: flapper mode (\pm 15°), piston mode (\pm 400 mm), or a combination of both modes. The wavemakers are capable of generating both regular and irregular waves up to 0.5 m significant wave height. Passive wave absorbers are fitted around the other two sides of the tank. The facility has a recirculating water system based current generation capability with current speed dependent on water depth. The facility also has extensive video coverage and is serviced over its entire working area by a 5 tonne lift capacity crane. Additional information on the OEB can be found in Reference 13.

4.0 DESCRIPTION OF PHYSICAL MODEL IOT761

Model IOT761 is a 1:10.67 scale representation of the CCGA Roberts Sisters II fishing vessel and was fabricated of wood and glass conforming to surfaces generated from 2-D lines/table of offsets constructed according to IOT standard construction procedures described in Reference 14. The hull was made using a Styrofoam[™] HI 60 polystyrene foam core with a ³/₄" plywood floor and Renshape[™] was used in areas requiring local reinforcement. IOT's Liné milling machine was used to machine the general geometry of the hull which was then covered with 10 ounce cloth and resin, primed, sanded and painted with three coats of Imron[™] Polyurethane 1300U Enamel high gloss yellow paint. A simple superstructure simulating the wheelhouse was included forward.

Model IOT761 was outfitted with six Renshape[™] reference blocks located on the gunwales and stern - milled flat to a specified level above the baseline. The hull was reinforced with RENSHAPE[™] blocks to provide a secure base for two ³/₄ inch in diameter 8 inch long (1.905 cm * 20.32 cm) aluminium model launching pins fitted on the sides of the hull forward of Station 5 and well above the waterline. These pins were designed to interface with the model launch system used to restrain the model in waves just prior to each run. A stern eyebolt, anchored to a RENSHAPE[™] block, was fitted on the model longitudinal centerline just above the waterline to accommodate a tag line that provided a method to arrest and retrieve the model at the end of each run. Body plan, profile and plan view drawings are provided in Figure 1. Hydrostatics for the ship and physical model are included in Appendix A. Photographs of the completed hull are given in Figure 2.

Since the model was relatively small, very little additional weight was needed to ballast it to the desired draft and trim. The placement of instrumentation (especially batteries) and extra weights was crucial to matching the hydrostatics. A swing test was done, where the nominal locations of the ballast and instrumentation were determined. The model swing results are provided in Appendix B. The model was placed in the small trim tank to set the condition, static and dynamic stability properties - including draft, trim, transverse

metacentric height and mass moments of inertia. The results of the inclining experiment are also provided in Appendix B.

Aft of the superstructure, a rectangular passive anti-roll tank (ART) with internal baffles was included with inlet port at the top for convenient filling using 2.88 kg of fresh water dyed blue for enhanced visibility on video and drain plug on one end near the bottom. The period of this tank was matched to the natural roll period of the model as per parameters outlined in Reference 15. A sketch of the model ART is furnished in Figure 3. A plywood plate was fitted over the main deck aft of the ART as a precautionary measure to prevent the electronics from being damaged in the event of water splashing over the deck.

The model was outfit with a propeller shaft and a brass four bladed, right hand stock propeller (propeller 104R, see Figure 4), driven by a Model 1580DC Aerotech brush type rotary DC servo motor. No bilge keels are included in the design. A simple flat plate rudder (Figure 4) was suspended from the hull aft of the propeller. A fixed nozzle encompassing the propeller on the ship and sole piece carried aft to form the lower gudgeon supporting the lower rudder bearing were omitted from the model (Figure 5). Other outfit components included a motor controller; radio control/telemetry electronics, autopilot electronics, model motions measurement instrumentation, cabling and several batteries of different sizes packed in a confined space (Figure 6).

Incorporating an autopilot into the design was desirable to eliminate the heading control variability inherent in using a human operator. In addition, having defined consistent autopilot gain factors incorporated into the numerical model under development by MUN enhances and facilitates the simulation effort. For the 'Roberts Sisters II' model, an integrated yaw rate signal was derived from an onboard strapdown inertial measurement unit (IMU) to provide a heading angle feedback signal considered stable enough during the relatively short (< 60 s) runs. As with any closed-loop control signal, the autopilot used the difference between the heading reference signal and the desired heading (the setpoint) to control the rudder angle to mitigate the observed heading difference. Physically, the autopilot control software executes on the shore computer: the IMU feedback signal is telemetered from the model to the shore by radio communications and the rudder command was sent from the autopilot computer back to the model. The autopilot reads the feedback signal, computes a new rudder command and transmits it to the model at a rate of 20 Hz.

An important design consideration was minimizing the influence of the autopilot system on model roll motion by incorporating a Kalman filter-based notch filter programmed to prevent autopilot induced rudder activity at the model natural roll frequency. The procedure adopted for tuning the autopilot for consistent dynamic behaviour was to first categorize the steering attributes of the model for each nominal forward speed as a first order Nomoto equation (identified by system identification techniques from standard zig zag tests performed in calm water in the OEB). The system gain was then computed for each forward speed in order to produce the identical closed-loop steering characteristics, thus ensuring consistent model steering for the entire test program (see table below).

Using these gains, the resulting closed-loop autopilot control bandwidth was 0.544 rad./s				
and the damping was 0.707. The detailed design of the autopilot system is described in				
Reference 16.				

Forward Speed	Forward Speed	Nomoto K	Nomoto T	Proportional	Differential
(m/s MS)	(knots FS)	Parameter	Parameter	Gain	Gain
0.617	3.92	0.42	2.00	1.2	1.0
1.210	7.68	0.095	1.84	0.48	0.31

A wooden cradle was fabricated to accommodate the model during transit and was fixed to a metal platform to facilitate launching and recovery of the model in the OEB. Four lengths of chain were attached from the base of the platform to the main OEB overhead crane to support the model during launch and recovery (Figure 7). In order to charge the batteries, the model was removed from the OEB after testing at the end of the day and hooked up to a charging facility along side the tank.

5.0 DESCRIPTION OF NUMERICAL PREDICTION PROGRAM 'MOTSIM'

To address some of the deficiencies inherent in standard two dimensional strip theory ship motion prediction programs, researchers from MUN and IOT developed a non-linear time domain code called MOTSIM that simulates six degrees of freedom motion (described in Reference 17). The geometry is defined in terms of a series of sections each described by a set of panels – the more panels, the longer the computation time. At each time step, the code determines the intersection of these panels with the waterline and redefines the paneling describing the ship's waterline. The pressure forces associated with the incident waves are then numerically integrated over the surface, using second order Gaussian Quadrature. The waves are taken as second order Stokes waves. The normal velocity distribution associated with the velocity of the vessel and the incident wave particle velocities is averaged over each panel. A least square fitting of this distribution based on the wetted panels belonging to a particular section is then made such that a unique decomposition of the modal velocities (surge, sway, heave and roll) is obtained that most closely satisfies the body boundary condition on the section. The use of wetted surface to determine modal velocities serves as an approximation to a nonlinear body boundary condition. The code permits more general decompositions of the velocity distribution to be made using a higher number of standard or non-standard modes. From this decomposition, the scattering forces and moments are determined for each section based on pre-calculated memory functions. The memory functions for each section are derived using added mass and damping coefficients from zero speed linear theory over a truncated semi-infinite frequency range. Their use allows for arbitrary frequency content in the scattering forces and moments. The added mass and damping coefficients can be either two or three dimensional. Corrections are made for forward speed. Viscous effects associated with roll damping and manoeuvring are determined using semi-empirical formulae or experimentally determined coefficients. The total forces are then used in the non-linear equations of motions to determine the motions of the vessel.

The principle characteristics of this computational intensive software are:

- non-linear Froude-Krylov forces based on the calculated wetted surface of the hull at each time step; and
- radiation and diffraction forces are determined as a single set of scattering forces (based on relative motions) and obtained from memory functions, which are evaluated based on linear theory using a three dimensional panel code.

Thus MOTSIM is considered to be based on a hybrid theory with nonlinear Froude-Krylov terms, but with quasi non-linear three dimensional hydrodynamic terms. Higher amplitude waves can be accommodated and since three dimensional coefficients are calculated, the motions of lower L/B ratio hull forms can be computed with complex end effects included. Over the last several years, MOTSIM has been validated against a number of full scale and model scale data sets, and improvements such as a manoeuvring prediction capability as well as a capability to predict Motion Induced Interruptions (MIIs) have been added. The sea trials on the small fishing vessels involved in this project provided an invaluable opportunity to evaluate the algorithm using a small vessel in a complex multi-directional seaway. Preliminary validation of MOTSIM for predicting full scale motions is provided in Reference 18.

6.0 DESCRIPTION OF INSTRUMENTATION

This section describes the data acquisition, instrumentation and calibration methodology used for each parameter measured:

Several independent systems were used to measure the model motions – a MotionPak II, ADIS motion measurement system, tri-axial accelerometer installation and the QUALISYS system. As these systems are based on different measurement principles, more confidence can be placed in the systems if they achieve similar results.

1) <u>BEI Systron Donner Inertial Division MotionPak II</u>: The MotionPak II is a solid state, six degree of freedom, inertial sensing system used to measure angular rates and linear accelerations. Three orthogonally mounted GyroChip quartz rate gyroscopes are used to measure the three angular velocities: roll, pitch and yaw. Three orthogonally mounted silicon accelerometers measure the three linear accelerations: heave, sway and surge. These accelerations are measured in g's where one $g = 9.808 \text{ m/s}^2$. Additional information on the MotionPak II is available in Reference 19.

Both the angular velocities and linear accelerations were manually calibrated. Angular velocities were calibrated using the turntable that could be rotated at specified angular rates. Accelerations were calibrated in terms of g's, where the maximum measured value is 1 g (9.808 m/s²). The MotionPak II was placed at different angles such that each individual accelerometer was vertical (positive +1g), vertical (negative -1g) and horizontal (zero g).

MotionPak II was located nominally: 0.8269 m forward of center of gravity full scale 0.2316 m to starboard of center of gravity full scale 1.4557 m above center of gravity full scale

- 2) <u>Analog Devices, Inc. Model ADIS16405</u>: Motion measurement package that incorporates a tri-axial digital gyroscope angular rate sensor, tri-axial digital linear acceleration sensor as well as built-in signal conditioning, calibration and power management electronics. Factory calibration values were used to calibrate all sensor outputs. Additional Information on the ADIS16405 motions package is provided in Reference 20.
- 3) <u>QUALISYS</u>: Several infrared emitting bulbs were strategically placed on the model such that the QUALISYS cameras fitted at the east end of the OEB could track its 3D position. The QUALISYS system was used to determine six motions: orthogonal linear displacements (X, Y, Z) in the tank co-ordinate system translated to an origin at the model's center of gravity, the heading angle, and the pitch and roll angle in a body co-ordinate system. X and Y were used to determine model speed. Calibrated during a dedicated exercise when the QUALISYS system was surveyed in. Occasionally it was necessary to move the markers on the model to acquire acceptable data as the model launch position was relocated in the OEB. Additional information on the QUALISYS system is furnished in Reference 21.
- 4) Bow Accelerometers: Three orthogonally mounted linear accelerometers were installed well forward of the MotionPak II to measure accelerations solely to provide verification of the MotionPak II analysis algorithm. The sensors were calibrated using the same procedure as was used to calibrate the accelerometers in the MotionPak II.

The bow accelerometers are located nominally from position of MotionPak II: 3.945 m forward (full scale) 0.88 m to starboard (full scale) 2.659 m above (full scale)

<u>Rudder Angle:</u> Rudder angle was measured by installing a rotational potentiometer on the pivot point of the rudder. This parameter was calibrated relative to a protractor fitted adjacent to the linkage. No effort was made to duplicate the ship's rudder slew rate model scale because the slowest rudder rate available on the rudder servo was still much faster than the target value.

<u>Propeller Shaft Rotation</u>: The shaft rotation was measured using a tachometer integral with the propulsion motor. The tachometer provided an analog signal linearly proportional to shaft speed and was calibrated using a laser tachometer aimed at a piece of reflective tape on the shaft.

<u>Wave Elevation</u>: Wave elevation was measured using four capacitance wave probes located at different positions in the OEB. Wave matching was conducted using a separate wave probe nominally located at the OEB's test center – an arbitrary central point in the OEB.

The locations of the four wave probes used during experimentation plus the wave probe installed during wave matching are listed as follows:

WAVE PROBE	X (m)	Y (m)
South West (Upstream) Probe	15.49	4.77
South East (Downstream) Probe	44.06	4.72
North Beam Probe	30.02	22.69
Calibration Probe	29.65	13.42
South Beam Probe	29.73	4.78

NOTE: the origin (0,0) is the South West corner of the tank.

The wave probes were calibrated using the OEB wave probe calibration facility. A sketch of the OEB layout for these experiments is provided in Figure 8.

<u>Data Acquisition</u>: All analog data was low pass filtered at 10 Hz, amplified as required, and digitized at 50 Hz. All data acquired from the model was conditioned on the model before transfer to onshore data acquisition computer through radio telemetry. The wave and QUALISYS data were conditioned/digitized using a NEFF signal conditioner, transferred to the data acquisition system via cable and stored in parallel with the model data. Synchronization between the NEFF data and telemetry is nominally within 0.2 s.

In addition, an RMS error channel was set up to monitor QUALISYS signal integrity and two signals were acquired to monitor wave board activity. A list of signals acquired is provided in Table 1 while the calibration sheets for each signal (excluding the ADIS motion package which was calibrated using factory calibration factors) are given in Appendix C.

7.0 DESCRIPTION OF THE EXPERIMENTAL SETUP

The OEB was configured for these seakeeping experiments as follows.

Water Depth: The water depth was set at 2.8 meters for the seakeeping experiments.

<u>Blanking Walls</u>: The OEB's blanking walls, that cover the beaches on the north side, were removed for all seakeeping experiments.

<u>Segmented Wave Board Configuration</u>: All boards were adjusted to a height of 1.3 meters as measured from the OEB floor to the bottom of the board, and were set in piston mode.

<u>Wave Generation</u>: Multi-directional irregular waves, corresponding to the 10:57 Newfoundland time waves as measured at sea during the full scale trial using a moored Datawell directional wave buoy (see Figure 9 from Reference 1), were matched with a dominant wave direction of 77.34 degrees relative to the OEB south wall and 88.6 degrees from the OEB west wall. Plots of the target irregular wave spectral density and direction data are presented in Figure 9. Seven 1/50 regular waves over a range of frequencies bracketing the nominal roll natural frequency of the model were matched for each of two dominant wave directions of 25 degrees and 45 degrees from the OEB south wall. See Tables 2 and 3 for details of the regular waves. Two wave directions were used in both the regular and irregular wave cases to provide some flexibility regarding the model direction. A listing of the waves used is provided below:

WAVE NAME	FULL SCALE WAVE	WAVE DIRECTION **	Flipped
	(Buoy, Time)	(relative to OEB Orientation)	
RS2_w1_mds	Datawell, Nov. 15/04, 10:57 NF	77.34 South Wall	Y
RS2_w2_mds	Datawell, Nov. 15/04, 10:57 NF	88.6 South Wall	Y
RS2_w3_mds	Datawell, Nov. 15/04, 10:57 NF	88.6 West Wall	Ν
RS2_w4_mds	Datawell, Nov. 15/04, 10:57 NF	77.34 West Wall	Ν
REG65*	Datawell, Nov. 15/04, 10:57 NF	25.0 West Wall	N
REG45*	Datawell, Nov. 15/04, 10:57 NF	45.0 West Wall	Ν

Wave Generation Summary

* NOTE: The regular waves only had two angles of generation from the OEB west wall listed above, however the varying wave heights and wave periods are listed in Tables 2 & 3.

** NOTE: "Wave Direction" in the table above represents the dominant wave direction.

Where 'Flipped' refers to the waves that had their wave spreading angle characteristics flipped about their dominant axis. This is to ensure that the proper side of the model was receiving the desired wave energy. Wave matching results for both the regular and irregular waves are provided in Appendix D. Information on the standard IOT method of generating waves and computing wave analysis data products can be found in Reference 22.

Video Cameras: Two digital video (DV) cameras were used to record the test runs:

View #1: This camera was mounted in a metal frame on the west wall of the OEB, roughly on the OEB longitudinal centerline, 4.68 m above the OEB floor. This camera was operated remotely from the control station. Images from this camera were recorded on one hour digital video (mini DV) tapes annotated with file name and record time.

View #2: Camera mounted on a mobile tripod and manually directed by an operator with camera location varied along the length of the north and east side of the OEB to derive an optimum view relative to the given model direction. The video recorded by this camera was stored within the camera on a mini DV tape with no annotation. The HD video record was subsequently transferred to a dedicated hard drive unit where each run is stored in separate files with the run number embedded in the file name.

<u>Model Launch System:</u> The OEB has a wood and rope launch system controlled by the overhead crane. The model is held in place by two rubber grips against its hull bottom and a triangular frame of rope on either side (see Figure 10). This frame restrains the model for the first few waves prior to the model's release and angles the model at a predetermined ideal run angle in order to optimize the limited available run length. The model was outfitted with launching pins located port and starboard on the hull, which rest against the rope frame to restrain the model from drifting too far aft. A 200 kg weight at the bottom of the rope launching frame anchors the frame in the tank.

<u>Model Control System:</u> The model's shaft speed and rudder angle were controlled using software installed on an on-shore computer that communicated with the model via wireless modem. Model shaft speed settings were determined iteratively to ensure the desired forward speed in waves, and shaft speed remained constant throughout the run. An autopilot was included in model IOT761 so that the model could move along a set course with respect to the dominant incident wave direction for each run. The model operation, monitoring and data acquisition centre was positioned on the tank walkway directly behind the model when launching from the east end (Figure 11) or on a platform in front of the wavemakers when launching from the west end (Figure 12).

8.0 DESCRIPTION OF SEAKEEPING TEST PROGRAM

The irregular wave test program consisted of performing experiments while transiting at two different forward speeds (nominally trawl speed (2-5 knots full scale) and cruise speed (7 to 8 knots full scale)), and five different headings with respect to the dominant incident waves (head, bow, beam, quartering and following seas). Diagrams of the model launch positions that include the incident wave direction are illustrated in Appendix E. Experiments with the anti-roll tank filled to the operating level were also carried out – bow, beam, quartering and following seas at trawl speed only. In addition, a number of repeat runs were carried out to investigate repeatability as well as uncertainty issues.

The heading angles were derived after careful examination of the directional wave data and ship heading angle data acquired during the 'Roberts Sisters II' full-scale seakeeping sea trials.

Regular wave runs were carried out in beam and quartering seas at two forward speeds (4 and 8 knots full scale) with and without the ART filled over a range of wave frequencies as described in Tables 2 and 3.

TR-2009-24

Typical Run Sequence:

Carrying out a free running model experiment in the OEB is a labour intensive effort. The following personnel are required:

- Operator of video camera View #2
- Individual operating the model remotely via portable wireless control device.
- Individual attending the model restraining line.
- Individual operating the data acquisition system (DAS), maintaining the run log, initiating video View #1 and wave generator computer.
- Individual carrying out the online data analysis reviewing the acquired data after each run using a dedicated workstation in the OEB Control Room.

A typical run sequence is provided as follows:

- 1) All team members take their positions.
- 2) With model in the start position, the wave generation signal was loaded and wavemaker span set to no (0%) stroke.
- 3) Data acquisition was triggered which commences (and synchronizes) execution of the wave drive signal. Since the wavemaker stroke is set to 0%, no physical waves were generated. Calm water data is acquired until the delay interval has passed. The delay interval is equal to the sum of all 'constant speed' wave data acquired up to that point for a given condition, less a suitable period to allow the irregular wave train to build and traverse the tank to reach the model. Since the entire irregular wave spectrum cannot be covered in a single run, this process is necessary to ensure that seakeeping data for the whole spectrum is acquired in an efficient manner using a series of wave segments.
- 4) When the required delay interval has passed, the wavemaker span was increased to 100% and physical wave generation begins.
- 5) Roughly one minute of waves was permitted to pass the model with the model constrained in the launcher.
- 6) The model shaft speed was adjusted to the desired value however the model was restrained in the launcher by the tag line attached to the stern.
- 7) Video recording was commenced on the cameras.
- 8) The model was then released.
- 9) The model was propelled down the tank with heading angle controlled by the autopilot with some unavoidable lateral drift depending on the wave heading. The model planar (X, Y) position was tracked using QUALISYS. The video camera operator manually tracked the model and zoomed in/out as required, optimizing the image.
- 10) Within a few metres of the end of the tank, the restraining (tag) line attached to the model stern arrests the model's forward travel and the shaft speed is cut. Video recording, wave generation and data acquisition were terminated.
- 11) The model was towed manually back to the starting position using the tag line with the propulsion system and rudder control used to manoeuvre the model stern first into the launching device.

12) A wait time of 12 minutes between runs was required to permit the tank to settle to calm. A varying number of runs dependent on the forward speed and model direction with respect to the incident wave combination was required to complete a given run sequence. A total of 20 minutes of data full scale (367 s model scale) was required to complete each irregular wave run sequence while 2 to 3 runs were carried out to acquire a minimum of 10 wave encounters for regular wave runs.

The zero speed drift runs were executed by merely setting the model heading nominally 90 degrees with respect to the dominant wave direction near the west end of the tank and acquiring data until the model either drifted too close to an obstruction, tank perimeter - or sufficient acquisition time scaled to full scale data matched.

In addition to the runs in waves, a number of dedicated roll decay experiments were carried out in calm water at zero forward speed as well as 4 and 8 knots full scale. The model was manually stimulated in roll by depressing the main deck at the nominal maximum beam. Pitch decay runs were also carried out at zero forward speed in calm water by manually depressing the bow to stimulate the model in pitch.

Photographs of model IOT761 in the OEB during testing are shown in Figures 13 to 15. The Run Log/Video Log is provided in Appendix F.

9.0 DATA ANALYSIS

A description of the data analysis process is provided as follows:

9.1 Online Data Analysis

The data were acquired in GDAC format (*.DAC files) described in References 23, 24. The following online data analysis command procedure was executed on a workstation in the OEB Control Room immediately after each run to verify the integrity of the acquired data:

- All measured channels from instrumentation, south and west wave board monitoring channels, plus signal dropout 'RMS error' monitoring channel (QUALISYS) were converted from GDAC to GEDAP format (described in Reference 25) and scaled to full scale units using Froude scaling laws (scale factor 10.67).
- QUALISYS data was de-spiked to remove most of the signal dropouts.
- Dedicated MotionPak II motions analysis software was run generating six degrees of freedom motions at the position of the MotionPak II unit in an earth fixed coordinate system using a value for low frequency cut-off (F1) of 0.06 Hz for irregular waves and $0.83 * (1/T_E)$ Hz full scale for regular waves where T_E is the wave encounter period. Since the MotionPak II unit was fitted fairly close to the location of the nominal model CG, it was not necessary to move the computed motions to a new location for this online data review. The following 18 channels were output from the six parameters measured by the MotionPak II: three

orthogonal angular accelerations/rates/angles (roll, pitch and yaw) and three orthogonal linear accelerations/velocities/displacements (surge, sway and heave).

- The QUALISYS linear displacement motions (X, Y, Z) were also deemed to be close enough to the model CG such that it was not necessary to move them.
- A routine was executed to compute two model speed channels (in full scale m/s and knots) from QUALISYS planar position (X, Y) data.
- Five QUALISYS channels were plotted in the time domain (heading angle, forward speed (knots), RMS error and planar (X,Y) position) and time segments for statistical analysis were interactively selected for the initial zero speed segment as well as the steady state speed segment.
- The following entire time series were plotted for review:
 - Plot #1: six QUALISYS acquired model motion channels (3 orthogonal linear displacements, roll, pitch and heading angle)
 - Plot #2: six MotionPak II acquired raw model motion channels (3 orthogonal linear accelerations, 3 orthogonal angular rates)
 - Plot #3: QUALISYS signal integrity channel, south wave board monitoring channel and the four wave probe channels
 - Plot #4: model speed over ground (m/s), rudder angle, shaft speed, bow vertical, lateral and longitudinal acceleration channels
 - Plot #5: six of the computed MotionPak II motion channels in an earth referenced co-ordinate system – (3 orthogonal angles, 3 orthogonal linear accelerations)
 - Plot #6: six acquired ADIS parameters (3 orthogonal angles, 3 orthogonal linear accelerations)
- Basic statistics (minimum, maximum, mean, standard deviation) were computed for all measured and computed channels for the interactively selected zero speed and steady state time segment.
- The user was given the option to plot the six time series plots to a local laser printer in the OEB Control Room.
- A table of basic statistics were output to a local laser printer in the OEB Control Room and statistics were stored in an ASCII format file in the project directory.

The following is a list of parameters examined throughout the course of the online analysis to provide an indication of the quality of the data acquired.

- Verifying the value of the shaft rps, model forward speed, and heading angle as being relatively constant and the correct magnitude.
- Comparing the standard deviation of the motion channels output by QUALISYS, ADIS and MotionPak II.
- Reviewing the QUALISYS signal integrity channel for evidence of signal loss. If significant signal loss was detected during critical segments of the run, the run was normally repeated.
- Plotting and comparing the pitch and roll angle data output from QUALISYS on the same time base as the integrated roll and pitch rate data from the MotionPak II.

An example online data analysis product is provided in Appendix G.

9.2 Offline Data Analysis

The offline data analysis is carried out to merge all irregular (20 minutes full scale) or regular (minimum 10 cycles) runs for a given heading angle/forward speed/ART combination before computing the statistics. The analysis sequence is described as follows:

- 1) Initial offline data analysis:
- All measured channels from instrumentation plus dropout monitoring channel 'RMS error' (QUALISYS) and wave board monitoring channels were converted from GDAC to GEDAP format (described in Reference 25). The model scale data was converted to full scale using Froude scaling laws. (scaling factor = 10.67).
- The following 13 channels were isolated for further analysis:
 - 1) South Center Wave Height
 - 2) MotionPak II Roll Rate
 - 3) MotionPak II Pitch Rate
 - 4) MotionPak II Yaw Rate
 - 5) MotionPak II Surge Acceleration
 - 6) MotionPak II Sway Acceleration
 - 7) MotionPak II Heave Acceleration
 - 8) Shaft Speed
 - 9) Rudder Angle
 - 10) QUALISYS X Displacement
 - 11) QUALISYS Y Displacement
 - 12) QUALISYS Pitch Angle
 - 13) QUALISYS Roll Angle
- The rudder angle and shaft speed channels were low pass filtered using a high frequency cut-off value of 3 Hz to remove signal noise.
- Routines were executed to compute a model speed channel (m/s) from the smoothed QUALISYS planar position (X, Y) data.
- A second full scale speed channel was computed from the smoothed QUALISYS planar position (X, Y) data (knots) and output as Channel 14.
- 2) Select Time Segments

Time segments were selected for all 14 channels – each run starting from 0 s and having a minimum of at least 60 s after the final segment. The segments for each channel start and end at the same time with a 3 s overlap between segments.

3) Merge Data

The data for each channel of each segment was smoothly merged using a 3 s overlap.

4) Analysis of MotionPak II Data

- The sign of MotionPak II Heave Acceleration was changed by multiplying by -1.
- Dedicated FFT based MotionPak II motions data analysis software was run to compute motions at the CG in an earth fixed co-ordinate system using a value for low frequency cut-off (F1) of 0.06 Hz for the irregular waves and 0.83 * (1/T_E) Hz full scale for regular waves where T_E is the wave encounter period. Since the MotionPak II unit was not fitted exactly at the location of the nominal model CG, it was necessary to move the computed motions to a new location as follows:
 - X = 0.8269 m aft full scale
 - Y = 0.2316 m to starboard full scale
 - Z = 1.4557 m down full scale

The following 18 channels were output: three orthogonal angular accelerations/rates/angles (roll, pitch and yaw) and three orthogonal linear accelerations/velocities/displacements (surge, sway and heave).

• The channels are re-ordered and some channels are discarded. The following 18 channels are retained:

CHANNEL DESCRIPTION	UNITS
1) MotionPak II Surge Displacement	m
2) MotionPak II Surge Acceleration	m/s^2
3) MotionPak II Sway Displacement	m
4) MotionPak II Sway Acceleration	m/s^2
5) MotionPak II Heave Displacement	m
6) MotionPak II Heave Acceleration	m/s^2
7) MotionPak II Yaw Angle	deg.
8) MotionPak II Yaw Rate	deg./s
9) MotionPak II Pitch Angle	deg.
10) MotionPak II Pitch Rate	deg./s
11) MotionPak II Roll Angle	deg.
12) MotionPak II Roll Rate	deg./s
13) Shaft Speed	rps
14) Rudder Angle	deg.
15) QUALISYS Pitch Angle	deg.
16) QUALISYS Roll Angle	deg.
17) Forward Speed	knots
18) South Center Wave Probe	m

It is noted that during analysis of the MotionPak II data that 5% of the data is lost off the start and end of each MotionPak II channel.

- 5) Review Data, Select Final Time Segments
- All 18 channels were reviewed in the time domain to ensure there were no anomalies and manually de-spiked as required. For irregular wave runs, the optimum 1200 s (20 minutes full scale) was identified and selected.

6) Basic Statistics Computed

It was noted that there was significant noise on several of the acquired channels probably emanating from RF sources or from local mechanical vibration on the model. To eliminate this noise, a rectangular band pass (normally 0 to 0.4 Hz or 0 to 0.5 Hz) filter was applied. This did not affect the mean value of the data however significantly reduced the standard deviation. An example time series plot of filtered heave acceleration data superimposed on unfiltered data is provided in Figure 16.

A procedure was run to compute the basic statistics (minimum, maximum, mean ands standard deviation) for all 18 channels and the data output in an ASCII format file.

Comparison between QUALISYS and MotionPak II roll and pitch angle data in the time domain was carried out as a final verification. In addition, a few channels of the filtered data were compared to the unfiltered data to ensure the filtering process did not introduce any anomalies.

A zero crossing analysis was performed on MotionPak II heave displacement to count the number of upcrossings and downcrossing using a threshold value of 0.05 m. This value was assumed to be equal to the number of wave encounters. This information was appended to the end of the ASCII statistics file.

A zero crossing analysis was performed on the wave data from the south center wave probe for regular wave runs to determine the average wave height and period using a threshold value of 0.05 m. This information was appended to the end of the ASCII statistics file.

A spectral density analysis using 22 degrees of freedom was executed on the wave data from the south center wave probe for irregular wave runs to estimate the significant wave height ($H_{m0} = 4 * SQRT(M0)$ where M0 is the first spectral moment) as well as the period of the spectral peak (T_{pd}) using the 'Delft Method' (see Reference 22). This information was also appended to the end of the ASCII statistics file.

An example of the ASCII format basic statistics file for a typical regular wave run (CASE5_4) is given in Table 4 while the statistics for a typical irregular wave run (quartering seas, trawl speed) is furnished in Table 5. Example time series plots for each merged channel (excluding the two QUALISYS channels) for a typical regular wave run (CASE5_4) and irregular wave run (quartering seas, trawl speed) is provided in Appendix H.

Summery tables of regular wave standard deviation basic statistics for each run are provided in Table 6. Plots of standard deviation linear accelerations (m/s^2) and angles

(deg.) vs. measured average wave period (s) at the south center wave probe are presented in Figures 17 to 26. Plots of standard deviation roll angle (deg.) vs. wave encounter frequency (rad./s) to illustrate the influence of fluid added to the ART on roll response are furnished in Figures 27 to 30.

Summery tables of irregular wave standard deviation basic statistics for each merged run are provided in Table 7. Plots of standard deviation linear accelerations (m/s^2) and angles (deg.) vs. heading with respect to the nominal wave direction are given in Figure 31 (trawl speed, ART empty) and Figure 32 (cruise speed, ART empty). A plot of standard deviation roll angle (deg.) vs. heading with respect to the nominal wave direction (up to bow seas as a head seas run was omitted from the test plan) to illustrate the influence of fluid added to the ART on roll response is furnished in Figure 33.

A DVD with the detailed tables of statistics in EXCEL format¹ is included with this report.

9.3 Roll and Pitch Decay Analysis

The roll and pitch decay runs were analyzed using dedicated software to compute the equivalent viscous damping. Pitch and roll decay runs were carried out in calm water at zero forward speed while roll decay runs were also carried out at 4 knots and 8 knots as described in Section 8.0. QUALISYS roll angle and ADIS roll rate data was used for all the analysis with the exception of the pitch decay runs where the MotionPak II pitch rate and ADIS pitch rate channels were used. Initially, the decay data was reviewed in the time domain and data from each of the excitations was isolated and separated out into individual GEDAP files omitting the first half cycle and all very low amplitude cycles. The data was then low pass filtered prior to carrying out the following analysis procedure:

The decay analysis algorithm computes viscous equivalent damping. Peaks and troughs data were input, and log decrements were computed as the natural logarithm of the ratio of two successive amplitudes. Both crests and troughs were used in calculating log decrements to increase the computational accuracy - especially in cases where only a few decay cycles were available. Damping ratios are calculated from the log decrements whereby the damping ratio for linear damping was estimated as the average of these log decrements. The damping ratio for non-linear damping is modeled in the form:

zeta = B1 + B2 * X

where zeta = damping ratio

B1 = equivalent damping linear term

B2 = equivalent damping non-linear term

If the damping is linear, B2 = 0 and B1 is equal to the damping ratio for linear damping.

¹ © 2009 Microsoft Corporation. All rights reserved

The equivalent damping terms were estimated by fitting a linear regression line through the damping ratio versus amplitude values. The equivalent damping linear term is the y intercept of the regression line. The equivalent damping non-linear term is set to be the slope of the regression line. The software uses the equivalent damping linear and equivalent damping non-linear terms to compute the equivalent damping envelope for the decay series.

The following plots were generated:

- 1) Roll or Pitch Angle vs. Time Plot: illustrating the raw data, the filtered decay series, the equivalent damping curve, the mean value and the detected peaks and troughs.
- 2) Damping Ratio vs. Amplitude Plot
- 3) Period vs. Amplitude Plot

The following two tables were also generated for each excitation:

- 1) Table listing the offset, average period, linear damping coefficient, equivalent damping slope and the equivalent damping offset for the entire selected time segment.
- 2) Table listing for each half cycle: amplitude, amplitude-offset, damping ratio, and period for each trough and crest in the selected decay time series.

Example data products described above are provided in Figure 34 for a typical pitch decay run, Figure 35 for a zero speed roll decay run and Figure 36 for an 8 knot full scale forward speed run with ART active. The results of the roll and pitch decay analysis are summarized in Table 8. The average full scale roll period without water in the ART is 6.0544 s (zero forward speed), 6.0948 s (4 knots), and 6.1061s (8 knots). The average full scale roll period with water in the ART (no baffles installed) is 7.6005 s (4 knots), and 7.3377 s (8 knots). The average full scale roll period with water in the ART (baffles installed) is 7.4032 s (4 knots), and 7.2679 s (8 knots). The average full scale zero speed pitch period is 3.5409 s. Note the accuracy of the results declines as the forward speed increases due to the reduced number of available cycles.

The entire set of roll and pitch decay results have been scanned in and are included on the DVD accompanying this report.

9.4 Investigation of Autopilot Performance

To investigate the performance of the model autopilot, plots of model/ship roll, yaw and rudder angle vs. heading angle were generated for both the trawl and cruise speeds (Figures 37, 38).

9.5 Seakeeping Data Verification Process

The following efforts were carried out to validate the integrity of the acquired motions data:

Comparison of Basic Statistics from Different Sensors: The following comparison of the minimum, maximum and standard deviation statistics for four typical runs (CBOW_008, THEAD_001, CASE3_3_003 and ART_TBEAM_008) are given in Table 9.

- QUALISYS/MotionPak II Pitch Angle;
- ADIS/MotionPak II Pitch Rate;
- QUALISYS/MotionPak II Roll Angle;
- ADIS/MotionPak II Roll Rate;
- QUALISYS/MotionPak II Heave (Z) Displacement;
- QUALISYS/MotionPak II Yaw (Heading) Angle;
- ADIS/MotionPak II Yaw Rate.

Time Domain Comparison: Time series plots for a typical run (CBOW_008) comparing the following parameters are included in Appendix I.

- Comparison of QUALISYS roll angle to MotionPak II roll angle;
- Comparison of QUALISYS pitch angle to MotionPak II pitch angle;
- Comparison of QUALISYS heading angle to MotionPak II yaw angle;
- Comparison of QUALISYS vertical (heave) displacement to MotionPak II vertical (heave) displacement;
- Comparison of ADIS roll rate to MotionPak II roll rate;
- Comparison of ADIS pitch rate to MotionPak II pitch rate;
- Comparison of ADIS yaw rate to MotionPak II yaw rate.

Additional comparisons of MotionPak II data to ADIS are provided in Reference 26.

Comparison of MotionPak II and Bow Tri-Axial Accelerations: Dedicated software was used to move the orthogonal accelerations as measured by the MotionPak II in a body coordinate system to the location of the bow accelerometers. The bow accelerometer package was assumed to be 3.945 m full scale forward of the MotionPak II, 0.88 m full scale to starboard of the MotionPak II and 2.659 m full scale above the MotionPak II. Comparisons were made with both filtered and unfiltered data. Time series plots for a typical run (CBOW_008) comparing filtered and unfiltered orthogonal accelerations are provided in Appendix J. Comparison of the minimum, maximum and standard deviation statistics for four typical runs (CBOW_008, THEAD_001, CASE3_3_003 and ART_TBEAM_008) are given in Table 10. Table 10 also includes the notch filtering frequencies used.

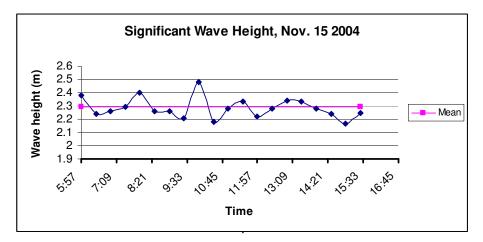
Data Repeatability Analysis Results: A comparison of the basic statistics from the first three time segments of four separate runs for both a following seas, trawl speed, ART empty as well as following seas, trawl speed, ART filled is presented in Table 11.

10.0 COMPARISON OF FULL SCALE, PHYSICAL MODEL AND NUMERICAL MODEL DATA

Based on model tests, sea trials and numerical results, comparisons of all data were made in two separate analyses, regular and irregular waves. There are some factors to consider when reading the comparison and viewing the plots. The model data is intended to reflect that of the sea trials, however there are sources of error in both the model tests as well as sea trials that prevents the results from perfectly correlating. Some of these sources of error are first discussed below:

Model Geometry

The model geometry may have been a factor in the discrepancies between both the sea trial and MOTSIM results. The scale factor is approximate, but the 'Roberts Sisters II' geometry itself has some uncertainty. The keel was estimated on the model as well, which could have impacted the differences in results. Also note that the Roberts Sisters II was fitted with a nozzle encompassing the propeller, however, the nozzle was not present on the model. There are also uncertainties in the results obtained when the anti roll tank was filled. The position of the modelled tank was approximated and its performance could have been altered with regard to materials used and the system in general.


Wave Buoy

It should also be noted that during the sea trials, while the data was being retrieved from the wave buoys, the 'Roberts Sisters II' location was much farther away from the buoy such that the waves at her location could have been different than those experienced at the buoy.

Waves

The waves used in the OEB for the model runs were measured during the sea trial at 11 o'clock on November 15, 2004. Thus only one nominal wave was used. Discrepancies in the model data and MOTSIM data could be due to the fact that the entire wave spectrum was used for MOTSIM. So any changes in significant wave height could be the cause of an excess or lack of energy for the waves in the model runs. The plot below shows that the 11 o'clock significant wave height lies roughly around the mean at about 2.3 m.

During the sea trials, it also would have been optimal if the sea state remained constant, however, sea conditions are constantly changing which makes it impossible to determine an exact sea state at a given time.

Significant Wave Height vs. Time (sea trial data)

Other Factors

Another factor in discrepancies in the results could have been due to the fact that the actual sea trials took place at a distance where it was still possible to have reflections of the waves from the nearby land mass. The size of the OEB was also insufficient for proper model testing and mimicking the desired conditions was difficult.

Irregular Wave Data Comparison

A comparison was made based on the results gathered from the 'Roberts Sisters II' sea trials in 2004, model tests carried out in the OEB and numerical data results obtained from MOTSIM. This comparison is based on irregular wave data.

Experiments were carried out at 4 knots (trawling speed), 8 knots (cruising speed) as well as 4 knots with the anti-roll tank active. All three scenarios were used in the comparison plots. The plots compare each acceleration/angular rate to the heading angle at each speed for all sets of data. The plots are shown in Figures 39 to 56 while the results are listed in Tables 12 to 17.

Trawling Speed (ART empty)

Figures 39 to 44 shows the comparison plots for irregular waves at trawling speed. The model results as well as the numerical result for amot_4ktnp_m165 for shows surge to be over predicted in comparison to the MOTSIM results and sea trials. Although at bow seas all results are consistent. Results for sway and heave were fairly consistent with the model tests being slightly under predicted at following and quartering seas and over predicted at beam, bow and head seas. Both model test and MOTSIM are under predicted at following and quartering seas, and over predicted at bow and head seas.

Cruising Speed (ART empty)

Figures 45 to 50 shows the comparison plots for irregular waves at cruising speed. These plots follow a consistent pattern to that of trawling speed. For surge acceleration, all results are consistent at bow seas and slightly over predicted at following, quartering, beam and head seas. Model test results for both sway and heave are under predicted at following and quartering seas and over predicted at beam, bow and head seas. The roll angle data is consistent with results for MOTSIM at beam bow and head seas, while the model test results are over predicted. Both model test and MOTSIM results are under predicted for following and quartering seas.

Trawling speed with ART Active

Figures 51 to 56 shows the comparison plots for irregular waves at trawling speed with the anti-roll tank active. Sea trials were not conducted with the ant-roll tank is use at head seas or following seas, so comparison will only be made for quartering, beam and bow seas. The MOTSIM result for amot_ktnpt_m165 is greatly over predicted for sway, pitch and roll. Roll angle is of main interest in this comparison. Figure 33 shows a comparison of roll angle at trawl speed with and without the anti-roll tank filled. From this plot it is shown that the anti roll tank reduces the roll angle.

11.0 DISCUSSION & RECOMMENDATIONS

Comparisons of motions as measured during the sea trial, model tests and estimated numerically using a number of wave inputs are illustrated in Figures 39 to 56 with the values listed in Tables 12 to 17. The model test results compared to full scale data can generally be described as poor. The primary factors for this poor correlation are assumed to be:

- The challenge in emulating a complex 'real' multi-directional wave in a small wave basin that is not optimized for free-running seakeeping tests;
- The fact that the only irregular wave matched was measured by the moored wave buoy at 11 o'clock the day of the trial while the wave conditions are changing throughout the day.
- The yaw angle correlation was particularly poor. Although an autopilot was used during the model experiments, the gain factors were assumed nominal values as the autopilot gain factors on the ship were unknown.
- The lack of a nozzle on the model, while the difference in wetted surface area and lateral profile area are not likely enough to significantly impact on the measured motions per se, the flow over the rudder on the ship would be significantly higher than on the model and thus the ship steering efficiency would be much greater than the model probably resulting in lower yaw angles for the same speed.

Comparison of motions from different sensors (Table 9, Appendix I): Standard deviation statistics computed for motions measured using different sensors generally compared within 3% with the exception when very small deviations were noted.

Comparison of motions measured by MotionPak II transferred and compared to orthogonal accelerometers on bow (Table 10): Standard deviation statistics computed in the body co-ordinate system and moved to the location of the accelerometers at the bow also generally compared within 3% with the exception when very small deviations were noted.

A review of the data repeatability analysis results (Table 11) implies that the data is repeatable with acceptable deviations between primary model motion parameters and incident waves.

Autopilot Performance Issues: Comparisons of the model autopilot performance versus the sea trial autopilot performance showed poor model scale heading keeping. Especially poor model autopilot performance was noted in the following test conditions: following and quartering seas at cruise speed and following, beam and bow seas at trawl speed. A number of factors appear to be contributing to the poor autopilot performance including:

- 1) Unlike the full scale vessel, the model lacks a nozzle encompassing the propeller directing the flow on the rudder thereby increasing rudder performance even at slow forward speeds.
- 2) The full-scale autopilot tuning gains are unknown and were not matched by the model scale autopilot.
- 3) The model scale heading reference may drift during a run.
- 4) Lack of integral gain in the autopilot controller may contribute to a constant error between the desired heading and the actual course steered.
- 5) At launch, sometimes the model starts off with an incorrect heading: this can take a considerable amount of the run segment for the autopilot to correct especially at slow forward speed.

Integral gain is not feasible to add to the controller, since the run durations are not long enough for it to have an effect on the "following error" or offset heading error. This small error should be taken into account during analysis or the operator could account for it by adjusting the heading setpoint of the autopilot prior to launch. Exact matching of headings from run segment to run segment is problematic and is likely to continue to be an issue in the future due to the combined effects of offset heading error and heading initial launch heading errors.

The following recommendations may help to improve model-scale autopilot performance in the future:

1) Match Full-Scale Autopilot Gains: It may be possible to identify the closed-loop gains of the autopilot during the field trials. The procedure would require that some zig-zag runs be conducted in relatively calm water to identify the open-loop

steering model (autopilot off), and closed-loop steering model (autopilot on). It is not clear if step responses or zig-zags could be conducted with the autopilot on. Failing this approach, hand tuning of the autopilot to achieve similar coursekeeping at model scale would be a relatively easy task, but would require a number of runs at the various test conditions.

2) Change Heading Reference: In older model-scale autopilots, the Qualisys was used to provide a non-drifting heading reference. During operation in areas of the OEB that have no Qualisys coverage, the inertial system can be used to fill in.

12.0 ACKNOWLEDGEMENTS

The authors would like to thank the technical support staff at IOT for their assistance during this test program. In addition, the assistance of MUN co-op student Elizabeth Charmley with the preliminary experiments (summer 2009) was much appreciated.

13.0 REFERENCES

- 1) Cumming, D., Fleming, T., "Description of Seakeeping Trials Carried out on CCGA Roberts Sisters II – November 2004", IOT Trials Report #TR-2005-09, July 2005.
- 2) "SafetyNet a Community Research Alliance on Health and Safety in Marine and Coastal Work", <u>www.SafetyNet.MUN.ca</u>, August 2009.
- Cumming, D., Fleming, T.,"Description of Seakeeping Trial Carried Out on CCGA Miss Jacqueline IV– October, 2004", IOT Trials Report #TR-2004-15, December 2004.
- Barrett, J, Cumming, D., Hopkins, D., "Description of Seakeeping Trials Carried Out on CCGA Atlantic Swell – October 2003", IOT Trials Report #TR-2003-28, December 2003.
- Cumming, D., Hopkins, D., Barrett, J.,"Description of Seakeeping Trial Carried Out on CCGS Shamook – December 2003", IOT Trials Report #TR-2004-01, January 2004.
- Fleming, T., Cumming, D.,"Description of Seakeeping Trial Carried Out on CCGA Nautical Twilight – November 1, 2004", IOT Trials Report #TR-2004-13, December 2004.
- Cumming, D., Foster, J., Bass, D.,"Description of Seakeeping Experiments Carried Out on CCGA Atlantic Swell Model IOT651", IOT Test Report #TR-2005-08, June 2005.
- Akinturk, A., Cumming, D., Bass, D., Walsh, A., "Description of Seakeeping Experiments Carried Out on CCGA Miss Jacqueline IV Model IOT745", IOT Test Report #TR0-2007-06, May 2008.

- Stevens, S.C., Parsons, M.G., "Effects of Motion at Sea on Crew Performance: A Survey", SNAME Publication Marine Technology, Vol. 39, No. 1, January 2002, pp. 29 – 47.
- 10) Boccadamo, G., Cassella, P., Scamardella, A., "Stability, Operability and Working Conditions Onboard Fishing Vessels", 7th International Conference on Stability of Ships and Ocean Vehicles, Launceston, Tasmania, Australia, February 7-11, 2000.
- Crossland, P., Rich, K.J.N.C., "A Method for Deriving MII Criteria", Conference on Human Factors in Ship Design and Operation, London, U.K., September 27 – 29, 2000.
- 12) Graham, R., "Motion-Induced Interruptions as Ship Operability Criteria", *Naval Engineers Journal*, March 1990.
- 13) Description of Institute for Ocean Technology Offshore Engineering Basin, <u>http://www.nrc-cnrc.gc.ca/eng/facilities/iot/engineering-basin.html</u>, August 2009.
- 14) Institute for Ocean Technology Standard Test Method: "Construction of Models of Ships, Offshore Structures and Propellers", V10, 42-8594-S/GM-1, October 18, 2007.
- 15) Keough, R., "Anti-Roll Tank Model Period Variation August 2008", IOT Student Report #SR-2008-40, August 2008.
- 16) Millan, J., Janes, G., Millan, D., "Autopilot System for Surface Manoeuvring of a Submarine", IOT Laboratory Memorandum #LM-2008-06, March 2009.
 PROTECTED
- 17) Pawlowski, J.S., Bass, D.W., "A Theoretical and Numerical Study of Ship Motions in Heavy Seas", Transactions SNAME, New York, October 1991.
- 18) Bass, D., et. al., "Assessing Motion Stress Levels on Board Fishing Vessels of the Newfoundland Fleet", 23rd International Conference on Offshore Mechanics and Arctic Engineering (OMAE), June 2004, Vancouver, BC.
- 19) MotionPak II Motion Measurement Package Information September 2009: http://www.systron.com/PDFS/datasheets/MP2.pdf
- 20) ADIS16405 Motion Measurement Package Information September 2009: http://www.analog.com/static/imported-files/data_sheets/ADIS16405.pdf
- 21) Senior, D., "QUALISYS Track Manager: User Manual", IOT Laboratory Memorandum #LM-2004-34, December 2004.

- 22) Institute for Ocean Technology Standard Test Method: "Environmental Modeling Wind, Waves and Current" V6, 42-8595-S/GM-3, March 23, 2004.
- 23) Miles, M.D., "Test Data File for New GDAC Software", NRC Institute for Marine Dynamics Software Design Specification, Version 3.0, January 2, 1996.
- 24) Miles, M.D., "DACON Configuration File for New GDAC Software", NRC Institute for Marine Dynamics Software Design Specifications, Version 3.2, August 14, 1996.
- 25) Miles, M.D., "The GEDAP Data Analysis Software Package", NRC Institute for Mechanical Engineering, Hydraulics Laboratory Report No. TR-HY-030, August 11, 1990.
- 26) Forsey, M.,"Comparison of Motion Measurement Devises: ADIS and MotionPak II", IOT Student Report SR-2010-09, April 2010.

TR-2009-24

TABLES

CCGA Roberts Sisters II Seakeeping Experiments Offshore Engineering Basin July-Oct. 2009

Scale 1:10.67

Model IOT761			Scale 1:10.67
Name	Units	Range	Device
shaft speed	rps	+/- 12	tachometer
pitch rate	deg./s	+/- 40	MotionPak II
roll rate	deg./s	+/- 40	MotionPak II
yaw rate	deg./s	+/- 10	MotionPak II
heave acceleration	G	+/- 1	MotionPak II
sway acceleration	G	+/- 1	MotionPak II
surge acceleration	G	+/- 1	MotionPak II
rudder angle	deg.	+/- 24	potentiometer
heading angle	deg.	+/- 185	QUALISYS
roll angle	deg.	+/- 85	QUALISYS
pitch angle	deg.	+/- 85	QUALISYS
bow vertical acceleration	G	+/- 1	linear uni-axial accelerometer
bow lateral acceleration	G	+/- 1	linear uni-axial accelerometer
bow longitudinal acceleration	G	+/- 1	linear uni-axial accelerometer
X Displacement	m	2 - 59	QUALISYS
Y Displacement	m	2 - 23	QUALISYS
Z Displacement	m	-0.5 - +4.5	QUALISYS
heave acceleration	G	+/- 8	ADIS Motion Package
sway acceleration	G	+/- 8	ADIS Motion Package
surge acceleration	G	+/- 8	ADIS Motion Package
pitch rate	deg./s	+/- 400	ADIS Motion Package
roll rate	deg./s	+/- 400	ADIS Motion Package
yaw rate	deg./s	+/- 400	ADIS Motion Package
South East Wave Elevation	m	0 - 0.7	Capacitance Wave Probe
South Center Wave Elevation	m	0 - 0.8	Capacitance Wave Probe
South West Wave Elevation	m	0 - 0.8	Capacitance Wave Probe
North Center Wave Elevation	m	0 - 0.7	Capacitance Wave Probe

NOTE:

- 1) Model forward speed computed from QUALISYS X and Y planar position.
- 2) MotionPak II data to be used to compute the following 18 channels:

Roll/Pitch/Yaw	Angle/Velocity/Acceleration
Surge/Sway/Heave	Displacement/Velocity/Acceleration
MotionPak II motions can be moved to any poir	nt on the rigid body and output in either an

earth or a body co-ordinate system.

- 3) Vertical, lateral & longitudinal linear accelerometers to be installed in bow to verify MotionPak II output.
- 4) An RMS error channel was also acquired to monitor QUALISYS signal integrity.
- 5) A south and west wave board amplitude signal were also acquired to monitor actual wave board activity.

6) All channels to be sampled at 50 Hz, low pass filtered at 10 Hz.

TABLE 1: List of Signals Measured

Safer Fishing Vessel Seakeeping

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Proj. #42_2374_10

CASE 1	Heading: Model speed: distance trave Total travellin	eled by mode	0.630 el	58.00 m			Transverse distance 24.51			m			
	Non-dim	Full scale		Model scale									
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave Length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters		
1	1.1	0.784	2.562	0.408	2.453	9.018	0.180	0.258	0.621	2.562	37.5		
2	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.795	40.9		
3	1.3	0.927	3.028	0.482	2.075	6.655	0.133	0.190	0.841	3.028	44.4		
4	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	3.261	47.8		
5	1.5	1.070	3.493	0.556	1.799	5.040	0.101	0.144	1.111	3.493	51.2		
6	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.726	54.6		
7	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	4.192	61.4		

CASE 2 CASE 1 with ART fillied

CASE 3		odel speed: stance traveled by model otal travelling time at speed		m/s (8 kn	ART is empt ots) m s	-	verse distance	24.51	m		
	Non-dim	Full scale					Model s	cale			
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.1	0.784	2.562	0.408	2.453	9.018	0.180	0.258	0.621	2.562	18.8
2	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.795	20.5
3	1.3	0.927	3.028	0.482	2.075	6.655	0.133	0.190	0.841	3.028	22.2
4	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	3.261	23.9
5	1.5	1.070	3.493	0.556	1.799	5.040	0.101	0.144	1.111	3.493	25.6
6	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.726	27.3
7	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	4.192	30.7

CASE 4 CASE 3 with ART fillied

TABLE 2: Regular Wave Details – Beam Seas Runs

TR-2009-24

Safer Fishing Vessel Seakeeping

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Proj. #42_2374_10

CASE 5	Heading: Model speed: distance trave Total travellin	eled by mode	0.630	m/s (4 kn 52.00 82.54	ART is empt ots) m s	ty Transverse dis	stance	21.98	m		
	Non-dim	Full scale					Model s	cale			
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.440	32.1
2	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	2.778	36.5
3	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.096	40.7
4	1.7	1.212	3.959	0.630	1.587	3.930	0.079	0.112	1.425	3.247	42.7
5	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	3.394	44.6
6	1.9	1.355	4.425	0.704	1.420	3.147	0.063	0.090	1.779	3.536	46.4
7	2.1	1.498	4.891	0.778	1.285	2.576	0.052	0.074	2.174	3.804	50.0

CASE 6 CASE 5 with ART fillied

ASE 7	Heading: Model speed: distance trave Total travellin	eled by mode	1.260	m/s (8 kn 52.00 41.27	ART is empt ots) m s	ty Transverse dis	stance	21.98	m		
	Non-dim	Full scale					Models	cale			
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.085	27.4
2	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	2.295	30.1
3	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	2.465	32.4
4	1.7	1.212	3.959	0.630	1.587	3.930	0.079	0.112	1.425	2.535	33.3
5	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	2.596	34.1
6	1.9	1.355	4.425	0.704	1.420	3.147	0.063	0.090	1.779	2.646	34.8
7	2.1	1.498	4.891	0.778	1.285	2.576	0.052	0.074	2.174	2.718	35.7

CASE 8 CASE 7 with ART fillied

NOTE:		Indicates roll natural frequency, or closest to that	Lw
	ART = anti-ro	ll tank	LWL
	Deep water a	ssumption h >= Lw/2	Т
	f	frequency, Hz	Te
	h	water depth in the OEB, m	w
	hw	wave height, m	we
	Lm	model length (LWL), m	wn

wave length, m

water line length, m

period, s encounter period, s

circular frequency, rad/s

encounter wave frequency, rad/s

nondimensional wave frequency, rad/s {w* sqrt(Lm/g)}

TABLE 3: Regular Wave Details – Quartering Seas Runs

CCGA Roberts Sisters II Seakeeping Experiments

Proj #42_2374_10 Quartering Seas Nominal Wave Period:		Offshore Enginee ART Empty 1.5870 s	ring Basin	4 knots			
Analysis Date/Time Acquired Date/Time Input File Output File Number of Samples Segment Start Time Segment End Time	= = = = =	15/10/2009 8:51 25/09/2009 14:28 CASE5_4 CASE5_4_STAT 9914 230.00 seconds 612.83 seconds					
Description		Unit	Min	Max	Mean	St. Dev.	Chan
MP_Surge_Displ MP_Surge_Accel MP_Sway_Displ MP_Sway_Accel MP_Heave_Displ MP_Heave_Accel MP_Yaw_Angle MP_Yaw_Rate MP_Yaw_Rate MP_Pitch_Angle MP_Pitch_Rate MP_Roll_Angle MP_Roll_Rate Shaft Speed Rudder Angle QUAL_Pitch_Angle QUAL_Pitch_Angle Forward Speed South Center Wave Probe		m m/s**2 m m/s**2 deg deg/s deg deg/s deg deg/s rps deg deg deg knots m	-0.42759 -0.48758 -0.43197 -0.54083 -0.3533 -0.67622 -4.4362 -2.2517 -3.5254 -3.018 -19.75 -19.536 2.0884 -0.60523 -4.8426 -21.315 3.6046 -0.47965	0.42816 0.47601 0.57468 0.35441 0.24307 4.9328 2.5032 1.636 2.5414 18.581 18.542 2.2685	-0.000962 -0.003565 0.001002 0.024213 -0.000735 -0.20568 0.10046 0.27131 -0.67791 -0.33137 -0.71702 -0.079971 2.1838 2.6802 0.24981 0.64519 3.6862 -0.024472	0.24589 0.21531 0.23032 0.19188 0.20908 1.9201 1.5171 1.4223 1.4197 12.292 12.409 0.039662 1.1093 1.3179 12.025 0.056957	14 15 16
MP_Heave_Displ		m		ZCA_NWU ZCA_NWD		60 61	
South Center Wave Probe		m s		WAV_HAV WAV_TAV		0.870108 5.17841	

NOTE: ZCA_NWU = NO. OF WAVE ENCOUNTER UPCROSSINGS ZCA_NWD = NO.OF WAVE ENCOUNTER DOWNCROSSINGS WAV_HAV = AVERAGE WAVE HEIGHT (m) (ZERO CROSSING ANALYSIS) WAV_TAV = AVERAGE PERIOD (s) (ZERO CROSSING ANALYSIS)

TABLE 4: Typical Regular Wave Basic Statistics File (CASE5_4)

CCGA Roberts Sisters II Seakeeping Experiments

Proj #42_2374_10 Quartering Seas Nominal Wave Period: Analysis Date/Time Acquired Date/Time Input File Output File Number of Samples Segment Start Time Segment End Time	= = = = =	Offshore Engineerin ART Empty 11.3238 28/10/2009 14:50 24/09/2009 15:19 TQUART TQUART_STAT 28757 182.99 seconds 1383.0 seconds	ng Basin	4 knots			
Description		Unit	Min	Max	Mean	St. Dev.	Chan
MP_Surge_Displ MP_Surge_Accel MP_Sway_Displ MP_Sway_Accel MP_Heave_Displ MP_Heave_Accel MP_Yaw_Angle MP_Yaw_Rate MP_Pitch_Angle MP_Pitch_Rate MP_Roll_Angle MP_Roll_Angle MP_Roll_Rate Shaft Speed Rudder Angle QUAL_Pitch_Angle QUAL_Pitch_Angle Forward Speed South Center Wave Probe		m m/s**2 m m/s**2 m m/s**2 deg deg/s deg deg/s deg deg/s rps deg deg deg knots m	-2.095 -0.83446 -1.322 -0.38267 -1.4083 -0.89378 -6.3772 -2.1026 -5.4765 -3.4772 -6.1374 -4.994 2.6498 -6.1511 -4.3019 -3.5623 2.1819 -1.4337	1.3667	-0.003601 -0.003355 0.00091 -0.02399 0.000226 -0.2317 -0.54453 -0.018442 -0.89594 -0.18629 -0.60607 -0.020368 2.7584 0.52507 0.079526 0.82735 5.0152 -0.014796	0.71619 0.2799 0.49886 0.14045 0.50055 0.1898 2.9689 0.64024 1.6477 1.2213 1.8018 1.5939 0.061834 2.1955 1.5954 1.7585 0.79372 0.54705	1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 17 18
MP_Heave_Displ		m		ZCA_NWU ZCA_NWD		105 106	
South Center Wave Probe		m s		WAV_HM0 SPEC_TPD		2.18818 11.3238	

NOTE: ZCA_NWU = NO. OF WAVE ENCOUNTER UPCROSSINGS ZCA_NWD = NO.OF WAVE ENCOUNTER DOWNCROSSINGS WAV_HMO = SIGNIFICANT WAVE HEIGHT (m) SPEC_TPD = PERIOD OF SPECTRAL PEAK (s)

TABLE 5: Typical Irregular Wave Basic Statistics File (Quartering Seas, Trawl Speed)

CCGA ROBERTS SISTERS II SEAKEEPING EXPERIMENTS RESULTS FOR REGULAR WAVES

Proj #42_2 Beam Sea	—	Offshore E ART Empt		j Basin 4 knots				
			Cas	se 1				Encounter
	Surge Accel.	Sway Accel.	Heave Accel.	Yaw Angle	Pitch Angle	Roll Angle	Wave Period	Wave Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case1_1	0.089382	0.47696	0.49933	0.69831	0.52581	5.7513	8.06129	0.784
Case1_2	0.080303	0.42771	0.45243	0.69452	0.40961	6.808	7.34166	0.856
Case1_3	0.087911	0.47078	0.50603	0.86224	0.43834	10.579	6.81324	0.927
Case1_4	0.089823	0.49758	0.61109	1.2969	0.50531	16.151	6.28603	0.998
Case1_5	0.081866	0.31609	0.53492	1.472	0.4539	16.132	5.90481	1.069
Case1_6	0.097591	0.18622	0.49203	0.82259	0.49038	10.767	5.48077	1.141
Case1_7	0.069478	0.2204	0.44842	0.6755	0.42427	2.7771	4.87328	1.284

Proj #42_2374_10 Offshore Engineering Basin

Beam Seas	S	ART Filled	, Baffles In	stalled	4 knots		
			Cas	e 2B			
	Surge	Sway	Heave	Yaw Angle	Pitch	Roll	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Period	
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(s)	
Case2B_1	0.10494	0.48926	0.51837	1.0859	0.59075	7.9153	7.95953
Case2B_2	0.080599	0.40363	0.47281	0.99215	0.3832	8.6108	7.39156
Case2B_3	0.084862	0.40355	0.52103	1.3975	0.41765	11.4	6.77752
Case2B_4	0.069929	0.33927	0.54868	0.94558	0.38089	10.139	6.28633
Case2B_5	0.067836	0.27695	0.48324	5.9874	0.35989	4.6732	5.88778

Proj #42_2374_10 Offshore Engineering Basin

Beam Sea	S	ART Filled		4 knots				
			Cas	se 2				Encounter
	Surge Accel. (m/s ²)	Sway Accel. (m/s²)	Heave Accel. (m/s ²)	Yaw Angle (deg.)	Pitch Angle (deg.)	Roll Angle (deg.)	Wave Period (s)	Wave Frequency (rad./s)
Case2_1	0.098224	0.46517	0.51723	2.4936	0.60002	7.1805	8.01989	0.784
Case2_2	0.067768	0.41603	0.46557	2.4241	0.3461	7.8995	7.38765	0.856
Case2_3	0.076099	0.39167	0.51131	1.6697	0.3885	10.44	6.77733	0.927
Case2_4	0.076277	0.34253	0.54927	1.8305	0.38301	10.095	6.28886	0.998
Case2_5	0.072221	0.29184	0.49412	2.1291	0.36437	4.611	5.88319	1.069
Case2_6	0.077486	0.2695	0.49282	1.7212	0.43681	3.3069	5.52077	1.141
Case2_7	0.068604	0.22722	0.45862	2.3286	0.39605	1.6744	4.86001	1.284

 TABLE 6 (1 of 4): Regular Wave Motion Statistics

Beam Sea	Beam Seas ART Empty 8 knots			8 knots				
			Cas	se 3				Encounter
	Surge	Sway	Heave	Yaw	Pitch	Roll	Wave	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Angle	Period	Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case3_1	0.079829	0.49925	0.51176	1.0229	0.41407	6.4012	8.0074	0.784
Case3_2	0.063517	0.42096	0.44998	1.1602	0.34777	6.5165	7.42542	0.856
Case3_3	0.079328	0.43533	0.48032	1.3971	0.41585	9.295	6.82125	0.927
Case3_4	0.21597	0.58359	0.66267	1.0123	0.47044	15.543	6.35296	0.998
Case3_5	0.1008	0.35989	0.57381	0.93783	0.56782	16.183	5.92983	1.069
Case3_6	0.11228	0.27113	0.53403	1.7567	0.58467	11.897	5.46552	1.141
Case3_7	0.077489	0.2881	0.51191	1.9313	0.42916	2.6377	4.90521	1.284

Proj #42_2374_10	Offshore Engineering Basin
------------------	----------------------------

Proj #42_2374_10 Offshore Engineering Basin Beam Seas ART Filled 8 knots

Beam Sea	S	ARI Filled		8 knots				
			Ca	se 4				Encounter
	Surge Accel.	Sway Accel.	Heave Accel.	Yaw Angle	Pitch Angle	Roll Angle	Wave Period	Wave Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case4_1	0.11275	0.47935	0.51905	3.7451	0.59866	7.3913	7.98761	0.784
Case4_2	0.075283	0.38358	0.49097	2.1311	0.34227	7.8763	7.22083	0.856
Case4_3	0.086801	0.37737	0.52408	2.5308	0.45013	10.034	6.91145	0.927
Case4_4	0.089189	0.33506	0.58262	1.9708	0.40396	9.1599	6.26235	0.998
Case4_5	0.090378	0.28464	0.50375	2.5384	0.5114	5.1429	5.92179	1.069
Case4_6	0.098842	0.27746	0.48842	1.4164	0.55039	3.6437	5.47332	1.141
Case4_7	0.0884	0.22932	0.45531	1.9658	0.51859	1.848	4.96894	1.284

Proj #42_2374_10 Offshore Engineering Basin Beam Seas ABT Filled Baffles Installed

FIUJ #42_2	Proj #42_2374_10 Offshore Engineering Basin							
Beam Seas	S	ART Filled	ART Filled, Baffles Installed					
	Case 4B							Encounter
	Surge	Sway	Heave	Yaw	Pitch	Roll	Wave	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Angle	Period	Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case4B_1	0.099095	0.45712	0.50761	1.5579	0.52086	7.6122	8.01194	0.784
Case4B_2	0.083041	0.42059	0.47734	1.0883	0.40193	8.6222	7.40001	0.856
Case4B_3	0.091964	0.3662	0.55339	0.95357	0.45579	11.275	6.7451	0.927
Case4B_4	0.085492	0.31363	0.58613	1.8275	0.44969	9.479	6.2415	0.998
Case4B_5	0.077126	0.28309	0.53558	1.099	0.43566	4.5941	5.88563	1.069
Case4B_6	0.083135	0.28975	0.53337	1.3871	0.52129	3.2458	5.46129	1.141
Case4B_7	0.077141	0.2293	0.48118	0.82636	0.46487	1.9484	4.92964	1.284

TABLE 6 (2 of 4): Regular Wave Motion Statistics

Proj #42_2374_10 Orishore Engineering basin		j Dasili						
Quartering	g Seas	ART Empty	y	4 knots				
			Cas	se 5				Encounter
	Surge	Sway	Heave	Yaw	Pitch	Roll	Wave	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Angle	Period	Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case5_1	0.34053	0.30368	0.4038	1.6401	1.9782	4.0823	7.36672	0.747
Case5_2	0.27427	0.24887	0.29007	1.8353	1.5823	4.6786	6.30984	0.851
Case5_3	0.29433	0.31659	0.27238	1.9172	1.6424	10.184	5.49124	0.948
Case5_4	0.24589	0.23032	0.20908	1.9201	1.4223	12.292	5.17841	0.994
Case5_5	0.23445	0.17645	0.23791	1.7873	1.4565	11.524	4.87959	1.039
Case5_6	0.22128	0.080429	0.24444	1.4954	1.4016	7.3883	4.66457	1.083
Case5_7	0.22919	0.067962	0.23218	2.0344	1.4764	3.0861	4.19579	1.165
B								•

Proi #42 2374 10 Offshore Engineering Basin

Proj #42_2374_10 Offshore Engineering Basin Offshore Engineering Basin ABT Empty Asknots Bepeat of CASE 5

	Seas		-) /	Aknots	Inopodito	of CASE 5	, 	_		
	SHKe Accer!. ((m&s))	S୍ଟ୍ୟୁନ୍ୟୁନ୍ୟ A CCO PI. (rf173/°3 ²)	Case Heave Ac Acc el. (m(ng≉p²)	ya₩aw Ya₩aw An∯Ngle (déglegg.)	Pitch Anglegle (degleg.)	RollRol Angleng (degdeg	ер	/ave erioœri (s) (s	ve _V Pr¢he	ounter Vave quency ad./s)
Cases_ 1I R	0.3409451	002736682	0.94365276	2.617.92095	2.0478714	5.203250	677.3	898238	877 (.747
Case5_2R (032183583	001.275667	0 .2<i>672</i> 76	1.560832	1.8 109 218	4.0996.0	756.2	13 5 1512	204 (.851
Case 5 34R (0022649833	001.6226347	0.2092256339	1.5 906 43	1.6 173 5885	5.1104.2	15	5259.18	01 C	.948
Case5_45R	002244867	001.286632	0. 2 3037543	1.417.68722	1.4 5 753055	2.831405.7	35.1	65 49.6 9	66 (.994
Case5_7R	002247 99 6	00102655846	0.25288209	1.4 2,989 47	1.5014.2408	2.4135.7036	64.9	48020	371	.039
Case6_6	0.23812	0.10364	0.23304	1.5212	1.4772	1.7149	4.	6364	1	.083
Case6_7	0.23565	0.084864	0.22818	1.4199	1.4829	1.3612	4.2	21467	1	.165

 TABLE 6 (3 of 4): Regular Wave Motion Statistics

Proj #42_2	374_10	Offshore E	ngineerin	g Basin				
Quartering	Seas	ART Filled		4 knots	Repeat of	CASE 6		
			Cas	e 6R				Encounter
	Surge	Sway	Heave	Yaw	Pitch	Roll	Wave	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Angle	Period	Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case6_1R	0.34025	0.29626	0.36032	1.7526	1.9551	5.4838	7.33974	0.747
Case6_2R	0.2587	0.22607	0.26486	1.5553	1.4986	5.5497	6.29244	0.851
Case6_3R	0.2641	0.17248	0.28853	1.4194	1.5461	5.3199	5.51017	0.948
Case6_4R	0.23007	0.13745	0.23217	1.3886	1.3886	3.2547	5.17986	0.994
Case6_5R	0.24394	0.1249	0.25573	1.4076	1.5052	2.3654	4.89938	1.039
Case6_6R	0.23682	0.11546	0.24857	1.5418	1.4672	1.9317	4.64508	1.083
Case6_7R	0.21698	0.093801	0.21997	1.2964	1.3843	1.5283	4.19997	1.165

Proj #42_2374_10 Offshore Engineering Basin

Quartering	g Seas	ART Empt	y -	8 knots				
			Cas	se 7				Encounter
	Surge	Sway	Heave	Yaw	Pitch	Roll	Wave	Wave
	Accel.	Accel.	Accel.	Angle	Angle	Angle	Period	Frequency
	(m/s²)	(m/s²)	(m/s²)	(deg.)	(deg.)	(deg.)	(s)	(rad./s)
Case7_1	0.30049	0.26055	0.27948	2.4893	1.7723	3.3437	7.37933	0.638
Case7_2	0.27263	0.18004	0.21821	1.7129	1.5991	2.6151	6.31328	0.703
Case7_3	0.28666	0.1855	0.18778	2.1828	1.6591	3.0769	5.51191	0.755
Case7_4	0.26058	0.13551	0.16991	2.1712	1.533	2.6285	5.16291	0.776
Case7_5	0.26494	0.13293	0.17097	1.8602	1.5603	2.8008	4.85786	0.795
Case7_6	0.25381	0.13196	0.1549	2.2253	1.4384	3.5559	4.60332	0.810
Case7_7	0.2351	0.1022	0.15801	1.5644	1.3632	3.0276	4.21896	0.832

Proj #42_2374_10 Offshore Engineering Basin Quartering Seas ART Filled 8 knots

Quartering	y Seas	ART Filled		8 KNOIS				
			Cas	se 8				Encounter
	Surge Accel. (m/s ²)	Sway Accel. (m/s ²)	Heave Accel. (m/s ²)	Yaw Angle (deg.)	Pitch Angle (deg.)	Roll Angle (deg.)	Wave Period (s)	Wave Frequency (rad./s)
Case8_1	0.30634	0.31699	0.28618	2.8128	1.8405	4.7862	7.04741	0.638
Case8_2	0.26016	0.18825	0.19656	1.8529	1.5274	4.1078	6.36793	0.703
Case8_3	0.27833	0.1653	0.19471	1.8004	1.6418	4.3411	5.4577	0.755
Case8_4	0.25913	0.13116	0.17937	1.9112	1.5014	3.6741	5.21414	0.776
Case8_5	0.26679	0.13619	0.19313	1.7701	1.5912	4.2686	4.96134	0.795
Case8_6	0.23895	0.10578	0.16085	1.5319	1.4128	3.6639	4.59545	0.810
Case8_7	0.22298	0.080329	0.13767	1.6989	1.3175	3.4588	4.15338	0.832

TABLE 6 (4 of 4): Regular Wave Motion Statistics

CCGA Roberts Sisters II Seakeeping Experiments

Proj #42_2374_ Trawl Speed, N	_10 Iominally 4 knots	Offshore Engineering Basin ART Empty								
	Surge Accel. (m/s ²)	Sway Accel. (m/s ²)	Heave Accel. (m/s ²)	Yaw Angle (deg.)	Pitch Angle (deg.)	Roll Angle (deg.)	Heading			
TFOL	0.25093	0.1404	0.19681	7.3099	1.5039	2.8904	Following			
TQUART	0.2799	0.14045	0.1898	2.9689	1.6477	1.8018	Quartering			
TBEAM	0.22191	0.30016	0.57776	12.12	1.7306	5.1473	Beam			
TBOW	0.21194	0.31802	0.61049	10.298	2.3219	5.7464	Bow			
THEAD	0.34654	0.15708	0.5254	1.8979	2.9447	2.8048	Head			

Proj #42_2374_10 Offshore Engineering Basin Trawl Speed Nominally 4 knots ABT Filled

I rawl Speed, Nominally 4 knots ART Fille					
	Roll Angle (deg.)	Heading			
ART_TFOL	1.6932	Following			
ART_TQUART	2.0026	Quartering			
ART_TBEAM	3.4964	Beam			
ART_TBOW	3.5315	Bow			
ART_THEAD		Head			

Proj #42_2374_10	Offshore Engineering Basin
Cruise Speed, Nominally 8 knots	ART Empty

	Surge Accel. (m/s ²)	Sway Accel. (m/s ²)	Heave Accel. (m/s ²)	Yaw Angle (deg.)	Pitch Angle (deg.)	Roll Angle (deg.)	Heading
CFOL	0.21895	0.14511	0.15971	17.623	1.3217	2.2591	Following
CQUART	0.22508	0.14166	0.1614	10.208	1.3341	1.515	Quartering
CBEAM	0.22198	0.31234	0.72796	4.2104	1.9065	3.9084	Beam
CBOW	0.1925	0.39372	0.77061	3.3107	1.439	6.3207	Bow
CHEAD	0.30503	0.19846	0.78929	6.9198	2.6418	4.1505	Head

NOTE: All angles and accelerations are Standard Deviation values.

 TABLE 7: Irregular Wave Motion Statistics

Roll & Pitch Decay Results

CCGA Roberts Sisters II Model #IOT761

Proj. 42_2374_10 Scale 1:10.667

Offshore Engineering Basin

July 2009

Pitch Decay Experiments:

File Name	Sensor	Excitation #	Average	Linear	Equivalent	Equivalent
			Period (s)	Damping Coeff.	Damping Slope	Damping Offset
pitch_decay_001	ADIS Pitch Rate	2nd	3.3764	0.14639	0.00638	0.12721
pitch_decay_001	MP_Pitch_Rate	2nd	3.7040	0.18981	-0.02319	0.29054
pitch_decay_001	ADIS Pitch Rate	3rd	3.2145	0.17017	0.00241	0.16184
pitch_decay_001	MP_Pitch_Rate	3rd	3.6382	0.16186	-0.02535	0.31896
pitch_decay_001	ADIS Pitch Rate	5th	3.6125	0.17731	-0.02669	0.24463
pitch_decay_001	MP_Pitch_Rate	5th	3.6997	0.16378	-0.02545	0.24150

Average Pitch Period (s) 3.5409

Roll Decay Experiments - ART empty- zero forward speed:

File Name	Sensor	Excitation #	Average	Linear	Equivalent	Equivalent
			Period	Damping	Damping	Damping
			(s)	Coeff.	Slope	Offset
Roll_decay_001	ADIS Roll Rate	1st	6.0550	0.01107	0.00311	-0.00024
Roll_decay_001	QUALISYS	1st	6.0536	0.01096	0.00363	-0.00191
Roll_decay_002	ADIS Roll Rate	1st	6.0542	0.01137	0.00238	-0.00082
Roll_decay_002	QUALISYS	1st	6.0533	0.01102	0.00248	-0.00115
Roll_decay_002	ADIS Roll Rate	2nd	6.0548	0.01186	0.00153	0.00468
Roll_decay_002	QUALISYS	2nd	6.0508	0.01224	0.00242	0.00128
Roll_decay_002	ADIS Roll Rate	3rd	6.0586	0.01182	0.00116	0.00699
Roll_decay_002	QUALISYS	3rd	6.0546	0.01273	0.00112	0.00776

Average Roll Period (s) 6.0544

Roll Decay Experiments - ART empty - forward speed = 0.6 m/s (~ 4 knots):

File Name	Sensor	Excitation #	Average Period (s)	Linear Damping Coeff.	Equivalent Damping Slope	Equivalent Damping Offset
roll_s0p6_001	ADIS Roll Rate	1st	6.1082	0.02862	0.00163	0.01823
roll_s0p6_001	QUALISYS	1st	6.1071	0.02872	0.00279	0.00837
roll_s0p6_002	ADIS Roll Rate	2nd	6.0861	0.02898	0.00161	0.01868
roll_s0p6_002	QUALISYS	2nd	6.0903	0.02912	0.00180	0.01779
roll_s0p6_003	ADIS Roll Rate	3rd	6.0870	0.03011	0.00131	0.02180
roll_s0p6_003	QUALISYS	3rd	6.0901	0.03071	0.00173	0.02100

Average Roll Period (s) 6.0948

TABLE 8 (1 of 3): Summary of Roll/Pitch Decay Results

TR-2009-24

File Name	Sensor	Excitation #	Average Period (s)	Linear Damping Coeff.	Equivalent Damping Slope	Equivalent Damping Offset
roll_s1p2_001	ADIS Roll Rate	1st	6.0920	0.03793	0.00132	0.02899
roll_s1p2_001	QUALISYS	1st	6.0771	0.03948	0.00148	0.03036
roll_s1p2_002	ADIS Roll Rate	2nd	6.1075	0.03888	0.00039	0.03685
roll_s1p2_002	QUALISYS	2nd	6.1220	0.03790	0.00132	0.02911
roll_s1p2_003	ADIS Roll Rate	3rd	6.1232	0.04077	-0.00002	0.04090
roll_s1p2_003	QUALISYS	3rd	6.1150	0.03793	0.00113	0.03012

Roll Decay Experiments - ART empty - forward speed = 1.2 m/s (~ 8 knots):

Average Roll Period (s) 6.1061

Roll Decay Experiments - ART filled - forward speed = 0.6 m/s (~ 4 knots):

File Name	Sensor	Excitation #	Average Period (s)	Linear Damping Coeff.	Equivalent Damping Slope	Equivalent Damping Offset
Roll art s0p6 001	ADIS Roll Rate	1st	7.6126	0.15336	-0.00117	0.15809
Roll art s0p6 001	QUALISYS	1st	7.8029	0.11820	0.01456	0.06650
Roll_art_s0p6_002	ADIS Roll Rate	2nd	7.4513	0.15592	-0.00876	0.20546
Roll_art_s0p6_002	QUALISYS	2nd	7.5617	0.11878	0.00160	0.11065
Roll_art_s0p6_003	ADIS Roll Rate	3rd	7.5359	0.11812	0.00051	0.11536
Roll_art_s0p6_003	QUALISYS	3rd	7.6388	0.10485	0.00392	0.08558

Average Roll Period (s) 7.6005

Roll Decay Experiments - ART filled - forward speed = 1.2 m/s (~ 8 knots):

File Name	Sensor	Excitation #	Average	Linear	Equivalent	Equivalent
			Period	Damping	Damping	Damping
			(s)	Coeff.	Slope	Offset
Roll_art_s1p2_001	ADIS Roll Rate	1st	7.3467	0.16120	-0.01316	0.25719
Roll_art_s1p2_001	QUALISYS	1st	7.2186	0.15610	-0.01648	0.27910
Roll_art_s1p2_002	ADIS Roll Rate	2nd	7.3393	0.14218	-0.00681	0.19605
Roll_art_s1p2_002	QUALISYS	2nd	7.3541	0.12693	-0.00395	0.15501
Roll_art_s1p2_003	ADIS Roll Rate	3rd	7.2697	0.13206	-0.00653	0.19397
Roll_art_s1p2_003	QUALISYS	3rd	7.4978	0.11271	0.00136	0.10510

Average Roll Period (s) 7.3377

Roll Decay Experiments - with baffled ART - forward speed = 0.6 m/s (~ 4 knots):

File Name	Sensor	Excitation #	Average Period (s)	Linear Damping Coeff.	Equivalent Damping Slope	Equivalent Damping Offset
Roll_ARTB_s0p6_001	ADIS Roll Rate	1st	7.3613	0.13786	-0.00694	0.18980
Roll_ARTB_s0p6_001	QUALISYS	1st	7.5312	0.11827	-0.00152	0.12759
Roll_ARTB_s0p6_002	ADIS Roll Rate	2nd	7.4195	0.12150	-0.00169	0.13228
Roll_ARTB_s0p6_002	QUALISYS	2nd	7.4655	0.10695	0.00090	0.10165
Roll_ARTB_s0p6_003	ADIS Roll Rate	3rd	7.1756	0.12268	-0.00484	0.17206
Roll_ARTB_s0p6_003	QUALISYS	3rd	7.4658	0.11232	-0.00067	0.11639

Average Roll Period (s) 7.4032

TABLE 8 (2 of 3): Summary of Roll/Pitch Decay Results

File Name	Sensor	Excitation #	Average Period (s)	Linear Damping Coeff.	Equivalent Damping Slope	Equivalent Damping Offset
Roll_ARTB_s1p2_001	ADIS Roll Rate	1st	7.0467	0.12030	-0.00467	0.17049
Roll_ARTB_s1p2_001	QUALISYS	1st	7.1677	0.11636	-0.00037	0.11894
Roll_ARTB_s1p2_002	ADIS Roll Rate	2nd	7.2222	0.12611	-0.00615	0.18875
Roll_ARTB_s1p2_002	QUALISYS	2nd	7.5618	0.10413	-0.00022	0.10599
Roll_ARTB_s1p2_003	ADIS Roll Rate	3rd	7.1189	0.12135	-0.00481	0.17313
Roll_ARTB_s1p2_003	QUALISYS	3rd	7.4903	0.10927	-0.00076	0.11454

Roll Decay Experimen	s - with baffled ART -	forward speed =	1.2 m/s (~	8 knots):
non beeug Experimen	3 - With Burney Arris	ioi wala speca =	1.2 11/3 (0 11013/.

Average Roll Period (s) 7.2679

NOTES: Pitch decay results derived using the ADIS pitch rate sensor and the MotionPak II pitch rate sensor. Roll decay results derived using the ADIS roll rate sensor as well as QUALISYS roll angle.

Pitch angle was highly damped with only a few cycles available for analysis. ART = anti-roll tank - experiments were carried out with and without the tank operational

as well as with and without baffles in tank

For experiments with the ART active, the roll angle was highly damped compared to the model with no water in the tank.

There was a lot of scatter in the results when the motions are highly damped.

Due to an error in the DACON file, the zero speed roll & pitch results had to be scaled to

full scale (scaling factor = 10.667) using GEDAP Program 'SCALE'.

With no water in the ART, the roll period is constant as the roll angle decays.

With water in the ART, the roll period increases with decreasing roll amplitude. Roll period at zero forward speed is about 1 to 1.5 s less than that with forward speed.

There is only a minor difference between roll perod at 4 knots and 8 knots.

The ART with water increases the roll period by about 1 s over without water in ART. Adding baffles to the ART reduces the roll period slightly however this may be due to the small

reduction in GM_T due to the addition of the weight of the baffles.

TABLE 8 (3 of 3): Summary of Roll/Pitch Decay Results

COMPARISON OF MOTIONS MEASURED BY DIFFERENT SENSORS

CCGA Roberts Sisters II

Proj. 42_2374_10

Model #IOT761 Offshore Engineerin	Offshore Engineering Basin			Scale 1:10.667 July 2009				
Pitch Angle	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.		
QUALISYS	CBOW_008	deg.	-3.5469	3.0668	1.2864	0.04%		
MOTIONPAK II	CBOW_008	deg.	-3.5741	3.1445	1.2859			
QUALISYS	THEAD_001	deg.	-9.8565	6.6944	2.9637	0.90%		
MOTIONPAK II	THEAD_001	deg.	-9.9245	6.8012	2.9907			
QUALISYS	CASE3_3_003	deg.	-1.3183	1.0056	0.4886	2.32%		
MOTIONPAK II	CASE3_3_003	deg.	-0.95323	1.1349	0.4775			
QUALISYS	ART_TBEAM_008	deg.	-1.7242	1.7854	0.79563	3.27%		
MOTIONPAK II	ART_TBEAM_008	deg.	-1.7049	1.7375	0.82253			
Pitch Rate	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.		
ADIS	CBOW_008	deg./s	-5.8334	4.9748	1.983	3.18%		
MOTIONPAK II	CBOW_008	deg./s	-5.6749	4.9284	2.0482			
ADIS	THEAD_001	deg./s	-14.773	12.8900	4.6763	1.78%		
MOTIONPAK II	THEAD_001	deg./s	-13.301	15.1000	4.7610			
ADIS	CASE3_3_003	deg./s	-1.1693	1.4792	0.5455	2.24%		
MOTIONPAK II	CASE3_3_003	deg./s	-1.5184	1.5619	0.5580			
ADIS	ART_TBEAM_008	deg./s	-2.1448	2.6776	1.1195	0.89%		
MOTIONPAK II	ART_TBEAM_008	deg./s	-2.7767	2.3371	1.1295			
Dell Angle		Units	NA:	Massimo	Ot Davi	0/ Diff. Ot Day		
Roll Angle QUALISYS	File Name CBOW 008	deg.	-13.176	Maximum 12.58	St. Dev. 5.5087	% Diff St. Dev. 0.23%		
MOTIONPAK II	CBOW_008	deg.	-12.916	12.891	5.4958	0.2376		
QUALISYS	THEAD_001	deg.	-8.605	8.6203	4.3666	1.14%		
MOTIONPAK II	THEAD_001	deg.	-8.8707	8.5839	4.417			
QUALISYS	CASE3_3_003	deg.	-14.134	12.958	8.3486	1.40%		
MOTIONPAK II	CASE3_3_003	deg.	-13.693	12.706	8.4672			
QUALISYS	ART_TBEAM_008	deg.	-7.2867	6.1481	3.1001	1.92%		
MOTIONPAK II	ART_TBEAM_008	deg.	-7.6134	5.3262	3.1608			
Roll Rate	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.		
ADIS	CBOW_008	deg./s	-12.778	13.569	5.9192	1.00%		
MOTIONPAK II	CBOW_008	deg./s	-13.240	14.190	5.8607			
ADIS	THEAD_001	deg./s	-8.571	8.438	4.4517	2.85%		
	THEAD_001	deg./s	-10.192	9.6752	4.5825			
ADIS	CASE3_3_003	deg./s	-11.487	12.059	7.3679	1.68%		
MOTIONPAK II	CASE3_3_003	deg./s	-12.321	13.076	7.4941			
ADIS	ART_TBEAM_008	deg./s	-7.1196	7.0107	3.1827	4.16%		
MOTIONPAK II	ART_TBEAM_008	deg./s	-8.9776	7.8172	3.3207			

 TABLE 9 (1 of 2):
 Comparison of Motions by Different Sensors

COMPARISON OF MOTIONS MEASURED BY DIFFERENT SENSORS

CCGA Roberts Sisters II

Proj. 42_2374_10

Model #IOT761 Offshore Engineering Basin Scale 1:10.667 July 2009

Heave (Z) Displ.	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.
QUALISYS	CBOW_008	m	-1.3958	1.0226	0.55049	10.98%
MOTIONPAK II	CBOW_008	m	-1.5516	1.1045	0.61837	
QUALISYS	THEAD_001	m	-1.5199	1.5087	0.56888	7.29%
MOTIONPAK II	THEAD_001	m	-1.4418	1.5399	0.61362	
QUALISYS	CASE3_3_003	m	-0.87461	0.89586	0.50936	0.78%
MOTIONPAK II	CASE3_3_003	m	-0.90188	0.84175	0.51337	
QUALISYS	ART_TBEAM_008	m	-0.99695	0.70428	0.40044	2.44%
MOTIONPAK II	ART_TBEAM_008	m	-0.75106	0.82839	0.39092	
Heading (Yaw) Angle	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.
QUALISYS	CBOW 008	deg.	-3.5638	4.3841	2.0629	3.11%
MOTIONPAK II	CBOW 008	deg.	-3.5985	3.8917	2.1291	0.1170
QUALISYS	THEAD 001	deg.	-2.6665	2.7142	1.2225	9.55%
MOTIONPAK II	THEAD_001	deg.	-2.4204	2.4667	1.1159	
QUALISYS	CASE3 3 003	deg.	-1.2413	1.9121	0.7682	10.77%
MOTIONPAK II	CASE3_3_003	deg.	-1.2018	2.0021	0.69348	
QUALISYS	ART_TBEAM_008	deg.	-2.2282	0.42104	0.65129	6.11%
MOTIONPAK II	ART_TBEAM_008	deg.	-1.7416	1.1145	0.69366	
Yaw Rate	File Name	Units	Minimum	Maximum	St. Dev.	% Diff St. Dev.
ADIS	CBOW_008	deg./s	-1.5719	2.3778	0.80696	0.20%
	CBOW_008	deg./s	-1.5786	2.3801	0.80537	
ADIS	THEAD_001	deg./s	-1.9739	1.9605	0.58460	4.13%
MOTIONPAK II	THEAD_001	deg./s	-1.855	1.9044	0.56143	
ADIS	CASE3_3_003	deg./s	-1.0787	0.91145	0.42559	30.01%
MOTIONPAK II	CASE3_3_003	deg./s	-0.73428	0.83123	0.32736	
ADIS	ART_TBEAM_008	deg./s	-1.1143	1.2433	0.53651	0.00%
MOTIONPAK II	ART_TBEAM_008	deg./s	-1.0989	1.1185	0.53649	

NOTE: All channels have been tared.

Parameters compare fairly well other than situations where the magnitude of the parameter is relatively low. CBOW - irregular waves - bow seas - cruising speed.

THEAD - irregular waves - head seas - trawl speed.

CASE3_3 - regular waves - beam seas, 8 knots, wave period = 2.075 s.

ART_TBEAM - irregular waves - beam seas - trawl speed - with anti-roll tank (ART) active

TABLE 9 (2 of 2): Comparison of Motions by Different Sensors

COMPARISON OF ACCELERATIONS MEASURED BY MOTIONPAK II & BOW ACCELEROMETERS

CCGA Roberts Sisters II Model #IOT761 Offshore Engineering Basin Proj. 42_2374_10 Scale 1:10.667 July 2009

			Filter Freq.	Filter Freq.				
Longitudinal Acceleration	File Name	Units	F1 (Hz)	F2 (Hz)	Minimum	Maximum	St. Dev.	% Diff St. Dev.
Bow Accelerometer	CBOW_008	m/s ²	0.13	0.53	-1.0192	1.1377	0.41638	0.50%
MotionPak II	CBOW_008	m/s ²	0.13	0.53	-1.0209	1.035	0.41429	
Bow Accelerometer	THEAD_001	m/s ²	0.12	0.5	-2.0227	1.9449	0.71251	2.17%
MotionPak II	THEAD_001	m/s ²	0.12	0.5	-2.0845	2.0206	0.72834	
Bow Accelerometer	CASE3_3_003	m/s ²	0	0.7	-0.16695	0.1884	0.08167	23.40%
MotionPak II	CASE3_3_003	m/s ²	0	0.7	-0.19076	0.26114	0.10662	
Bow Accelerometer	ART_TBEAM_003	m/s ²	0	0.5	-0.57564	0.60173	0.22377	0.60%
MotionPak II	ART_TBEAM_003	m/s ²	0	0.5	-0.60503	0.62337	0.22243	

			Filter Freq.	Filter Freq.				
Lateral Acceleration	File Name	Units	F1 (Hz)	F2 (Hz)	Minimum	Maximum	St. Dev.	% Diff St. Dev.
Bow Accelerometer	CBOW_008	m/s ²	0	0.48	-3.5838	3.1041	1.4018	5.59%
MotionPak II	CBOW_008	m/s ²	0	0.48	-3.6313	3.1275	1.4848	
Bow Accelerometer	THEAD_001	m/s ²	0.11	0.24	-1.9765	1.9959	0.90657	3.19%
MotionPak II	THEAD_001	m/s ²	0.11	0.24	-2.0325	2.0356	0.9364	
Bow Accelerometer	CASE3_3_003	m/s ²	0	0.5	-2.4092	2.4515	1.5043	2.20%
MotionPak II	CASE3_3_003	m/s ²	0	0.5	-2.469	2.553	1.5381	
Bow Accelerometer	ART_TBEAM_003	m/s ²	0	0.5	-2.9011	1.7834	0.78542	3.21%
MotionPak II	ART_TBEAM_003	m/s ²	0	0.5	-2.9519	1.9086	0.81145	

			Filter Freq.	Filter Freq.				_
Vertical Acceleration	File Name	Units	F1 (Hz)	F2 (Hz)	Minimum	Maximum	St. Dev.	% Diff St. Dev.
Bow Accelerometer	CBOW_008	m/s ²	0.16	0.5	-1.8049	1.8624	0.77943	1.43%
MotionPak II	CBOW_008	m/s ²	0.16	0.5	-1.9214	2.0063	0.76843	
Bow Accelerometer	THEAD_001	m/s ²	0.08	0.5	-2.5657	2.4522	0.83742	2.97%
MotionPak II	THEAD_001	m/s ²	0.08	0.5	-2.2304	2.5437	0.81325	
Bow Accelerometer	CASE3_3_003	m/s ²	0	0.5	-0.87153	0.87551	0.43254	1.95%
MotionPak II	CASE3_3_003	m/s ²	0	0.5	-0.82329	0.83968	0.44116	
Bow Accelerometer	ART_TBEAM_003	m/s ²	0	0.5	-1.9411	1.5525	0.64905	3.79%
MotionPak II	ART_TBEAM_003	m/s ²	0	0.5	-1.8931	1.6053	0.62535	

 NOTE:
 Moved MotionPak II accelerations forward 3.945 m, to stbd. 0.88 m, and vertically up 2.659 m full scale. MotionPak II accelerations were output in a body fixed co-ordinate system. Converted bow accelerations from G's to m/s² and changed sign where necessary. All channels have been tared. Channels were notch filtered using GEDAP Program 'FILT_FFT' using specified filter frequencies. CBOW - irregular waves - bow seas - cruising speed. THEAD - irregular waves - head seas - trawl speed. CASE3_3 - regular waves - beam seas - ART is empty. ART_TBEAM - irregular waves - beam seas - ART filled.

TABLE 10: Comparison of MotionPak II & Bow Tri-Axial Accelerations

RESULTS OF REPEATABILITY CHECK RUNS

CCGA Roberts Sisters II

Proj. 42 2374 10

Model #IOT761 Offshore Engineering Basin Anti-Roll Tank Empty

Scale 1:10.667 July 2009

File Name	Parameter	Minimum	Maximum	St. Dev.
TFOL_R1A	MP_Surge_Displ (m)	-1.9303	2.2561	0.7686
TFOL_R1B	MP_Surge_Displ (m)	-1.8398	1.7732	0.7254
TFOL_R1C	MP_Surge_Displ (m)	-1.7084	1.7986	0.6816
TFOL_ORIG	MP_Surge_Displ (m)	-1.6330	1.8981	0.6765
TFOL_R1A	MP_Sway_Displ (m)	-0.8354	0.8385	0.2916
TFOL_R1B	MP_Sway_Displ (m)	-0.8978	0.9177	0.3295
TFOL_R1C	MP_Sway_Displ (m)	-0.6464	0.8818	0.3051
TFOL_ORIG	MP_Sway_Displ (m)	-1.0694	0.9472	0.3706
TFOL_R1A	MP_Heave_Displ (m)	-1.4524	1.7122	0.5197
TFOL_R1B	MP_Heave_Displ (m)	-1.3523	1.2934	0.4922
TFOL_R1C	MP_Heave_Displ (m)	-1.2025	1.2723	0.4896
TFOL_ORIG	MP_Heave_Displ (m)	-1.1920	1.5337	0.5176
TFOL_R1A	MP_Yaw_Angle (deg.)	-4.9740	7.0506	2.5305
TFOL_R1B	MP_Yaw_Angle (deg.)	-4.1269	5.9846	1.9574
TFOL_R1C	MP_Yaw_Angle (deg.)	-4.9774	9.1323	2.6172
TFOL_ORIG	MP_Yaw_Angle (deg.)	-5.8396	8.3802	2.2234
TFOL R1A	MP Pitch Angle (deg.)	-4.9795	3.5982	1.5285
TFOL_R1B	MP_Pitch_Angle (deg.)	-5.0453	3.1062	1.5054
TFOL_R1C	MP_Pitch_Angle (deg.)	-5.8789	3.6243	1.5702
TFOL_ORIG	MP_Pitch_Angle (deg.)	-5.0992	3.5328	1.6127
TFOL_R1A	MP Roll Angle (deg.)	-6.9344	7.2707	2.5175
TFOL R1B	MP Roll Angle (deg.)	-7.9173	8.0373	2.5778
TFOL R1C	MP_Roll_Angle (deg.)	-7.9087	6.4862	2.3846
TFOL_ORIG	MP_Roll_Angle (deg.)	-8.4365	6.9723	2.9540
TFOL R1A	Forward Speed	4.5292	knots	
TFOL R1B	Forward Speed	4.5508	knots	
TFOL R1C	Forward Speed	4.4967	knots	
TFOL ORIG	Forward Speed	4.7496	knots	
TFOL R1A	South Center Wave Probe	WAV HMO	2.05515	m
TFOL R1B	South Center Wave Probe		1.92432	m
TFOL R1C	South Center Wave Probe	WAV HMO	1.93073	m
TFOL ORIG	South Center Wave Probe	WAV HMO	1.93536	m
TFOL R1A	South Center Wave Probe	_	10.5053	s
TFOL R1B	South Center Wave Probe		10.7323	S S
TFOL R1C	South Center Wave Probe		10.7615	S
TFOL ORIG	South Center Wave Probe	—	10.5608	S
		5. E0_11 D	10.0000	~

NOTE: WAV_HM0 = Significant Wave Height (m) SPEC_TPD = Period of Spectral Peak (s) TFOL_R1A FILES: TFOL_R1_001, TFOL_R2_001, TFOL_R3_001 TFOL_R1B FILES: TFOL_R1_002, TFOL_R2_002, TFOL_R3_002 TFOL_R1C FILES: TFOL_R1_003, TFOL_R2_003, TFOL_R3_003 TFOL_ORIG FILES: TFOL_002, TFOL_003, TFOL_004

 TABLE 11 (1 of 2):
 Data Repeatability Analysis Results – Following Sea, Trawl

 Speed

Model #IOT761

RESULTS OF REPEATABILITY CHECK RUNS

CCGA Roberts Sisters II

Offshore Engineering Basin

Proj. 42_2374_10 Scale 1:10.667 July 2009

File Name Parameter Minimum Maximum St. Dev. ART_TFOL_R1A MP_Surge_Displ (m) -1.5927 2.0741 0.7219 ART_TFOL_R1B MP_Surge_Displ (m) -1.7376 1.8381 0.6997 ART_TFOL_R1C MP_Surge_Displ (m) -0.7376 1.8381 0.6997 ART_TFOL_R1A MP_Sway_Displ (m) -0.6744 0.6544 0.3325 ART_TFOL_R1A MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_R1A MP_Sway_Displ (m) -0.2373 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1A MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047	Anti-Roll Tank Filled												
ART_TFOL_R1B MP_Surge_Displ (m) -1.8630 1.9444 0.7191 ART_TFOL_R1C MP_Surge_Displ (m) -1.7376 1.8381 0.6997 ART_TFOL_R1G MP_Surge_Displ (m) -0.6744 0.6544 0.3295 ART_TFOL_R1B MP_Sway_Displ (m) -0.6744 0.6544 0.3035 ART_TFOL_R1C MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1A MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9773	File Name	Parameter	Minimum	Maximum	St. Dev.								
ART_TFOL_R1C MP_Surge_Displ (m) -1.7376 1.8381 0.6997 ART_TFOL_ORIG MP_Surge_Displ (m) -0.6744 0.6544 0.3295 ART_TFOL_R1B MP_Sway_Displ (m) -0.6744 0.6544 0.3395 ART_TFOL_R1C MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_R1C MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1C MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.3274 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.1975 3.4302 1.5812 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.1975 3.4302 1.5812 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4786 <													
ART_TFOL_ORIG MP_Surge_Displ (m) -1.6717 1.9520 0.6957 ART_TFOL_R1A MP_Sway_Displ (m) -0.6744 0.6544 0.3035 ART_TFOL_R1B MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_ORIG MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_ORIG MP_Weave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1A MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1B MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9277													
ART_TFOL_R1A MP_Sway_Displ (m) -0.9886 0.8454 0.3295 ART_TFOL_R1B MP_Sway_Displ (m) -0.6744 0.6544 0.3035 ART_TFOL_R1C MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_R1C MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1A MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2740 1.1471 0.4488 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.49277 3.5424 1.6091<													
ART_TFOL_R1B MP_Sway_Displ (m) -0.6744 0.6544 0.3035 ART_TFOL_R1C MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_R1C MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1B MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -6.1828 6.3890 2.5356 ART_TFOL_R1C MP_Yaw_Angle (deg.) -5.1975 3.4302 1.5812 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9277													
ART_TFOL_R1C MP_Sway_Displ (m) -0.7291 0.8884 0.3342 ART_TFOL_ORIG MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1C MP_Heave_Displ (m) -1.2740 1.1471 0.4488 ART_TFOL_ORIG MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1C MP_Yaw_Angle (deg.) -5.1975 3.4302 1.5812 ART_TFOL_R1A MP_Pich_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1C MP_Pitch_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9287 3.5370 1.5879 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9293 3.5370 1.5879 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.4299													
ART_TFOL_ORIG MP_Sway_Displ (m) -0.9237 1.1389 0.3472 ART_TFOL_R1A MP_Heave_Displ (m) -1.2358 1.4159 0.4576 ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1C MP_Heave_Displ (m) -1.2740 1.1471 0.4488 ART_TFOL_R1C MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1C MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9774 3.6343 1.5865 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9276		, ,											
ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1C MP_Heave_Displ (m) -1.2740 1.1471 0.4488 ART_TFOL_ORIG MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1C MP_Yaw_Angle (deg.) -6.1828 6.3890 2.5356 ART_TFOL_R1C MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1B MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1C MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1A MP_Pitch_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.3403 3.8779 1.5749 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.429													
ART_TFOL_R1B MP_Heave_Displ (m) -1.2383 1.5651 0.4671 ART_TFOL_R1C MP_Heave_Displ (m) -1.2740 1.1471 0.4488 ART_TFOL_ORIG MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1C MP_Yaw_Angle (deg.) -6.1828 6.3890 2.5356 ART_TFOL_R1A MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1B MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1C MP_Pitch_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.5630 4.0782 1.7381 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.3403 3.8779 1.5749 ART_TFOL_R1C MP_Roll_Angle (deg.) -4.429	ART TFOL R1A	MP Heave Displ (m)	-1.2358	1.4159	0.4576								
ART_TFOL_ORIG MP_Heave_Displ (m) -1.2540 1.3224 0.4344 ART_TFOL_R1A MP_Yaw_Angle (deg.) -4.4955 7.5986 2.1418 ART_TFOL_R1B MP_Yaw_Angle (deg.) -5.4573 6.6108 2.2374 ART_TFOL_R1C MP_Yaw_Angle (deg.) -6.1828 6.3890 2.5356 ART_TFOL_ORIG MP_Yaw_Angle (deg.) -5.3053 8.4521 2.5047 ART_TFOL_R1A MP_Pitch_Angle (deg.) -5.1975 3.4302 1.5812 ART_TFOL_R1B MP_Pitch_Angle (deg.) -5.4788 2.9049 1.6078 ART_TFOL_R1B MP_Pitch_Angle (deg.) -4.9784 3.6343 1.5865 ART_TFOL_R1C MP_Pitch_Angle (deg.) -4.9277 3.5424 1.6091 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.3630 4.0782 1.7381 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.3403 3.8779 1.5749 ART_TFOL_R1A MP_Roll_Angle (deg.) -4.4299 3.5370 1.5879 ART_TFOL_R1A Forward Speed 4.6887 knots ART_TFOL_R1A Forward Speed 4.6242 knots </td <td>ART_TFOL_R1B</td> <td></td> <td></td> <td>1.5651</td> <td>0.4671</td>	ART_TFOL_R1B			1.5651	0.4671								
ART_TFOL_R1AMP_Yaw_Angle (deg.)-4.49557.59862.1418ART_TFOL_R1BMP_Yaw_Angle (deg.)-5.45736.61082.2374ART_TFOL_R1CMP_Yaw_Angle (deg.)-6.18286.38902.5356ART_TFOL_ORIGMP_Yaw_Angle (deg.)-5.30538.45212.5047ART_TFOL_R1AMP_Pitch_Angle (deg.)-5.19753.43021.5812ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_ORIGMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1AMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1BMP_Yaw_Angle (deg.)-5.45736.61082.2374ART_TFOL_R1CMP_Yaw_Angle (deg.)-6.18286.38902.5356ART_TFOL_ORIGMP_Yaw_Angle (deg.)-5.30538.45212.5047ART_TFOL_R1AMP_Pitch_Angle (deg.)-5.19753.43021.5812ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1AForward Speed4.6242knotsART_TFOL_R1AForward Speed4.6242knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s	ART_TFOL_ORIG	MP_Heave_Displ (m)	-1.2540	1.3224	0.4344								
ART_TFOL_R1CMP_Yaw_Angle (deg.)-6.18286.38902.5356ART_TFOL_ORIGMP_Yaw_Angle (deg.)-5.30538.45212.5047ART_TFOL_R1AMP_Pitch_Angle (deg.)-5.19753.43021.5812ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1BMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1AForward Speed4.6242knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s </td <td></td> <td></td> <td>-4.4955</td> <td>7.5986</td> <td>2.1418</td>			-4.4955	7.5986	2.1418								
ART_TFOL_ORIGMP_Yaw_Angle (deg.)-5.30538.45212.5047ART_TFOL_R1AMP_Pitch_Angle (deg.)-5.19753.43021.5812ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1AForward Speed4.6242knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1AMP_Pitch_Angle (deg.)-5.19753.43021.5812ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_ORIGMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_R1CMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1AForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_R1CForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5751sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1BMP_Pitch_Angle (deg.)-5.47882.90491.6078ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_ORIGMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_R1CForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s		v (v)											
ART_TFOL_R1CMP_Pitch_Angle (deg.)-4.97843.63431.5865ART_TFOL_ORIGMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1BMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1CMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_ORIGMP_Pitch_Angle (deg.)-4.92773.54241.6091ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1AMP_Roll_Angle (deg.)-4.56304.07821.7381ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1BMP_Roll_Angle (deg.)-3.99893.43281.4595ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_R1CForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_ORIGSouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s		• • • • /											
ART_TFOL_R1CMP_Roll_Angle (deg.)-4.34033.87791.5749ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_ORIGSouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_ORIGMP_Roll_Angle (deg.)-4.42993.53701.5879ART_TFOL_R1AForward Speed4.7569knotsART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1BForward Speed4.6887knotsART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_ORIGSouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s			-4.4299										
ART_TFOL_R1CForward Speed4.6242knotsART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s	ART_TFOL_R1A	Forward Speed	4.7569	knots									
ART_TFOL_ORIGForward Speed4.7124knotsART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1ASouth Center Wave ProbeWAV_HM01.99319mART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1BSouth Center Wave ProbeWAV_HM01.97737mART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s		·		knots									
ART_TFOL_R1CSouth Center Wave ProbeWAV_HM02.01162mART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s			_										
ART_TFOL_ORIGSouth Center Wave ProbeWAV_HM01.98619mART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1ASouth Center Wave ProbeSPEC_TPD10.5951sART_TFOL_R1BSouth Center Wave ProbeSPEC_TPD10.3736sART_TFOL_R1CSouth Center Wave ProbeSPEC_TPD10.6325s													
ART_TFOL_R1B South Center Wave Probe SPEC_TPD 10.3736 s ART_TFOL_R1C South Center Wave Probe SPEC_TPD 10.6325 s			_										
ART_TFOL_R1C South Center Wave Probe SPEC_TPD 10.6325 s													

NOTE: WAV HM0 = Significant Wave Height (m)

SPEC_TPD = Period of Spectral Peak (s)

ART_TFOL_R1A FILES: ART_TFOL_R1_001, ART_TFOL_R2_001, ART_TFOL_R3_001 ART_TFOL_R1B FILES: ART_TFOL_R1_002, ART_TFOL_R2_002, ART_TFOL_R3_002 ART_TFOL_R1C FILES: ART_TFOL_R1_003, ART_TFOL_R2_003, ART_TFOL_R3_003 ART_TFOL_ORIG FILES: ART_TFOL_001, ART_TFOL_002, ART_TFOL_003

 TABLE 11 (2 of 2): Data Repeatability Analysis Results – Following Sea, Trawl

 Speed, Anti-Roll Tank Active

	berts Sisters I									
	All angles and accele									
Proj #42_2374		shore Engineering B								
SURGE	Surge Accel. (m/s ²)	Surge Accel. (m/s²)	X-Axis							
	Model Test	Sea Trials	amot_4ktdw_m165_900	amot_4ktdw_m165_830	amot_4ktdw_m165_800	amot_4ktdw_m165_730	amot_4ktdw_m165_700	amot_4ktdw_m165	amot_4ktnpt_m165	
TFOL	0.25093	0.1993	0.232	0.2175	0.24	0.232	0.222	0.232	0.2125	Following
TQUART	0.2799	0.178	0.2155	0.202	0.2395	0.221	0.2185	0.2155	0.2425	Quartering
TBEAM	0.22191	0.156	0.191	0.1925	0.2105	0.1865	0.1905	0.1925	0.2765	Beam
TBOW	0.21194	0.20768	0.2205	0.213	0.2215	0.2175	0.207	0.2215	0.2445	Bow
THEAD	0.34654	0.193	0.258	0.2535	0.276	0.266	0.2585	0.2585	0.177	Head
	Surge Accel. (m/s ²)									
	Model Test	Sea Trials	amot_4ktdw_m165_nrt	amot_4ktdw_m165_900	amot_4ktdw_m165_830	amot_4ktdw_m165_1430	amot_4ktdw_m165_1400	amot_4ktdw_m165_1330	amot_4ktdw_m165	amot_4ktnpt_m165
ART_TFOL	0.32013			0.232	0.2175					
ART_TQUART	0.28128	0.1849	0.2485	0.2155	0.202	0.249	0.241	0.2275	0.249	0.265
ART_TBEAM	0.16347	0.185	0.2095	0.191	0.1925	0.2165	0.2085	0.206	0.2085	0.265
ART_TBOW	0.24662	0.22157	0.2355	0.2205	0.213	0.21	0.221	0.2365	0.2365	0.224
ART_THEAD				0.258	0.2535					
	Surge Accel. (m/s ²)									
	Model Test	Sea Trials		mot_8ktnpt_m165_1200			mot_8ktdw_m165	mot_8ktnpt_m165		
CFOL	0.21895	0.2007	0.2515	0.235	0.2455	0.245	0.2455	0.1755		
CQUART	0.22508	0.18027	0.23	0.222	0.221	0.2165	0.216	0.233		
CBEAM	0.22198	0.164	0.207	0.2125	0.202	0.208	0.207	0.242		
CBOW	0.1925	0.189	0.2105	0.2005	0.2035	0.2165	0.2005	0.203		
CHEAD	0.30503	0.1995	0.2455	0.23	0.243	0.2455	0.2455	0.1685		

TABLE 12: Comparison Table of Surge Accelerations for Model, Sea Trials and Numerical Data

	berts Sisters I									
NOTE: Proj #42_2374		ccelerations are Stand shore Engineering B								
		Sway Accel. (m/s ²)		Sway Accel. (m/s ²)	X-Axis					
SWAY	Model Test	Sea Trials		amot 4ktdw m165 830			amot 4ktdw m165 700	amot 4ktdw m165	amot 4ktnpt m165	
TFOL	0.1404	0.1546	0.1365	0.133	0.1465	0.1365	0.1375	0.1365	0.177	Following
TQUART	0.14045	0.222	0.1695	0.1685	0.176	0.165	0.1645	0.1695	0.1385	Quartering
TBEAM	0.30016	0.2389	0.267	0.2485	0.279	0.254	0.2585	0.2485	0.265	Beam
TBOW	0.31802	0.17647	0.253	0.2485	0.253	0.237	0.2385	0.253	0.2425	Bow
THEAD	0.15708	0.1878	0.1265	0.1225	0.1325	0.122	0.1205	0.1205	0.1925	Head
	-	-	-	-		-	-	-		-
	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)	Sway Accel. (m/s²)	Sway Accel. (m/s ²)
	Model Test	Sea Trials	amot_4ktdw_m165_nrt	amot_4ktdw_m165_900	amot_4ktdw_m165_830	amot_4ktdw_m165_1430	amot_4ktdw_m165_1400	amot_4ktdw_m165_1330	amot_4ktdw_m165	amot_4ktnpt_m165
ART_TFOL	0.30824			0.1365	0.133					
ART_TQUART	0.16684	0.238	0.158	0.1695	0.1685	0.156	0.1635	0.171	0.156	0.386
ART_TBEAM	0.33638	0.263	0.2885	0.267	0.2485	0.2825	0.2885	0.2805	0.2885	0.698
ART_TBOW	0.47077	0.1949	0.2835	0.253	0.2485	0.267	0.2825	0.28	0.28	0.926
ART_THEAD				0.1265	0.1225					
	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 1 1 1 2	0 0 0 0 0 0 0	0 1 1 1 2		
	Sway Accel. (m/s ²)	Sway Accel. (m/s ²)		Sway Accel. (m/s ²)						
	Model Test	Sea Trials				mot_8ktnpt_m165_1100	mot_8ktdw_m165	mot_8ktnpt_m165		
CFOL	0.14511	0.15766	0.1275	0.13	0.1275	0.1245	0.1275	0.1595		
CQUART	0.14166	0.199	0.1675	0.1535	0.163	0.1625	0.168	0.1705		
CBEAM	0.31234	0.244	0.3345	0.3185	0.3275	0.33	0.3345	0.2745		
CBOW	0.39372	0.20987	0.3045	0.286	0.293	0.2995	0.286	0.2455		
CHEAD	0.19846	0.19695	0.165	0.166	0.163	0.175	0.175	0.1605		

TABLE 13: Comparison Table of Sway Accelerations for Model, Sea Trials and Numerical Data

CCGA Ro NOTE: Proj #42_2374		I Seakeeping ccelerations are Stand hore Engineering B	ard Deviation values.							
HEAVE	Heave Accel. (m/s ²)		Heave Accel. (m/s ²)	X-Axis						
	Model Test	Sea Trials	amot_4ktdw_m165_900	amot_4ktdw_m165_830	amot_4ktdw_m165_800	amot_4ktdw_m165_730	amot_4ktdw_m165_700	amot_4ktdw_m165	amot_4ktnpt_m165	
TFOL	0.19681	0.405	0.349	0.329	0.361	0.3315	0.354	0.3315	0.449	Following
TQUART	0.1898	0.4185	0.355	0.336	0.372	0.3395	0.349	0.355	0.3915	Quartering
TBEAM	0.57776	0.50169	0.4555	0.436	0.4695	0.4195	0.439	0.436	0.444	Beam
TBOW	0.61049	0.482	0.449	0.4195	0.465	0.4205	0.419	0.465	0.4285	Bow
THEAD	0.5254	0.513	0.4825	0.454	0.4805	0.4545	0.45	0.45	0.471	Head
	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)
	Model Test	Sea Trials	amot 4ktdw m165 nrt	amot 4ktdw m165 900	amot 4ktdw m165 830	amot 4ktdw m165 1430	amot 4ktdw m165 1400		amot 4ktdw m165	amot 4ktnpt m165
ART TFOL	0.33739			0.349	0.329					
ART_TQUART	0.23815	0.46085	0.332	0.355	0.336	0.3305	0.3445	0.3475	0.3305	0.4125
ART_TBEAM	0.61257	0.5447	0.484	0.4555	0.436	0.495	0.4805	0.4785	0.4805	0.462
ART_TBOW	0.66058	0.58367	0.469	0.449	0.4195	0.454	0.498	0.482	0.482	0.456
ART_THEAD				0.4825	0.454					
	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)	Heave Accel. (m/s ²)		
	Model Test	Sea Trials	mot 8ktnpt m165 1230	mot 8ktnpt m165 1200	mot 8ktnpt m165 1130	mot 8ktnpt m165 1100	mot 8ktdw m165	mot 8ktnpt m165		
CFOL	0.15971	0.45896	0.383	0.3715	0.389	0.3685	0.389	0.406		
CQUART	0.1614	0.4426	0.375	0.356	0.3745	0.352	0.3545	0.4705		
CBEAM	0.72796	0.6205	0.605	0.5955	0.6075	0.603	0.605	0.5365		
CBOW	0.77061	0.6435	0.6395	0.5845	0.5905	0.5965	0.5845	0.514		
CHEAD	0.78929	0.72846	0.7335	0.6715	0.7115	0.729	0.729	0.523		

NOTE: T(heading angle) = Trawl Speed Results (nominally 4 knots) – Anti-Roll Tank Empty C(heading angle) = Cruise Speed Results (nominally 8 knots) – Anti-Roll Tank Empty ART-T(heading angle) = Trawl Speed with Anti-Roll Tank Active

TABLE 14: Comparison Table of Heave Accelerations for Model, Sea Trials and Numerical Data

CCGA Ro NOTE:	berts Sisters I All angles and a	I Seakeeping ccelerations are Stan	•								
Proj #42_2374 ROLL	10 Offs Roll Angle (deg.) Model Test	hore Engineering B Roll Angle (deg.) Sea Trials	Roll Angle (deg.)	Roll Angle (deg.) amot 4ktdw m165 830	Roll Angle (deg.) amot 4ktdw m165 800	Roll Angle (deg.) amot 4ktdw m165 730	Roll Angle (deg.) amot 4ktdw m165 700	Roll Angle (deg.) amot 4ktdw m165	Roll Angle (deg.) amot 4ktnpt m165	X-Axis	
TFOL	2.8904	3.5648	2.0095	1.995	2.4055	2.063	1.824	2.063	2.549	Following	
TQUART	2.8904	4.1043	2.413	2.2355	2.5905	2.4345	2.357	2.413	2.5975	Quartering	
TBEAM	5.1473	4.6957	5.0765	5.0285	5.506	5.1685	4.9975	5.0285	5.831	Beam	
TBOW	5.7464	4.0386	4.563	5.2775	5.931	5.4225	5.677	5.931	4.82	Bow	
THEAD	2.8048	3.9223	1.8775	1.9225	5.931	2.1925	2.107	2.107	3.239	Head	
	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)
	Model Test	Sea Trials	mot_4ktdw_m165_par	mot_4ktdw_m165_nrt		mot_4ktdw_m165_830	mot_4ktdw_m165_1430	mot_4ktdw_m165_1400	mot_4ktdw_m165_1330	mot_4kdw_m165	mot_4ktnpt_m165
ART_TFOL	1.6139				2.0095	1.995					
ART_TQUART	2.0026	2.747	1.728	2.164	2.413	2.2355	1.9685	2.1465	2.3535	1.9685	4.798
ART_TBEAM	3.4964	3.0279	3.218	6.248	5.0765	5.0285	3.2095	3.3585	3.3175	3.3585	6.46
ART_TBOW	3.5315	2.0887	3.366	4.897	4.563	5.2775	2.7925	2.5865	2.694	2.694	8.095
ART_THEAD			0	0	1.8775	1.9225					
	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	Roll Angle (deg.)	1		
	Model Test	Sea Trials	V 1 V/			mot_8ktnpt_m165_1100	mot_8ktdw_m165	mot_8ktnpt_m165			
CFOL	2.2591	4.0095	2.566	2.7135	2.697	2.473	2.697	4.0265	1		
CQUART	1.515	4.114	2.808	2.468	2.6545	2.7885	2.8535	2.9805	1		
CBEAM	3.9084	4.7762	5.141	4.8685	4.9895	4.9515	5.141	4.7305	1		
CBOW	6.3207	3.9878	4.544	3.8185	4.133	4.581	3.8185	3.273	1		
CHEAD	4.1505	2.947	2.942	2.6855	2.651	2.5955	2.5955	3.7885	1		

TABLE 15: Comparison Table of Roll Angles for Model, Sea Trials and Numerical Data

NOTE:		ccelerations are Stand	dard Deviation values.								
Proj #42_2374 PITCH	10 Offs Pitch Angle (deg.) Model Test	shore Engineering B Pitch Angle (deg.) Sea Trials	Pitch Angle (deg.)	Pitch Angle (deg.) amot 4ktdw m165 830	Pitch Angle (deg.) amot 4ktdw m165 800	Pitch Angle (deg.) amot 4ktdw m165 730	Pitch Angle (deg.) amot 4ktdw m165 700	Pitch Angle (deg.) amot 4ktdw m165	Pitch Angle (deg.) amot 4ktnpt m165	X-Axis	
TFOL	1.5039	1.7959	1.753	1.672	1.7705	1.677	1.7195	1.677	1.815	Following	1
TQUART	1.6477	1.5718	1.6625	1.54	1.8165	1.667	1.682	1.6625	2.0515	Quartering	1
TBEAM	1.7306	1.607	1.6945	1.6275	1.8115	1.56	1.7025	1.6275	2.253	Beam	l
TBOW	2.3219	1.826	1.7625	1.66	1.7785	1.724	1.6515	1.7785	1.7785	Bow	1
THEAD	2.9447	1.9124	2.2305	2.14	1.7785	2.233	2.15	2.15	1.6025	Head	l
	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)
	Model Test	Sea Trials	mot_4ktdw_m165_par	mot_4ktdw_m165_nrt	mot_4ktdw_m165_900	mot_4ktdw_m165_830	mot_4ktdw_m165_1430	mot_4ktdw_m165_1400	mot_4ktdw_m165_1330	mot_4kdw_m165	mot_4ktnpt_m165
ART_TFOL	1.597				1.753	1.672					
ART_TQUART	1.7024	1.645	1.803	1.7945	1.6625	1.54	1.8015	1.77	1.6825	1.8015	4.488
ART_TBEAM	1.065	1.7808	1.696	1.7125	1.6945	1.6275	1.876	1.6925	1.775	1.6925	4.104
ART_TBOW	1.0468	2.3286	1.856	1.8535	1.7625	1.66	1.651	1.812	1.864	1.864	3.184
ART_THEAD					2.2305	2.14					
	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	Pitch Angle (deg.)	1		
	Model Test	Sea Trials	mot_8ktnpt_m165_1230	mot_8ktnpt_m165_1200	mot_8ktnpt_m165_1130	mot_8ktnpt_m165_1100	mot 8ktdw m165	mot_8ktnpt_m165			
CFOL	1.3217	1.609	1.8985	1.769	1.8895	1.8245	1.8895	1.634			
CQUART	1.3341	1.4655	1.7095	1.6865	1.7215	1.617	1.6115	2.097			
CBEAM	1.9065	1.468	1.9705	1.9705	1.898	1.8505	1.9705	2.1105			
CBOW	1.439	1.6386	2.0045	1.7705	1.848	1.9295	1.7705	1.907			
CHEAD	2.6418	1.7528	2.4655	2.212	2.3755	2.4165	2.4165	1.648			

TABLE 16: Comparison Table of Pitch Angles for Model, Sea Trials and Numerical Data

CCGA Ro	berts Sisters I	I Seakeeping	Experiments								
NOTE:		ccelerations are Stan									
Proj #42_2374	10 Offs	hore Engineering B	asin								
YAW	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	X-Axis	
	Model Test	Sea Trials	amot_4ktdw_m165_900	amot_4ktdw_m165_830	amot_4ktdw_m165_800	amot_4ktdw_m165_730	amot_4ktdw_m165_700	amot_4ktdw_m165	amot_4ktnpt_m165		
TFOL	7.3099	2.7172	1.161	1.348	1.478	1.187	1.069	1.187	1.618	Following	
TQUART	2.9689	2.3965	2.7665	2.467	2.762	2.1265	2.0745	2.7665	1.499	Quartering	
TBEAM	12.12	2.376	2.8135	2.531	3.0625	2.483	2.7	2.531	4.2195	Beam	
TBOW	10.298	2.261	2.497	2.66	2.249	2.127	2.599	2.249	2.568	Bow	
THEAD	1.8979	2.2025	1.102	1.5705	2.249	1.271	1.0285	1.0285	1.724	Head	
	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)
	Model Test	Sea Trials	mot_4ktdw_m165_par	mot_4ktdw_m165_nrt	mot_4ktdw_m165_900	mot_4ktdw_m165_830	mot_4ktdw_m165_1430	mot_4ktdw_m165_1400	mot_4ktdw_m165_1330	mot_4kdw_m165	mot_4ktnpt_m165
ART_TFOL	2.3837				1.161	1.348					
ART_TQUART	3.5803	2.6235	2.4935	2.846	2.7665	2.467	2.4575	2.7605	2.7805	2.4575	6.589
ART_TBEAM	2.9196	2.8805	2.816	2.979	2.8135	2.531	2.4085	2.603	2.179	2.603	7.112
ART_TBOW	2.8655	1.999	2.412	2.5905	2.497	2.66	2.248	2.65	2.5205	2.5205	8.661
ART_THEAD					1.102	1.5705					
	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)	Yaw Angle (deg.)			
	Model Test	Sea Trials	mot_8ktnpt_m165_1230	mot_8ktnpt_m165_1200	mot_8ktnpt_m165_1130	mot_8ktnpt_m165_1100	mot_8ktdw_m165	mot_8ktnpt_m165			
CFOL	17.623	2.3577	1.745	1.745	1.6355	1.8735	1.6355	1.0615			
CQUART	10.208	2.1498	2.4185	2.4515	2.3175	2.534	2.2215	2.3435			
CBEAM	4.2104	1.5533	2.6165	2.912	2.6845	2.862	2.6165	3.178			
CBOW	3.3107	1.1789	2.35	1.7295	2.1465	2.2665	1.7295	1.696			
CHEAD	6.9198	1.2668	0.861	0.798	0.8485	0.7675	0.7675	0.668			

TABLE 17: Comparison Table of Yaw Angles for Model, Sea Trials and Numerical Data

TR-2009-24

FIGURES

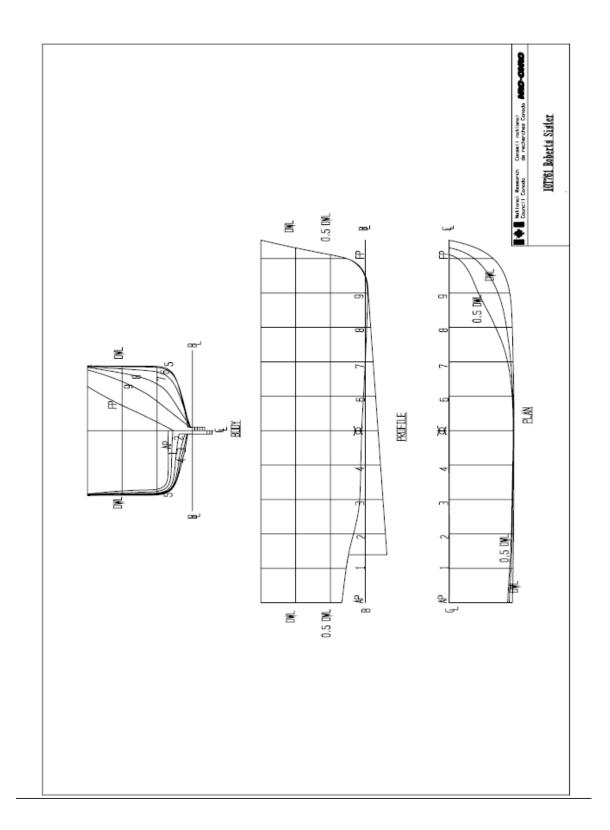


FIGURE 1: Body Plan, Profile & Plan Drawings - Roberts Sisters II Model IOT761

FIGURE 2: CCGA Roberts Sisters II Model IOT761

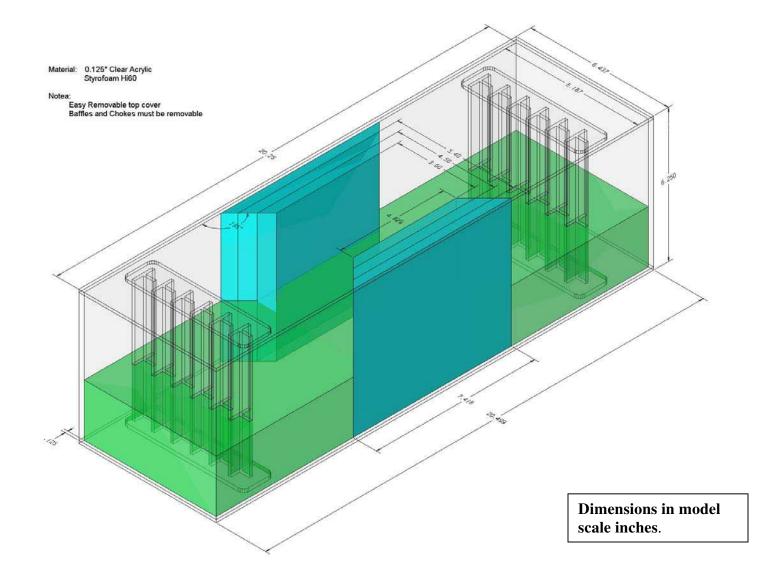


FIGURE 3: CCGA Roberts Sisters II Model Anti-Roll Tank Design

FIGURE 4: Model IOT761 Propeller/Rudder Arrangement

FIGURE 5: CCGA Roberts Sisters II - Propeller/Rudder Arrangement

FIGURE 6: Model IOT761 Instrumentation & Battery Layout

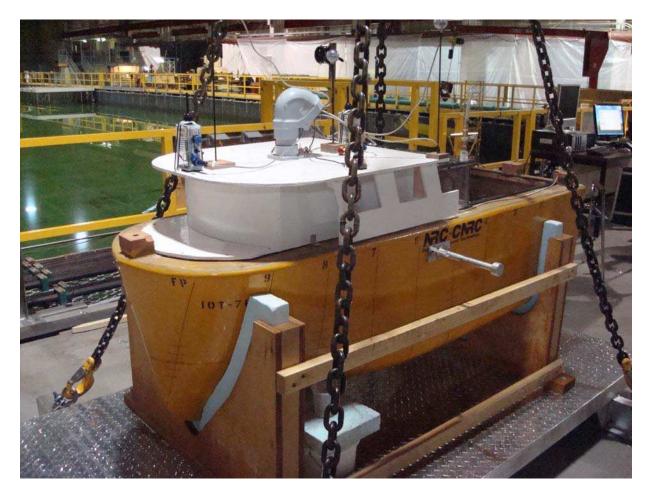


FIGURE 7: Model IOT761 in Cradle with Lifting Chains Attached

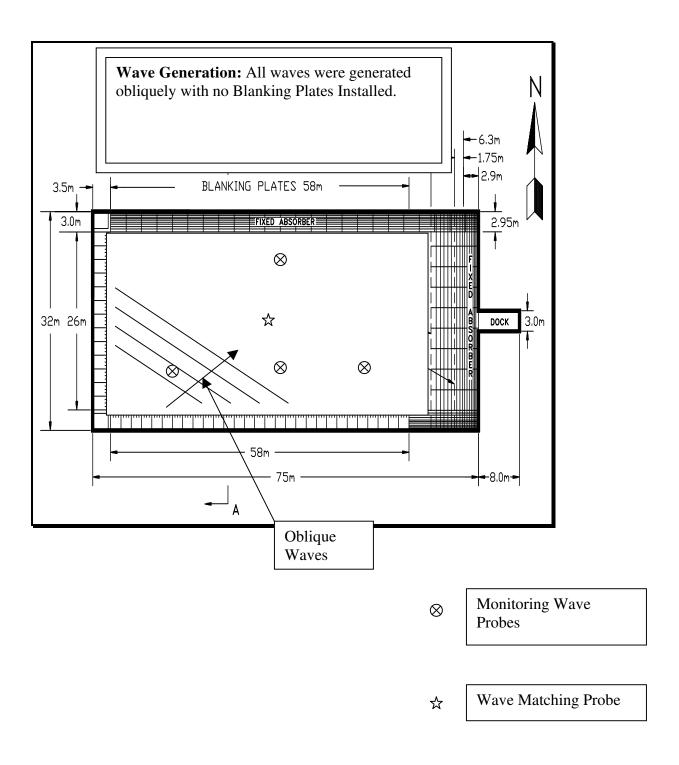
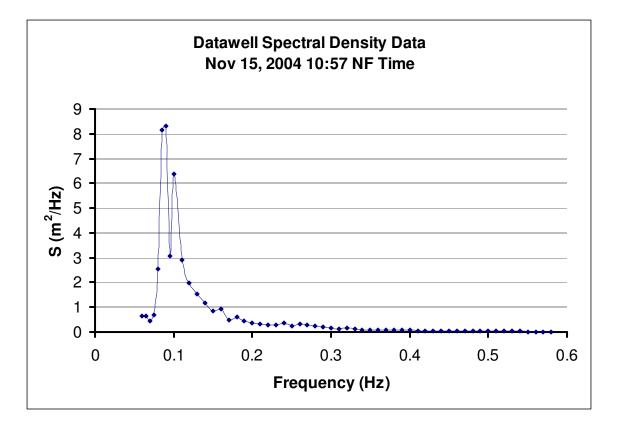



FIGURE 8: Offshore Engineering Basin Layout

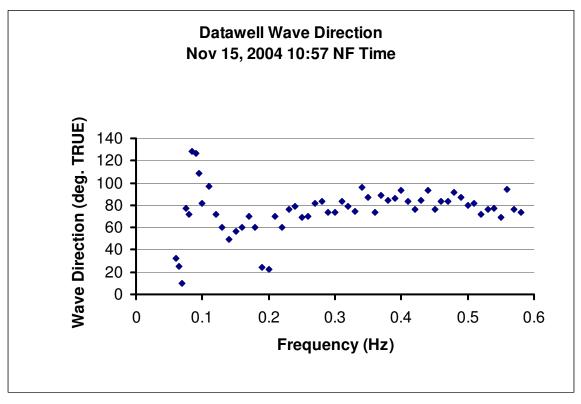


FIGURE 9: Target Irregular Wave Spectral Density and Direction Data

FIGURE 10: Model Launching Arrangement

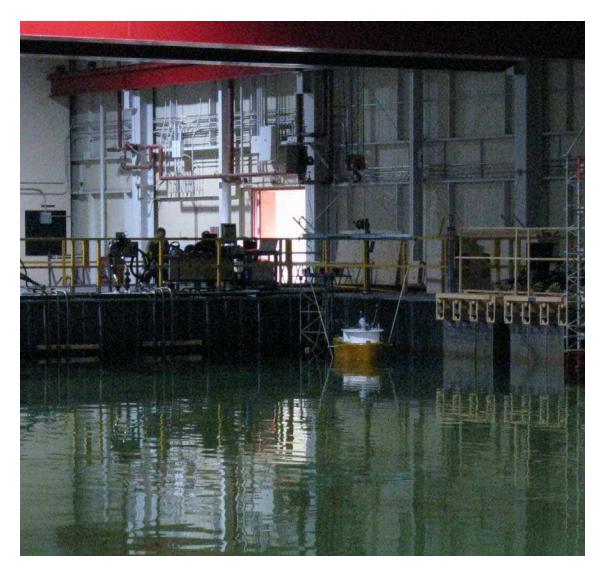


FIGURE 11: Launching Model from South East Corner

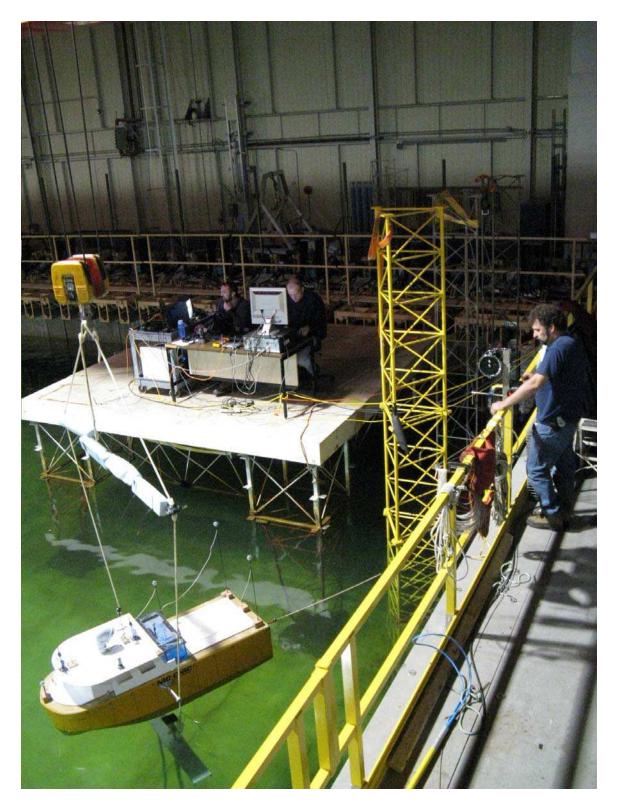


FIGURE 12: Launching Model from North West Corner

FIGURE 13: Model IOT761 with ART in use (fluid in ART dyed blue)

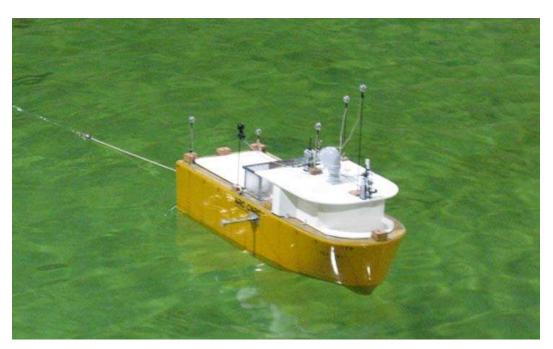


FIGURE 14: Model IOT761 without ART in use

FIGURE 15: Model IOT761 During Testing – case where the period of the wave matches the natural roll period of model.

[CUMMINGD.TMP.TMP] Test No. case1_1_003 8-0CT-2009 15:05

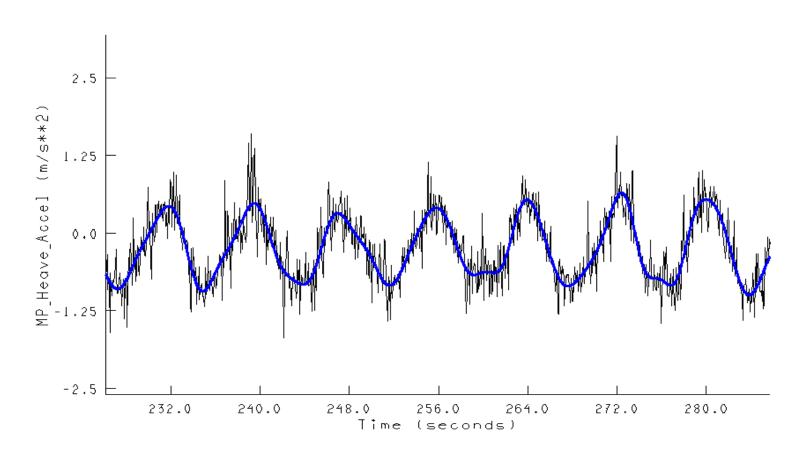


FIGURE 16: Example Time Series Plot of Heave Acceleration With/Without Band Pass Filtering

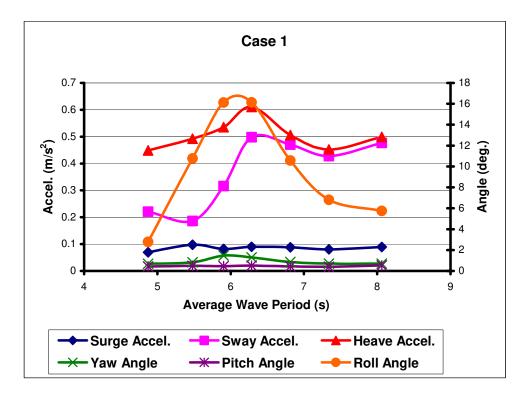


FIGURE 17: Accel./Angle vs. Average Wave Period – Case 1 (Beam Seas, 4 knots, ART Empty)

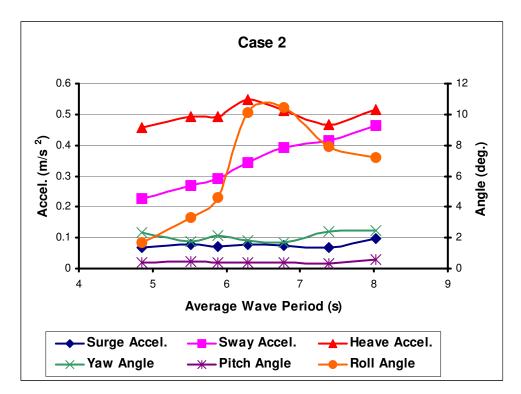


FIGURE 18: Accel./Angle vs. Average Wave Period – Case 2 (Beam Seas, 4 knots, ART Filled)

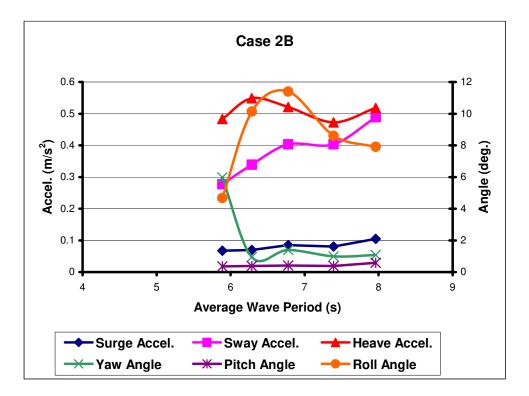


FIGURE 19: Accel./Angle vs. Average Wave Ht. – Case 2B (Beam Seas, 4 knots, ART Filled - fitted with baffles)

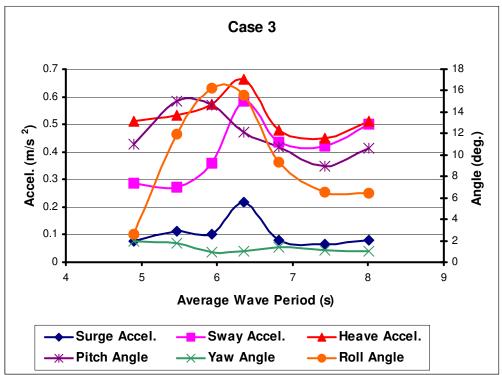


FIGURE 20: Accel./Angle vs. Average Wave Period – Case 3 (Beam Seas, 8 knots, ART Empty)

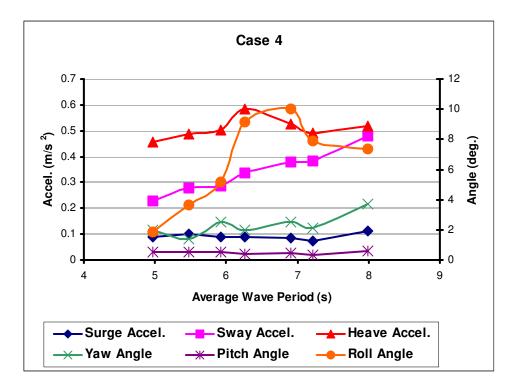


FIGURE 21: Accel./Angle vs. Average Wave Period – Case 4 (Beam Seas, 8 knots, ART Filled)

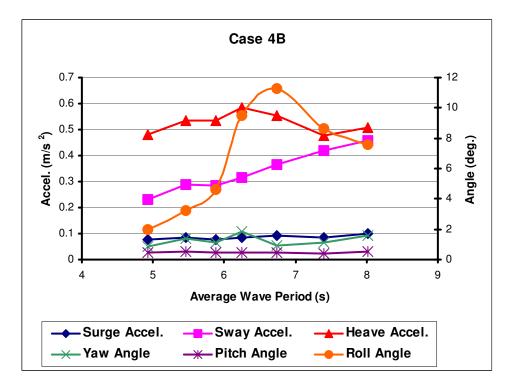


FIGURE 22: Accel./Angle vs. Average Wave Period – Case 4B (Beam Seas, 8 knots, ART Filled - fitted with baffles)

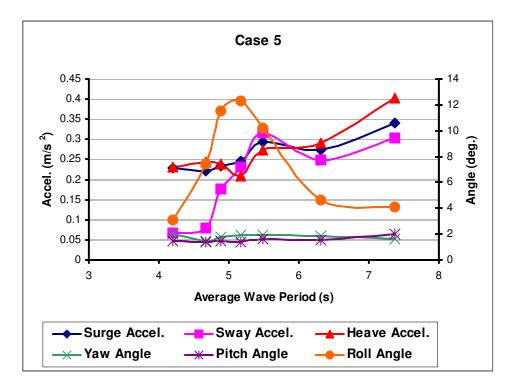


FIGURE 23: Accel./Angle vs. Average Wave Period – Case 5 (Quartering Seas, 4 knots, ART Empty)

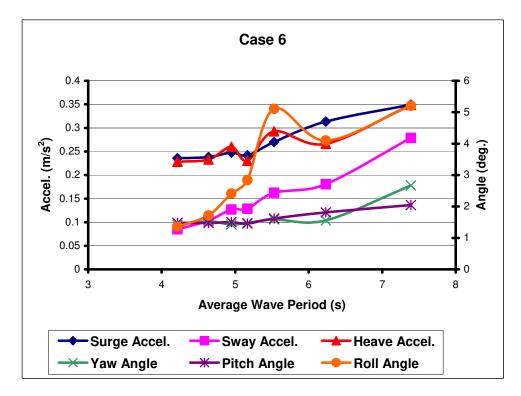


FIGURE 24: Accel./Angle vs. Average Wave Period – Case 6 (Quartering Seas, 4 knots, ART Filled)

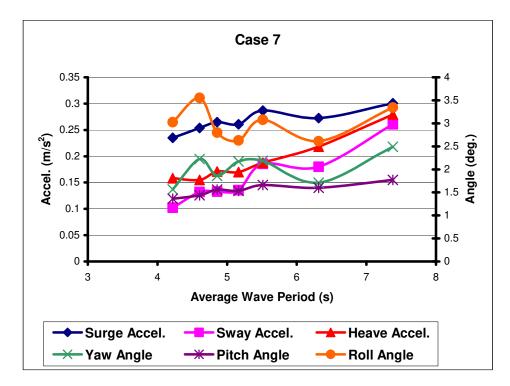


FIGURE 25: Accel./Angle vs. Average Wave Period – Case 7 (Quartering Seas, 8 knots, ART Empty)

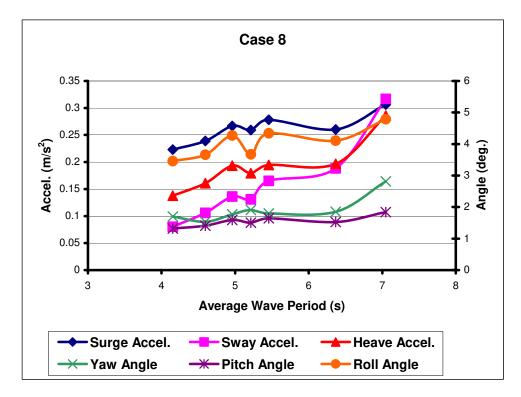


FIGURE 26: Accel./Angle vs. Average Wave Period – Case 8 (Quartering Seas, 8 knots, ART Filled)

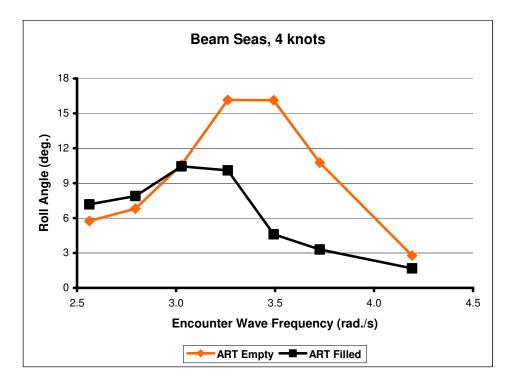


FIGURE 27: Roll Angle vs. Encounter Wave Frequency – Beam Seas, 4 knots, With/Without ART Filled

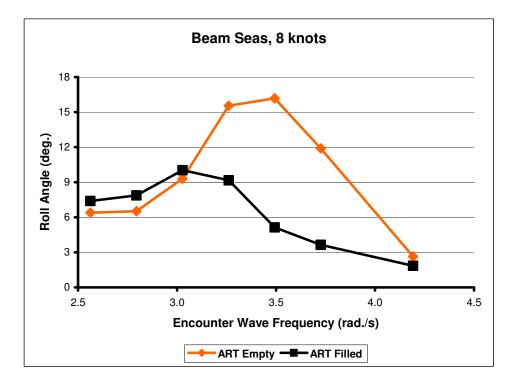


FIGURE 28: Roll Angle vs. Encounter Wave Frequency – Beam Seas, 8 knots, With/Without ART Filled

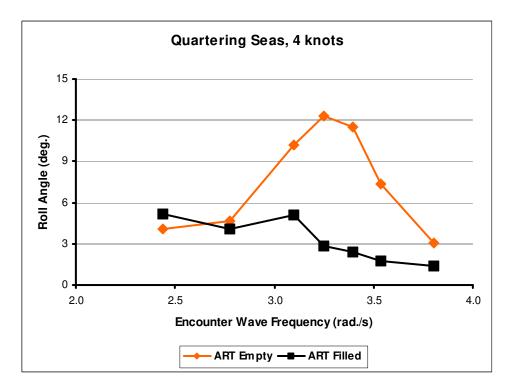


FIGURE 29: Roll Angle vs. Encounter Wave Frequency – Quartering Seas, 4 knots, With/Without ART Filled

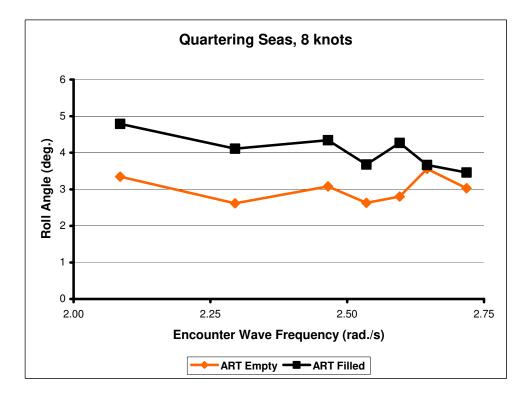


FIGURE 30: Roll Angle vs. Encounter Wave Frequency – Quartering Seas, 8 knots, With/Without ART Filled

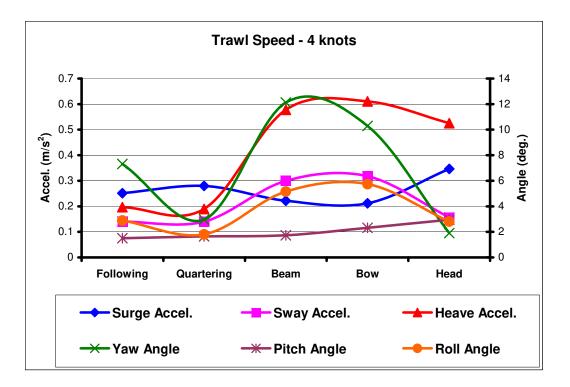


FIGURE 31: Accel./Angle vs. Heading – Trawl Speed, ART Empty

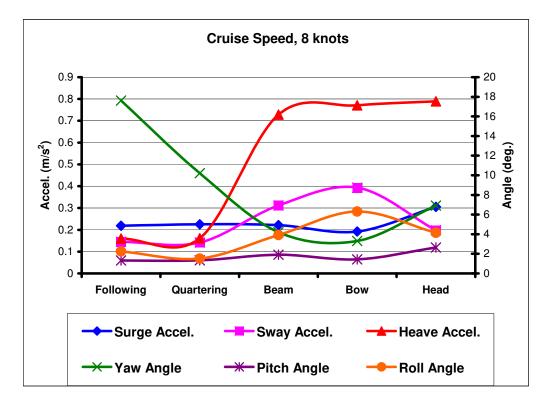


FIGURE 32: Accel./Angle vs. Heading – Cruise Speed, ART Empty

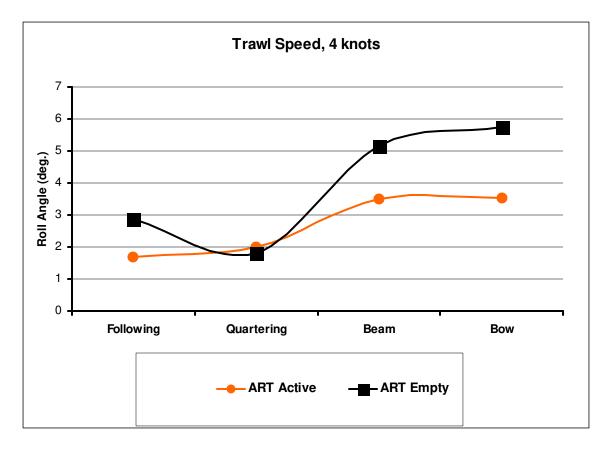


FIGURE 33: Roll Angle vs. Heading – Trawl Speed – With/Without ART Active

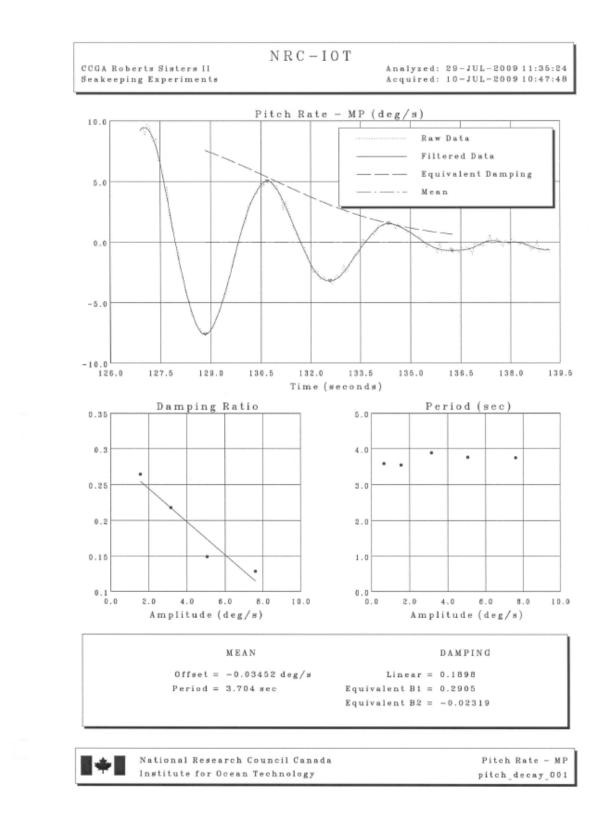


FIGURE 34 (1 of 2): Typical Pitch Decay Run Results

NRC-IOT

CCGA Roberts Sisters II Seakeeping Experiments Analyzed: 29-JUL-2009 11:35:24 Acquired: 10-JUL-2009 10:47:48

Pitch Rate - MP (deg/s)

Offset	Average Period	Linear Damping	Equivalent Damping	Equivalent Damping
		Coefficient	Slope	Offset
-0.0345	3.7040	0.18981	-0.02319	0.29054

Pitch Rate - MP (deg/s)

Amplitude	ABS(Amplitude-Offset)	Damping Ratio	Period
-7.6334	7.5989	0.12841	3.7471
5.0247	5.0592	0.14873	3.7566
-3.1887	3.1542	0.21785	3.8872
1.5298	1.5644	0.26425	3.5451
-0.6960	0.6615		3.5838

National Research Council Canada Institute for Ocean Technology Pitch Rate - MP pitch_decay_001

FIGURE 34 (2 of 2): Typical Pitch Decay Run Results

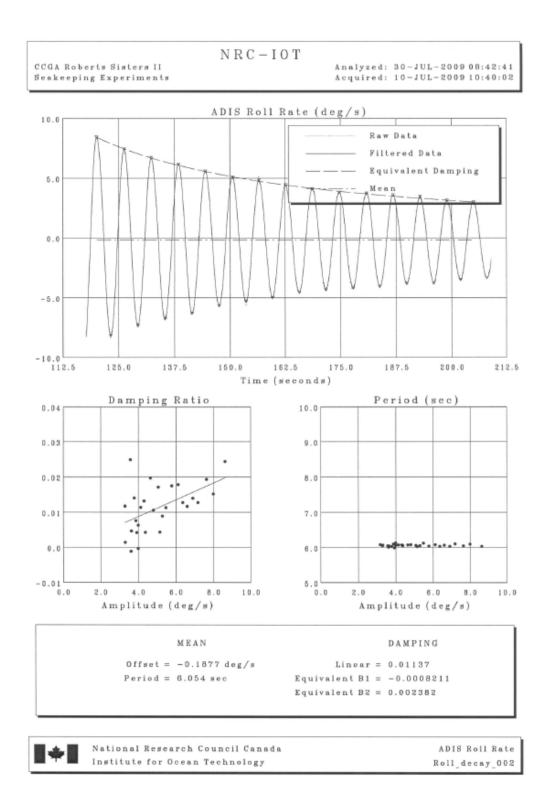


FIGURE 35 (1 of 2): Typical Zero Speed Roll Decay Run Results

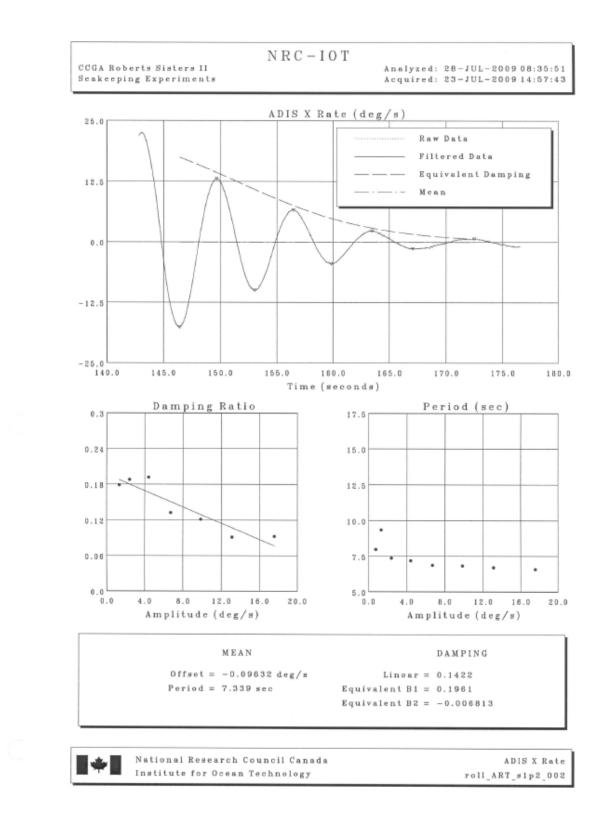
NRC-IOT

CCGA	Roberts	Sisters II	[
Seakeep	ing Exp	periments	

Analyzed: 30-JUL-2009 08:42:41 Acquired: 10-JUL-2009 10:40:02

ADIS Roll Rate (deg/s)

Offset	Average	Linear	Equivalent	Equivalent
	Period	Damping	Damping	Damping
		Coefficient	Slope	Offset
-0.1877	6.0542	0.01137	0.00238	-0.00082


ADIS Roll Rate (deg/s)

Amplitude	ABS(Amplitude-Offset)	Damping Ratio	Period
8.4396	8.6273	0.02435	6.0272
-8.1796	7.9919	0.01511	6.0910
7.4335	7.6212	0.01927	6.0423
-7.3612	7.1734	0.01273	6.0938
6.7045	6.8922	0.01392	6.0277
-6.7850	6.5973	0.01166	6.0596
6.1723	6.3600	0.01274	6.0289
-6.2983	6.1106	0.01775	6.0754
5.5913	5.7791	0.01743	6.0341
-5.6589	5.4711	0.01128	6.1205
5.0929	5.2807	0.00884	6.0497
-5.3237	5.1360	0.00434	6.0154
4.8786	5.0664	0.01707	6.0508
-4.9895	4.8018	0.01052	6.0768
4.4578	4.6456	0.01961	6.0693
-4.5557	4.3680	0.00428	6.0455
4.1219	4.3097	0.01310	6.0685
-4.3236	4.1358	0.01134	6.0649
3.8034	3.9911	-0.00038	6.0545
-4.1836	3.9958	0.00626	6.1251
3.7303	3.9180	0.00416	5.9799
-4.0548	3.8671	0.00757	6.0874
3.5884	3.7762	0.01401	6.0173
-3.8013	3.6135	-0.00115	6.0067
3.4388	3.6265	0.00459	6.0369
-3.7624	3.5746	0.02488	6.0398
3.1181	3.3058	0.00139	6.0621
-3.4792	3.2914	0.01172	6.0488
2.9847	3.1725		6.0721

National Research Council Canada Institute for Ocean Technology ADIS Roll Rate Roll_decay_002

FIGURE 35 (2 of 2): Typical Zero Speed Roll Decay Run Results

FIGURE 36 (1 of 2): Typical 1.2 m/s (8 knot Full Scale) Roll Decay Run Results With ART Filled

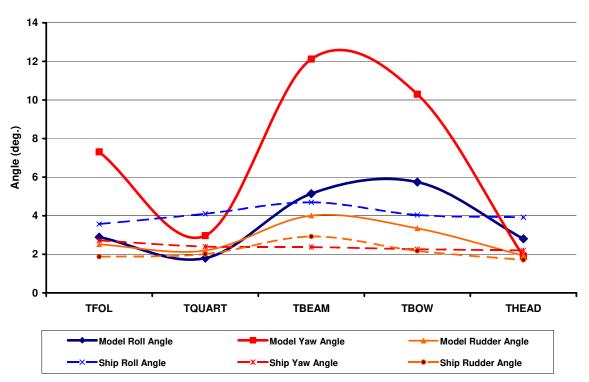
NRC-IOT

CCGA Roberts Sisters II	Analyzed: 28-JUL-2009 08:35:51
Seakeeping Experiments	Acquired: 23-JUL-2009 14:57:43

ADIS X Rate (deg/s)

Offset	Average	Linear	Equivalent	Equivalent
	Period	Damping	Damping	Damping
		Coefficient	Slope	Offset
-0.0963	7.3393	0.14218	-0.00681	0.19605

ADIS X Rate (deg/s)


Amplitude	ABS(Amplitude-Offset)	Damping Ratio	Period
-17.6593	17.5630	0.09237	6.5608
13.0264	13.1228	0.09102	6.6900
-9.9437	9.8474	0.12107	6.8203
6.6166	6.7129	0.13249	6.8500
-4.5073	4.4109	0.19170	7.1682
2.2917	2.3880	0.18793	7.3442
-1.4055	1.3091	0.17865	9.3261
0.6437	0.7400		7.9548

National Research Council Canada Institute for Ocean Technology

ADIS X Rate roll_ART_s1p2_002

FIGURE 36 (2 of 2): Typical 1.2 m/s (8 knot Full Scale) Roll Decay Run Results With ART Filled

Autopilot Review (Trawl Speed)

FIGURE 37: Investigation of Autopilot Performance – Trawl Speed

Autopilot Review (Cruise Speed)

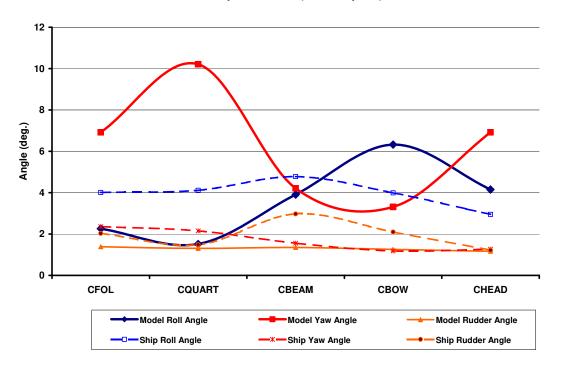


FIGURE 38: Investigation of Autopilot Performance – Cruise Speed

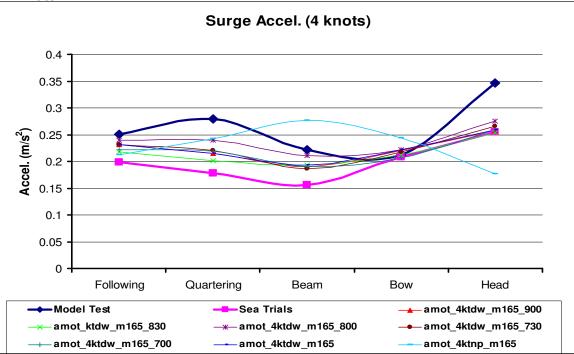


FIGURE 39: Surge Acceleration vs. Heading – Trawl Speed, ART Empty

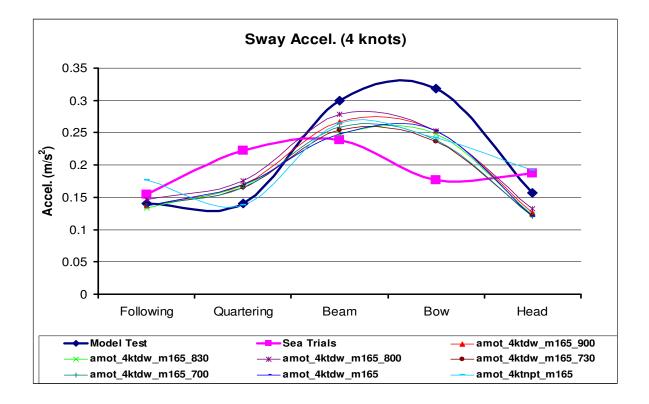


FIGURE 40: Sway Acceleration vs. Heading – Trawl Speed, ART Empty

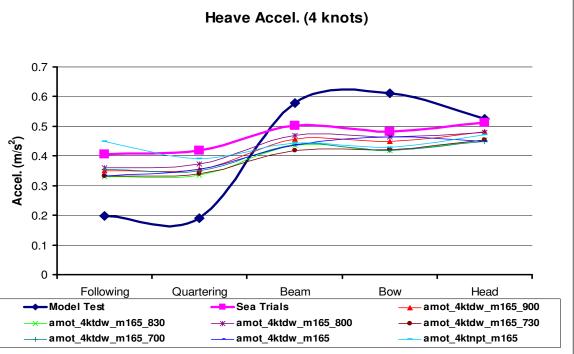


FIGURE 41: Heave Acceleration vs. Heading – Trawl Speed, ART Empty

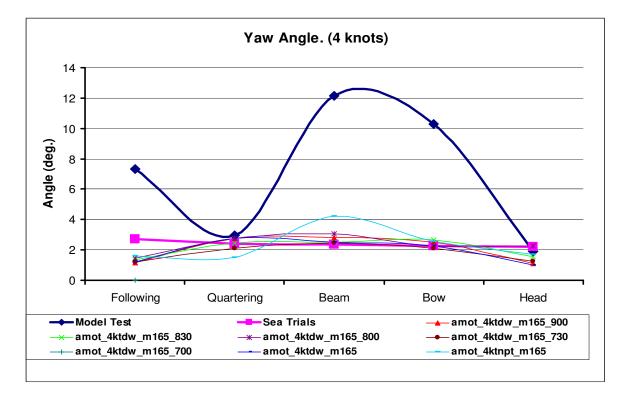


FIGURE 42: Yaw Angle. vs. Heading – Trawl Speed, ART Empty

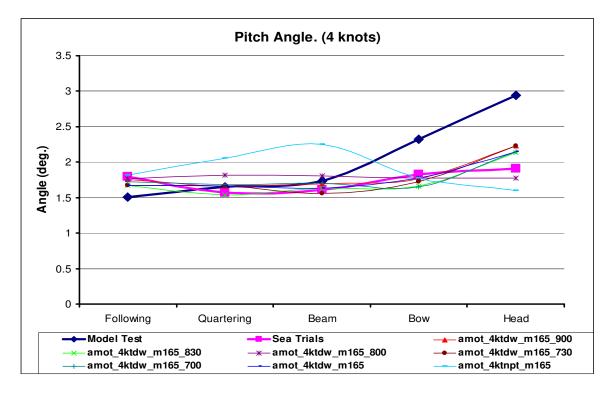


FIGURE 43: Pitch Angle. vs. Heading – Trawl Speed, ART Empty

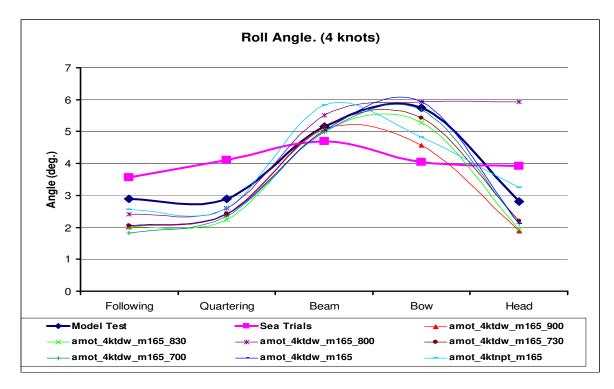


FIGURE 44: Roll Angle. vs. Heading – Trawl Speed, ART Empty

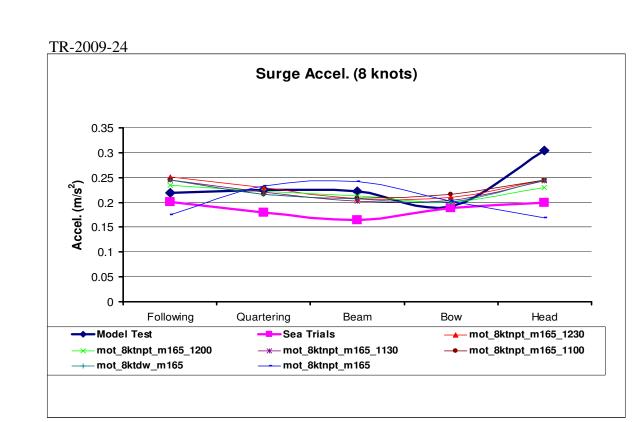


FIGURE 45: Surge Acceleration vs. Heading – Cruising Speed, ART Empty

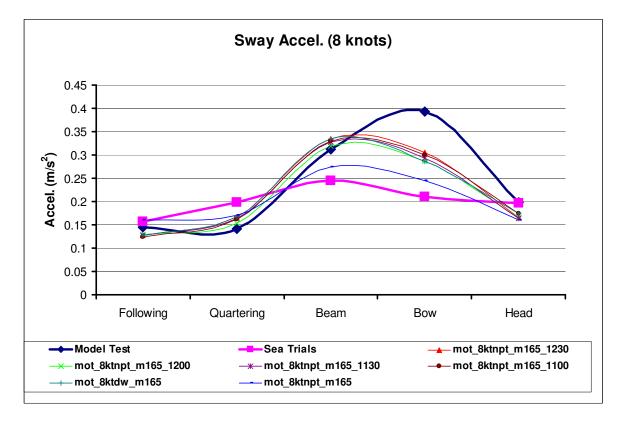


FIGURE 46: Sway Acceleration vs. Heading – Cruising Speed, ART Empty

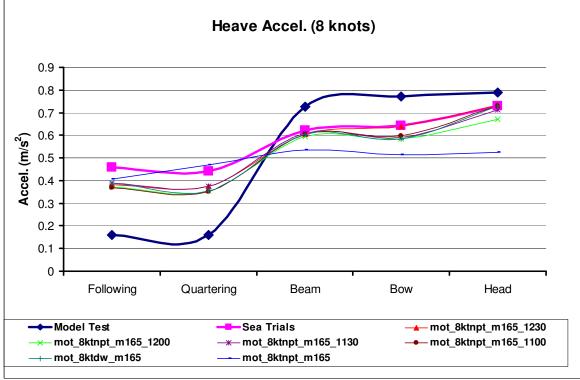


FIGURE 47: Heave Acceleration vs. Heading – Cruising Speed, ART Empty

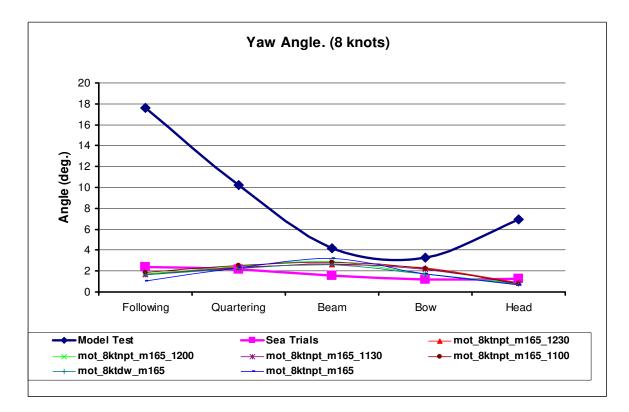


FIGURE 48: Yaw Angle. vs. Heading – Cruising Speed, ART Empty

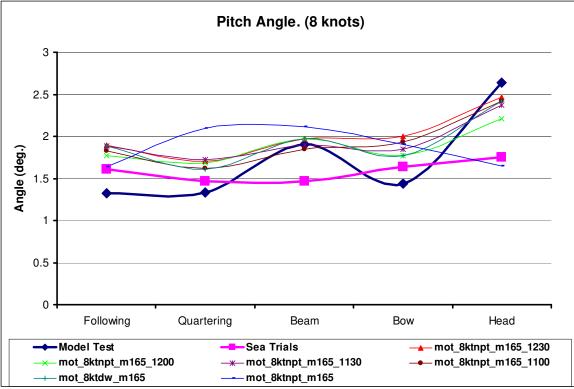


FIGURE 49: Pitch Angle. vs. Heading – Cruising Speed, ART Empty

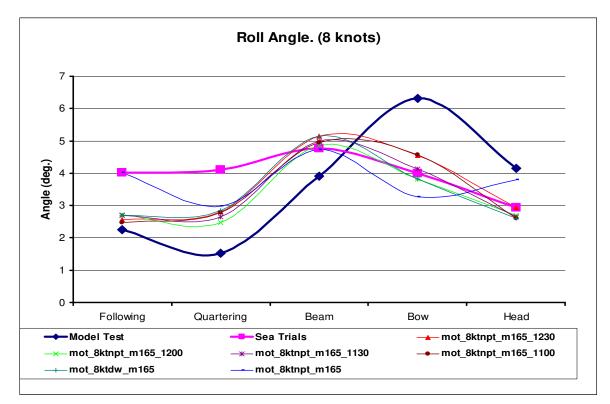


FIGURE 50: Roll Angle. vs. Heading – Cruising Speed, ART Empty

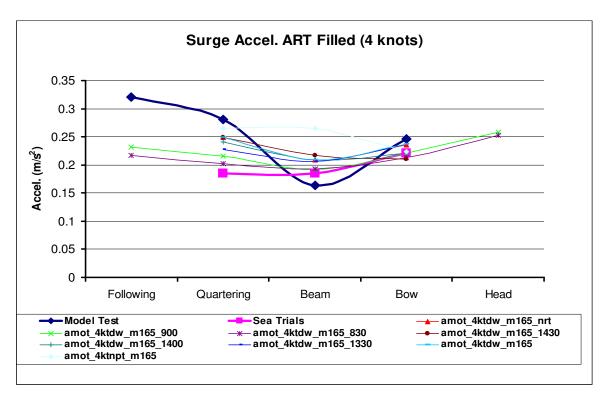


FIGURE 51: Surge Acceleration vs. Heading – Trawl Speed, ART Filled

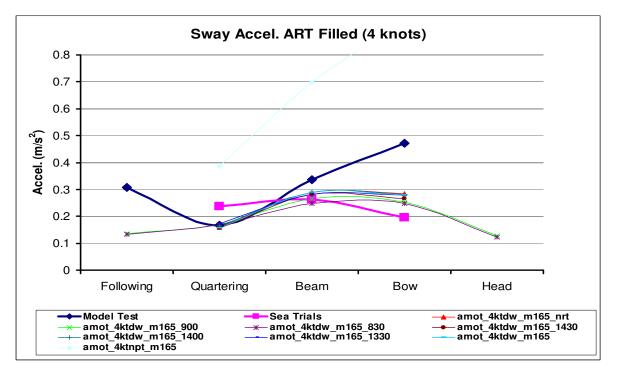


FIGURE 52: Sway Acceleration vs. Heading – Trawl Speed, ART Filled

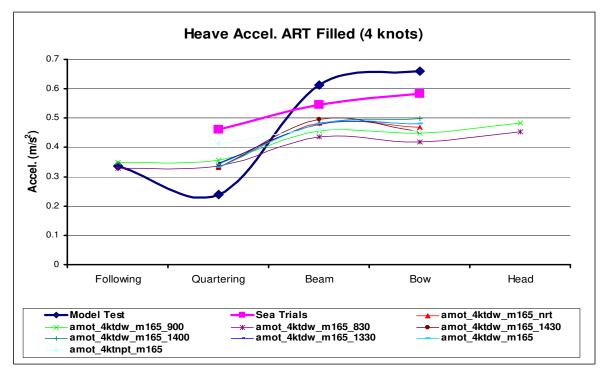


FIGURE 53: Heave Acceleration vs. Heading – Trawl Speed, ART Filled

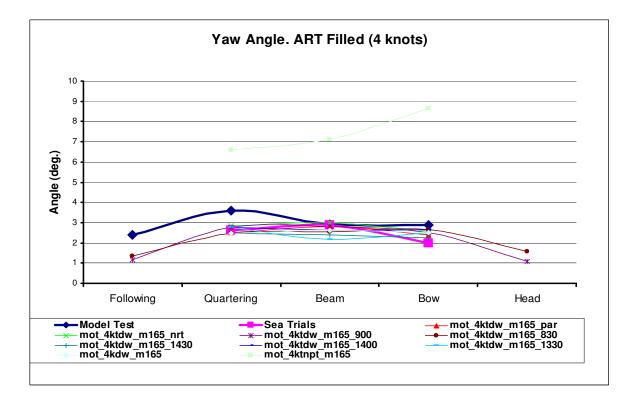


FIGURE 54: Yaw Angle. vs. Heading – Trawl Speed, ART Filled

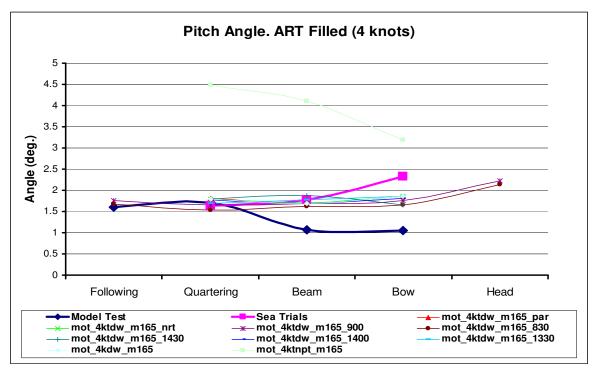


FIGURE 55: Pitch Angle. vs. Heading – Trawl Speed, ART Filled

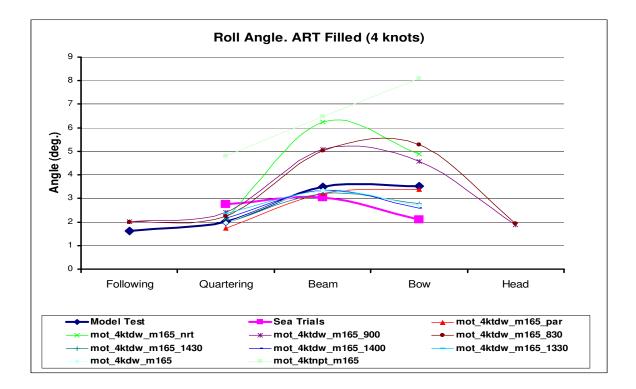


FIGURE 56: Roll Angle. vs. Heading – Trawl Speed, ART Filled

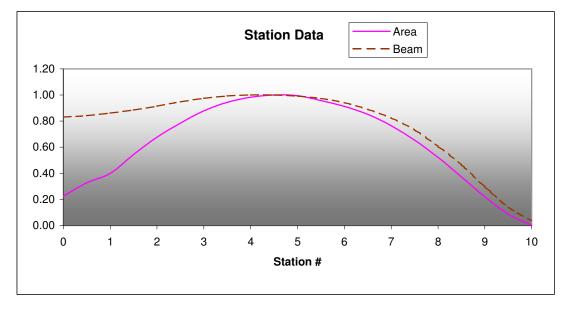
TR-2009-24

APPENDIX A

HYDROSTATICS FOR SHIP AND PHYSICAL MODEL

HYDROSTATICS WITHOUT APPENDAGES	Scale 1:	10.667
	<u>Ship</u>	<u>Model</u>
LENGTH BETWEEN PERPENDICULARS, m LENGTH ON THE WATERLINE, m LENGTH OVERALL, m	18.99 19.18 19.79	1.780 1.798 1.855
MAXIMUM WATERLINE BEAM, m	7.01	0.657
DRAFT AT MIDSHIPS, m DRAFT ABOVE DATUM AT AFT PERPENDICULAR, m DRAFT ABOVE DATUM AT FWD PERPENDICULAR, m TRIM, deg. EQUIVALENT LEVEL KEEL DRAFT ABOVE BASELINE, m	2.72 2.54 2.91 1.13 2.72	0.255 0.238 0.273 1.128 0.255
PARALLEL MIDDLE BODY WRT AP, m TO, m	NA NA	NA NA
CENTRE OF BUOYANCY WRT AP, m CENTRE OF BUOYANCY ABOVE BASELINE, m CENTRE OF FLOTATION WRT AP, m WATERPLANE AREA, sq. m WETTED SURFACE AREA, sq. m WETTED SURFACE AREA, (EXCLUDING TRANSOM) sq. m MIDSHIP SECTIONAL AREA, sq. m TRANSVERSE METACENTRIC RADIUS, m LONGITUDINAL METACENTRIC RADIUS, m VOLUME OF DISPLACEMENT, cu. m DISPLACEMENT, (tonnes @ FS in SW)(kg @ MS in FW)	8.69 1.69 8.43 118.76 209.38 201.20 15.35 1.90 13.88 223.33 228.91	0.814 0.158 0.790 1.044 1.840 1.768 0.135 0.135 0.178 1.301 0.184 184.001
MASS PROPERTIES		
CENTER OF GRAVITY ABOVE BASELINE, m	2.69	0.252

CENTER OF GRAVITY ABOVE BASELINE, m	2.69	0.252
TRANSVERSE METACENTRE HEIGHT, m	0.90	0.084
LONGITUDINAL METACENTRE HEIGHT, m	12.88	1.207


COEFFICIENTS OF FORM FOR NAKED HULL

COEFFICIENTS BASED ON:	LENGTH ON WATERLINE
	MAXIMUM BEAM
	EQUIVALENT LEVEL KEEL DRAFT

L/B	2.709
L/T	6.979
B/T	2.576
LCB %L FORWARD OF AP	45.745
LCF %L FORWARD OF AP	44.387
BLOCK COEFFICIENT	0.611
MIDSHIP COEFFICIENT	0.804
PRISMATIC COEFFICIENT	0.759
WATERPLANE COEFFICIENT	0.883
LONGITUDINAL INERTIA OF WATERPLANE	0.778
TRANSVERSE INERTIA OF WATERPLANE	0.775
BM/B	0.271
BML/L	0.701
BEAM - DISPLACEMENT RATIO	1.155
DRAFT - DISPLACEMENT RATIO	0.449
LENGTH - DISPLACEMENT RATIO	3.131
WETTED SURFACE - DISPLACEMENT RATIO	5.687
BM - DISPLACEMENT RATIO	0.313
BML - DISPLACEMENT RATIO	2.288

SECTIONAL AREA AND BEAM CURVES

Station	Area	<u>Beam</u>
0	0.224	0.831
0.5	0.327	0.842
1	0.400	0.861
1.5	0.545	0.885
2	0.676	0.915
2.5	0.785	0.948
3	0.879	0.975
3.5	0.944	0.992
4	0.984	1.000
4.5	1.000	1.000
5	0.995	0.991
5.5	0.957	0.974
6	0.913	0.941
6.5	0.852	0.890
7	0.764	0.823
7.5	0.654	0.733
8	0.523	0.606
8.5	0.373	0.466
9	0.220	0.300
9.5	0.088	0.141
10	0.002	0.037

Definitions:

Area = Station Area / Max. Sectional Area Beam = Station Beam / Max. Section Beam TR-2009-24

APPENDIX B

MODEL SWING & INCLINING RESULTS

Swing test

In order to match the model scale mass properties to those of the fishing vessel CCGA Roberts Sisters II, a swing test was performed in the Model Preparation Shop at NRC-IOT. The target displacement at the model scale was given as 181.09 kg (note that the scale is $1 : 10^{2/3}$). The bare hull weight was 67.25 kg. After including all outfit such as batteries, cables, sensors, etc., the model weighed 123.35 kg, which left 57.74 kg as ballast. When all of the material was placed into the model but not secured, including the ballast, the total weight was 180.89 kg, which was short by 200 grams from the target value. However, this 0.1% difference was deemed acceptable. A weight breakdown as prepared for the swing test is given in Table 1 below.

Model Weights				
Description	Weight (kg)			
Target displacement – model scale	181.09			
Empty hull weight before swing	67.25			
Installed Electronics	22.10			
Batteries	34.00			
Model weight without ballast (measured)	123.35			
Ballast (estimated)	57.74			
Final model weight, after swing	180.89			

Table 1: Weight breakdown for the model in preparation for the swing test

The target mass properties and the measured values after the swing test are given in Table 2. The model was first swung in pitch mode (stern to bow sense). The distribution of the weights was adjusted until a difference of 7 mm between the measured and target values for VCG was achieved (Table 2). Next, the model was swung in the port to starboard sense (roll mode). Again, the weights were adjusted until a difference of 6 mm between the measured VCG and target VCG was achieved. Note that the reference point for the VCG during the swing test is taken from the top of the aluminium bar as shown in Figure 2. It should also be noted that swings in both roll and pitch modes were alternately repeated to make sure that both produce the same VCG value, of course, within the experimental error. Theoretically, VCG for a given model should be independent of the way it is measured.

Table 2: Model parameters: the target and the measured values after t	the swing test
---	----------------

Parameter	Target	Measured	Difference	
Displacement (kg)	181.09	180.89	-0.200	
VCG (Pitch) [*] (m)	0.257	0.364	0.007	
$VCG (Roll)^* (m)$	0.357	0.363	0.006	
Radius of Gyration (Pitch) (m)	0.467	0.455	-0.012	
Radius of Gyration (Roll) (m)	0.2737	0.255	-0.019	
*As measured from the top of the aluminium bar on the swing frame (m) (see Figure 2)				

Some of the possible causes for the observed discrepancies between the target and measured values:

- The location of the model in the swing frame: Prior to swinging the model, the correct position for the model to be mounted in the swing frame was determined. However, in the swing frame instead of the typical support of a piece of High Density 60 Styrofoam (H60) sheet, a combination of an aluminium bar and a wedge shaped piece of the foam was used to support the model at a level height and to accommodate for the rake of the keel and the non-flat of the bottom (see Figures 1 and 2 below). Hence, the model was not at its predetermined position during the swing tests.
- In order to match the roll radius of gyration, it was necessary to move the weights (mass) away from the center of rotation for roll. This posed a problem due to the restrictions on space, hence, most ballast weight was moved to the bottom and sides of the model as much as possible. The 'Roberts Sisters II' model was built with a wooden lining on the inside aiding in moving weight away from the centre of the model, as well as allowing the mounting of equipment on the model's walls and therefore furthering the distribution of weight away from the centre line. This impacted the Roll Radius of Gyration and resulted in a measured value lower than the target Roll Radius of Gyration (see Table 2 above).
- Although theoretically it should not matter, another hindrance encountered during the inclining portion of the swing test was that the weight pan could only be swung from the stern of the swing frame. Mounted at the front of the swing frame, the weight pan did not clear the superstructure and forward deck of the 'Roberts Sisters II' model, however it did clear the transom and all aft appendages when mounted by the stern. This meant that only one direction of incline could be measured.

Inclining Experiment

After the swing test was completed, and all the equipment and wiring had been installed and secured to the model, an inclining experiment was conducted to verify the transverse metacentric height (GM_T), the pitch and the roll periods. The securing of the equipment as well as the addition of cables, Qualisys markers, etc. added 2.91 kg to the final model weight - a final displacement of 184 kg as tested condition.

During the inclining experiment, a weight of 4.9 kg was used to heel the model to an average of 4.33 degrees. The summarized results of this experiment can be seen in Table 3 Inclining Summary below. The measured GM_T and target GM_T have a difference of 2 mm.

Inclining Summary							
Measured Target Differen							
Inclining mass (kg)	4.9949	-	-				
Distance (m)	0.2075	-	-				
Average angle (deg)	4.3325	-	-				
$GM_T(m)$	0.0879	0.0899	-0.002				
KG (VCG) (m)	0.254	0.251	0.003				

Table 3: Inclining summary

Final Mass Properties of the Model The following table gives the as tested condition for the model.

Table 4: Model	parameters as tested
----------------	----------------------

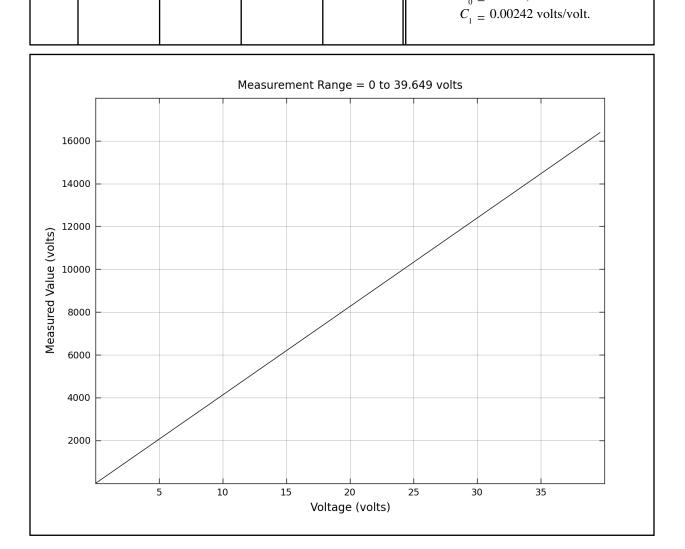
Parameter	Target	As Tested	Difference			
Displacement (kg)	181.09	184.0	2.91			
GM _T (m)	0.0899	0.0879	-0.002			
KG (VCG) from B.L. (m)*	0.251	0.254	0.003			
Radius of Gyration (Pitch) (m)	0.467	0.455	-0.012			
Radius of Gyration (Roll) (m)	0.274	0.255	-0.019			
Roll period (s) from decay tests (ART is empty, zero speed)	1.940	1.853	-0.087			
Pitch period (s) from decay tests (ART is empty, zero speed)	1.228	1.084	-0.144			
*For the definition of the baseline, refer to the drawing file "Roberts Sister Lam.ckd" at NRC-IOT Design Office databases						

Figure 1: 'Roberts Sisters II' Model IOT761 in Swing Frame

Figure 2: 'Roberts Sisters II' Model IOT761 Support Setup

TR-2009-24

APPENDIX C

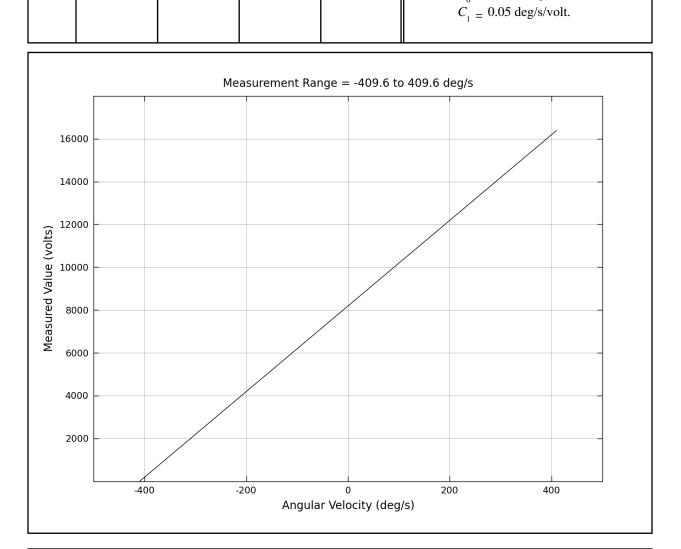

INSTRUMENTATION CALIBRATION RESULTS

Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Supply Calibrated 2009-06-24 12:47

Data So	Data Source: DASPC25 Channel 1 Programm			Serial #: Filt Programmable Gain: Exc Plug-In Gain:		
Data Point #	Physical Value (volts)	Measured Value (volts)	Fitted Curve Value (volts)	Error (volts)	Definition of Calibration Curve	
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Voltage (volts),	

V(t) = measured value (volts),

 $C_0 = 0$ volts,

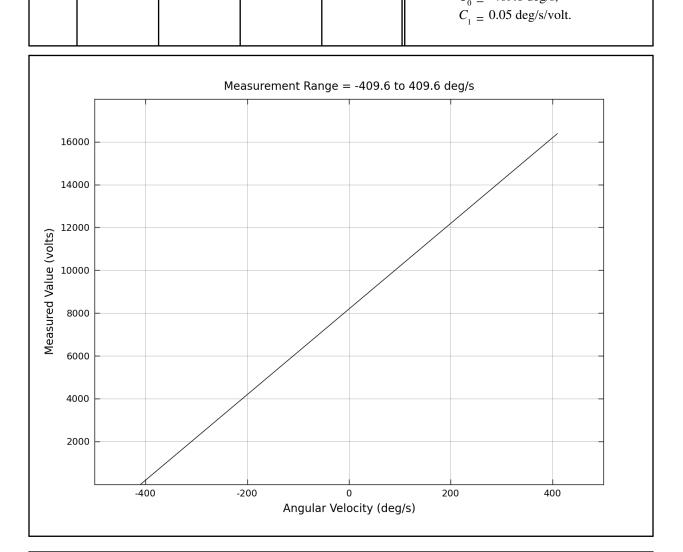


National Research Council Canada

Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS X Rate Calibrated 2009-06-24 12:47

Test Facility: OEB Serial #: Data Source: DASPC25 Channel 2 Programmable Gain: Sensor Model: Plug-In Gain:			Filter Frequency: Excitation Voltage:		
Data Point #	Physical Value (deg/s)	Measured Value (volts)	Fitted Curve Value (deg/s)	Error (deg/s)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Angular Velocity (deg/s), V(t) = measured value (volts),

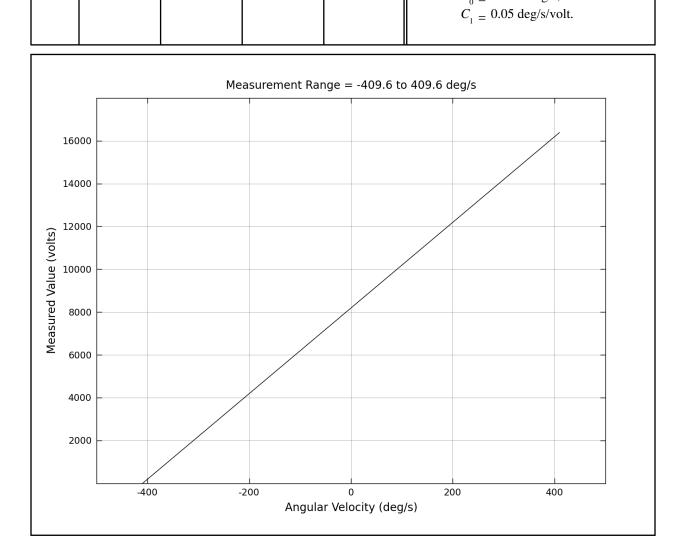
 $C_0 = -409.6 \text{ deg/s},$



Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Y Rate Calibrated 2009-06-24 12:48

Data So	est Facility: OEB Serial #: ata Source: DASPC25 Channel 3 Programmable Gain: ensor Model: Plug-In Gain:				Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (deg/s)	Measured Value (volts)	Fitted Curve Value (deg/s)	Error (deg/s)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Angular Velocity (deg/s), V(t) = measured value (volts),

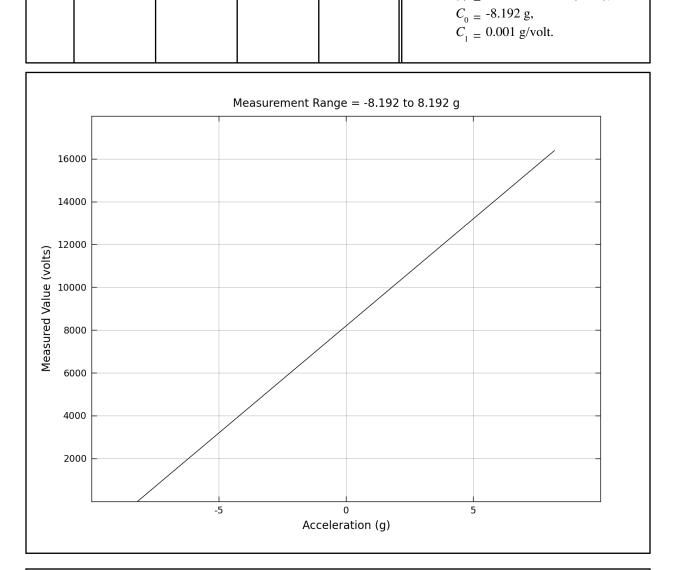
 $C_0 = -409.6 \text{ deg/s},$



Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Z Rate Calibrated 2009-06-24 12:48

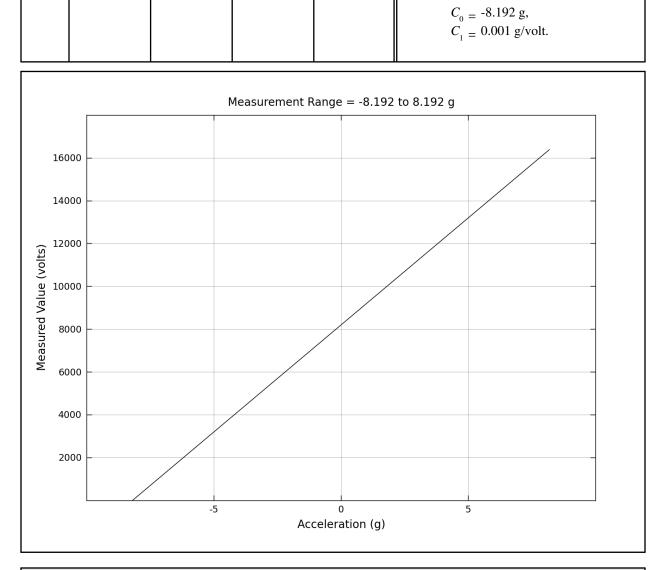
Data So	Test Facility: OEBSerial #:Data Source: DASPC25 Channel 4ProgrammableSensor Model:Plug-In Gain:		Programmable Gain: Excitation Volta		
Data Point #	Physical Value (deg/s)	Measured Value (volts)	Fitted Curve Value (deg/s)	Error (deg/s)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Angular Velocity (deg/s),

V(t) = measured value (volts),


 $C_0 = -409.6 \text{ deg/s},$

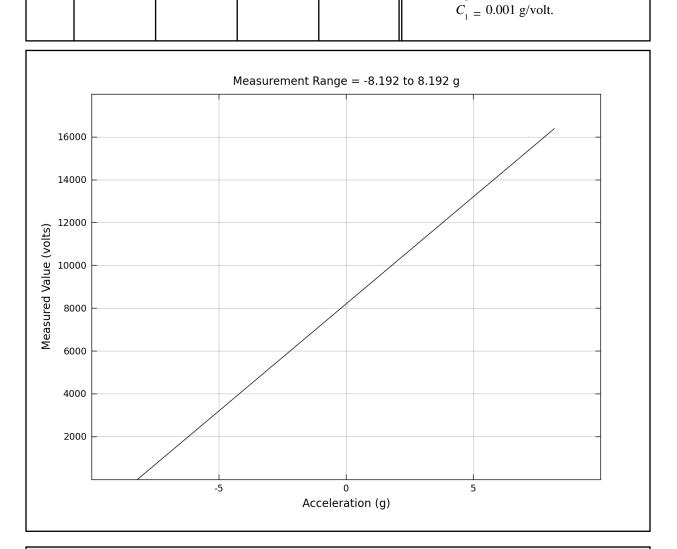
Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS X Accel Calibrated 2009-06-24 12:48

Data So	Test Facility: OEB Serial #: Data Source: DASPC25 Channel 5 Programmable Gain: Sensor Model: Plug-In Gain:				Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (g)	Measured Value (volts)	Fitted Curve Value (g)	Error (g)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Acceleration (g), V(t) = measured value (volts),

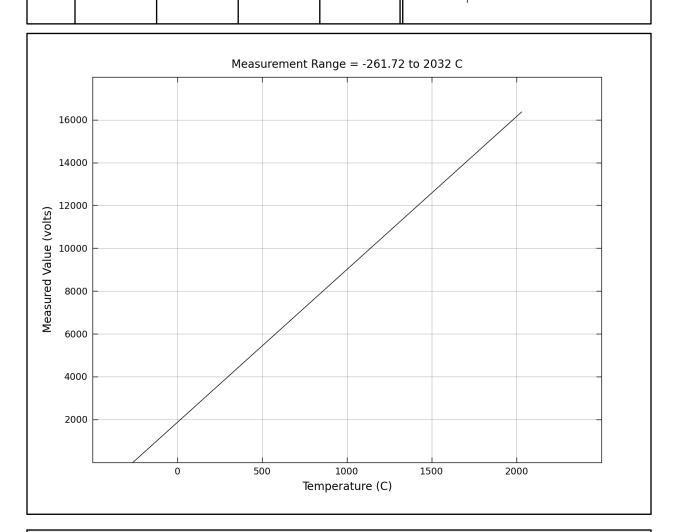


Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Y Accel Calibrated 2009-06-24 12:48

Data So				mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (g)	Measured Value (volts)	Fitted Curve Value (g)	Error (g)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Acceleration (g),

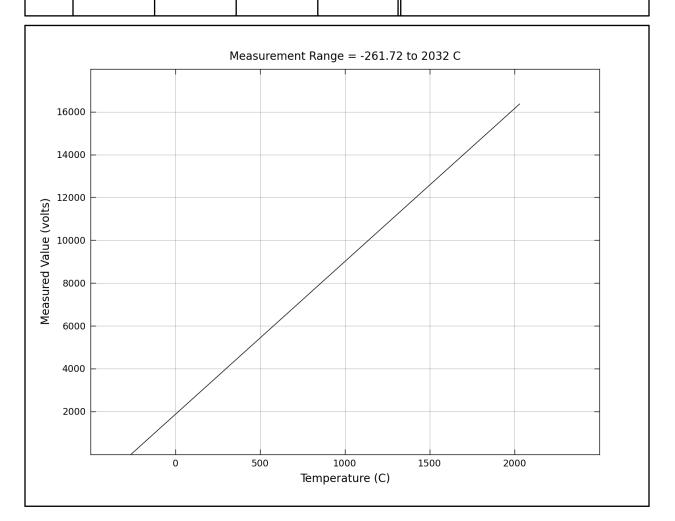

V(t) = measured value (volts),

Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Z Accel Calibrated 2009-06-24 12:49


Test Facility: OEB Data Source: DASPC25 Channel 7 Sensor Model:			Serial #: Program Plug-In C	mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (g)	Measured Value (volts)	Fitted Curve Value (g)	Error (g)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Acceleration (g), V(t) = measured value (volts), $C_0 = -8.192$ g,

Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS X Temp Calibrated 2009-06-24 12:49

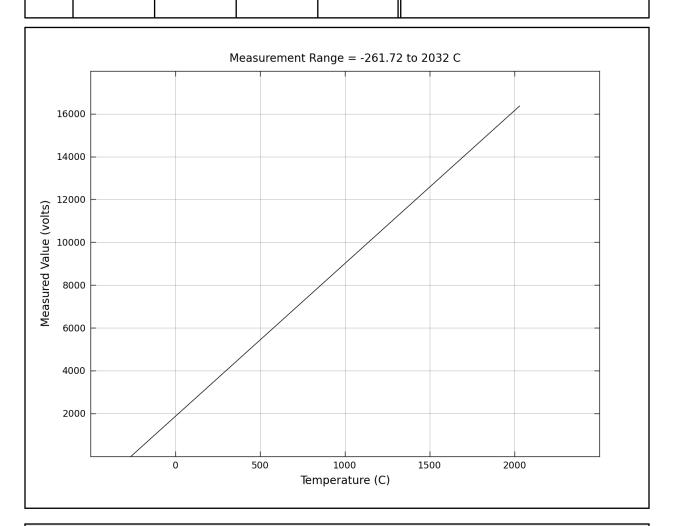
Test Facility: OEB Data Source: DASPC25 Channel 8 Sensor Model:			Serial #: Program Plug-In C	mable Gain: Fain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (C)	Measured Value (volts)	Fitted Curve Value (C)	Error (C)	Definition of Calibration Curve
					Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Temperature (C), V(t) = measured value (volts), $C_0 = -261.72$ C, $C_1 = 0.14$ C/volt.



National Research Council Canada

Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Y Temp Calibrated 2009-06-24 12:50

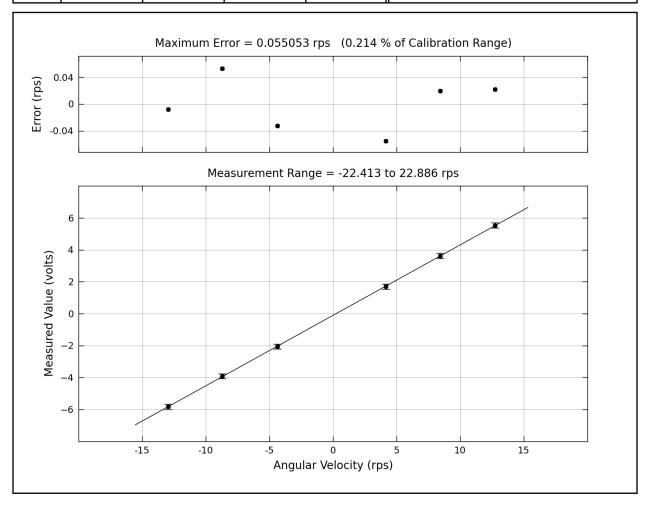
Test Facility: OEB Data Source: DASPC25 Channel 9 Sensor Model:			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(C)	(volts)	(C)	(C)	Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Temperature (C), V(t) = measured value (volts), $C_0 = -261.72$ C, $C_1 = 0.14$ C/volt.



National Research Council Canada

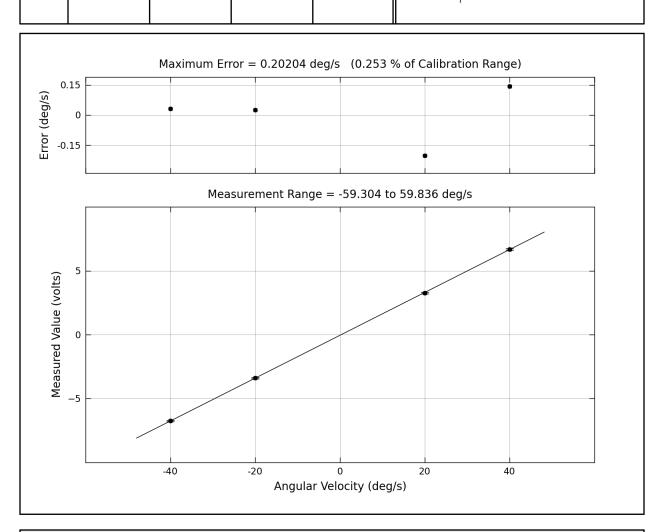
Safer Fishing Vessel Seakeeping Phase 2 Calibration of ADIS Z Temp Calibrated 2009-06-24 12:50

Test Facility: OEB Data Source: DASPC25 Channel 10 Sensor Model:			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (C)	Measured Value (volts)	Fitted Curve Value (C)	Error (C)	Definition of Calibration Curve
'n		(vons)			Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t)$ = Temperature (C), V(t) = measured value (volts), C_0 = -261.72 C, C_1 = 0.14 C/volt.

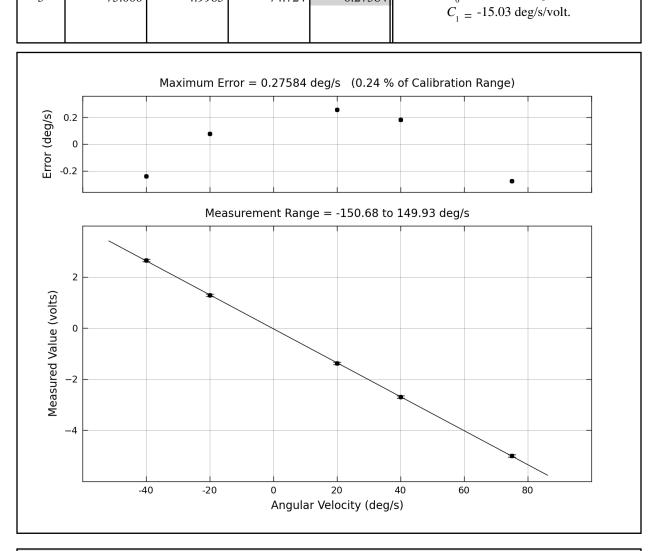


National Research Council Canada

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Aerotech 1410 tach Calibrated 2009-07-07 13:47


Test Facility: OEB Data Source: DASPC34 Channel 1 Sensor Model: 1410			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 10	
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve	
#	(rps)	(volts)	(rps)	(rps)		
1	-12.970	-5.8342	-12.978	-0.0076591		
2	-8.7000	-3.9219	-8.6466	0.053425	$Y = C_0 + C_1 \cdot V$	
3	-4.3830	-2.0537	-4.4152	-0.032244	where $Y(t) =$ Angular Velocity (rps),	
4	4.1500	1.7037	4.0949	-0.055053	V(t) = measured value (volts),	
5	8.4170	3.6206	8.4366	0.019560	$C_0 = 0.23627 \text{ rps},$	
6	12.750	5.5347	12.772	0.021970	$C_1 = 2.2649 \text{ rps/volt.}$	

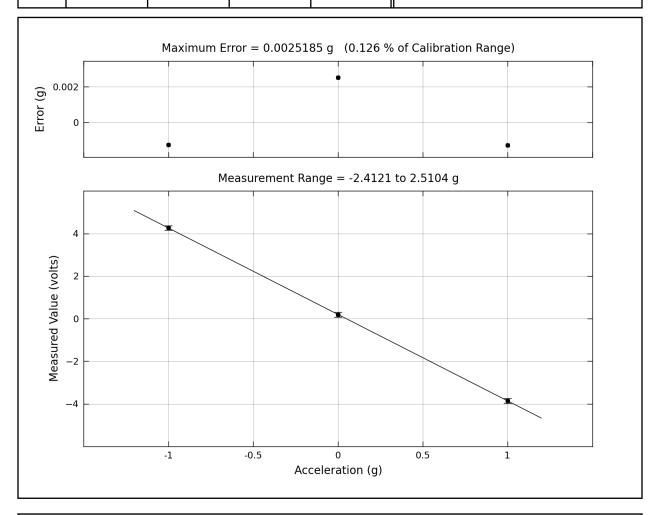
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Pitch Rate - MP Calibrated 2009-06-25 15:49


Test Facility: OEB Data Source: DASPC34 Channel 2 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data	Physical	Measured	Fitted Curve	Error		
Point	Value	Value	Value		Definition of Calibration Curve	
#	(deg/s)	(volts)	(deg/s)	(deg/s)		
1	-40.000	-6.7540	-39.968	0.032301		
2	-20.000	-3.3978	-19.975	0.025331	$Y = C_0 + C_1 \cdot V$	
3	20.000	3.2789	19.798	-0.20204	where $Y(t) =$ Angular Velocity (deg/s),	
4	40.000	6.6944	40.144	0.14440	V(t) = measured value (volts),	
					$C_0 = 0.26595 \text{ deg/s},$	
					$C_{1} = 5.957 \text{ deg/s/volt.}$	

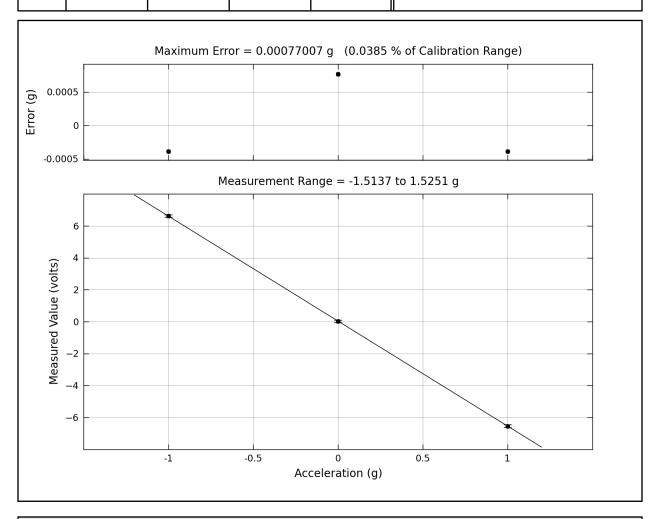
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Roll Rate - MP Calibrated 2009-06-26 10:38


Test Facility: OEB Data Source: DASPC34 Channel 3 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15
Data Point #	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
1	(deg/s) -40.000	(volts) 2.6523	(deg/s) -40.240	(deg/s) -0.23979	Polynomial Degree = 1 (Linear Fit)
2	-20.000	1.3005	-19.923	0.077231	$Y = C_0 + C_1 \cdot V$
3	20.000	-1.3727	20.257	0.25667	where $Y(t) =$ Angular Velocity (deg/s),
4	40.000	-2.6983	40.182	0.18173	
5	75.000	-4.9965	74.724	-0.27584	$C_0 = -0.37507 \text{ deg/s},$

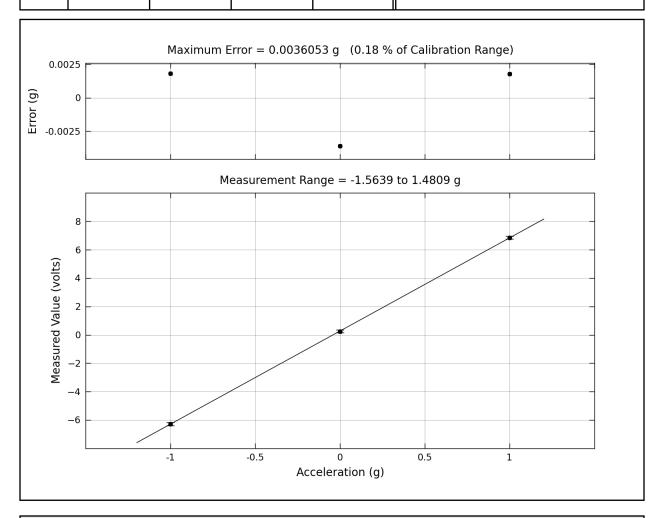
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Yaw Rate - MP Calibrated 2009-06-25 15:10


Test Facility: OEB			0205	Filter Frequency: 10.0
Data Source: DASPC34 Channel 4			mable Gain:	Excitation Voltage: 15
Sensor Model: Motion Pak II			Gain: 5	
Data Physical Measured Fitte			Error	
Value	Value	Value		Definition of Calibration Curve
(deg/s)	(volts)	(deg/s)	(deg/s)	
-10.000	6.9026	-9.9676	0.032417	
-8.0000	5.6375	-8.0492	-0.049208	$Y = C_0 + C_1 \cdot V$
-5.0000	3.6120	-4.9777	0.022277	where $Y(t) =$ Angular Velocity (deg/s),
0.00000	0.33092	-0.0024776	-0.0024776	V(t) = measured value (volts),
5.0000	-2.9531	4.9773	-0.022651	$C_0 = 0.49931 \text{ deg/s},$
8.0000	-4.9618	8.0232	0.023156	$C_{1} = -1.5164 \text{ deg/s/volt.}$
10.000	-6.2631	9.9965	-0.0035142	
	Odel: Motion Physical Value (deg/s) -10.000 -8.0000 -5.0000 0.00000 5.0000 8.0000	Motion Pak II Physical Measured Value Value (deg/s) (volts) -10.000 6.9026 -8.0000 5.6375 -5.0000 3.6120 0.00000 0.33092 5.0000 -2.9531 8.0000 -4.9618	Physical Measured Fitter Physical Measured Fitter Value Value U (deg/s) (volts) (deg/s) -10.000 6.9026 -9.9676 -8.0000 5.6375 -8.0492 -5.0000 3.6120 -4.9777 0.00000 0.33092 -0.024776 5.0000 -2.9531 4.9773 8.0000 -4.9618 8.0232	Motion Pak II Plug-In Gain: 5 Physical Measured Fitted Curve Error Value Value Value (deg/s) (deg/s) (deg/s) -10.000 6.9026 -9.9676 0.032417 -8.0000 5.6375 -8.0492 -0.049208 -5.0000 3.6120 -4.9777 0.022277 0.00000 0.33092 -0.0024776 -0.0024776 5.0000 -2.9531 4.9773 -0.022651 8.0000 -4.9618 8.0232 0.023156

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Heave Accel - MP Calibrated 2009-06-26 10:55


Test Facility: OEB Data Source: DASPC34 Channel 5 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data	Physical	Measured	Fitted Curve	Error		
Point	Value	Value	Value		Definition of Calibration Curve	
#	(g)	(volts)	(g)	(g)		
1	-1.0000	4.2677	-1.0013	-0.0012545	Polynomial Degree = 1 (Linear Fit)	
2	0.00000	0.18936	0.0025185	0.0025185	$Y = C_0 + C_1 \cdot V$	
3	1.0000	-3.8583	0.99874	-0.0012640	where $Y(t) =$ Acceleration (g),	
					V(t) = measured value (volts),	
					$C_0 = 0.049125 \text{ g},$	
					$C_{1} = -0.24612$ g/volt.	
					1 -	

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Sway Accel - MP Calibrated 2009-06-26 11:10


Test Facility: OEB Data Source: DASPC34 Channel 6 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(g)	(volts)	(g)	(g)	
1	-1.0000	6.6217	-1.0004	-0.00038462	
2	0.00000	0.032431	0.00077007	0.00077007	$Y = C_0 + C_1 \cdot V$
3	1.0000	-6.5417	0.99961	-0.00038546	where $Y(t) =$ Acceleration (g),
					V(t) = measured value (volts),
					$C_0 = 0.0056976 \text{ g},$
					$C_{1} = -0.15194$ g/volt.

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Surge Accel - MP Calibrated 2009-06-26 11:13

Test Facility: OEB Data Source: DASPC34 Channel 7 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data	Physical	Measured	Fitted Curve	Error		
Point	Value	Value	Value		Definition of Calibration Curve	
#	(g)	(volts)	(g)	(g)		
1	-1.0000	-6.2838	-0.99819	0.0018125		
2	0.00000	0.24915	-0.0036053	-0.0036053	$Y = C_0 + C_1 \cdot V$	
3	1.0000	6.8532	1.0018	0.0017929	where $Y(t) =$ Acceleration (g),	
					V(t) = measured value (volts),	
					$C_0 = -0.041536 \text{ g},$	
					$C_1 = 0.15224$ g/volt.	

National Research Council Canada

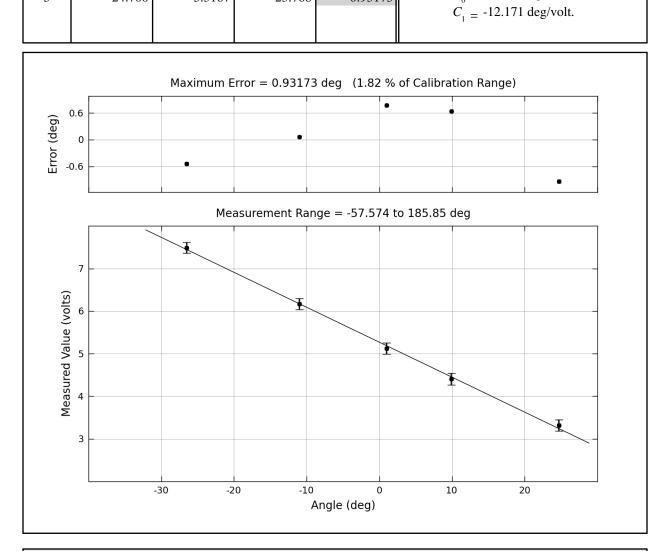
Safer Fishing Vessel Seakeeping Phase 2 **Calibration of Rudder Angle** Calibrated 2009-07-07 12:04

Test Facility: OEB Data Source: DASPC34 Channel 8 Sensor Model: Motion Pak II			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15
Data	Physical	Measured	Fitted Curve	Error	
Point	Value	Value	Value		Definition of Calibration Curve
#	(deg)	(volts)	(deg)	(deg)	
1	-26.500	7.4914	-27.042	-0.54197	
2	-11.000	6.1686	-10.942	0.057951	$Y = C_0 + C_1 \cdot V$
					where $Y(t) =$ Angle (deg),

0.64007

-0.93173

V(t) = measured value (volts),


 $C_0 = 64.136 \text{ deg},$

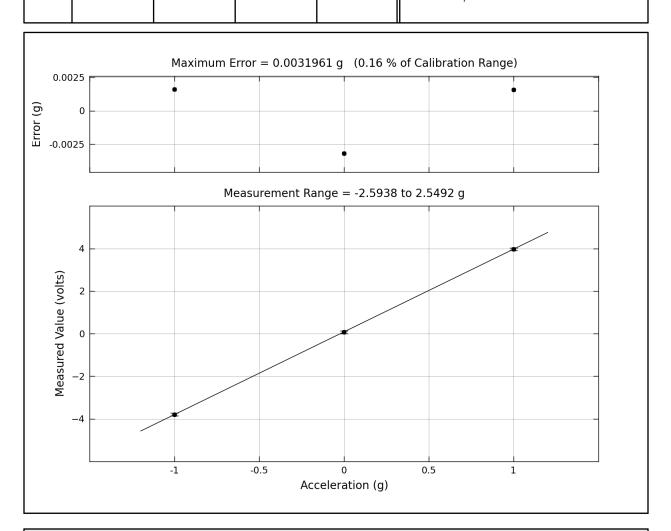
10.540

23.768

4.4036

3.3167

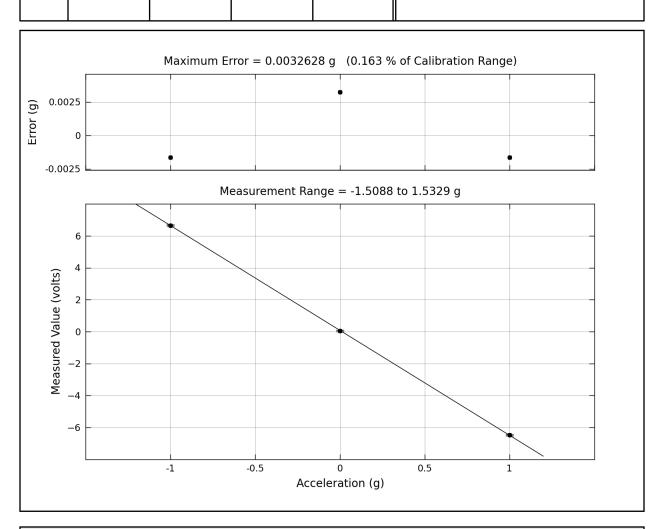
4


5

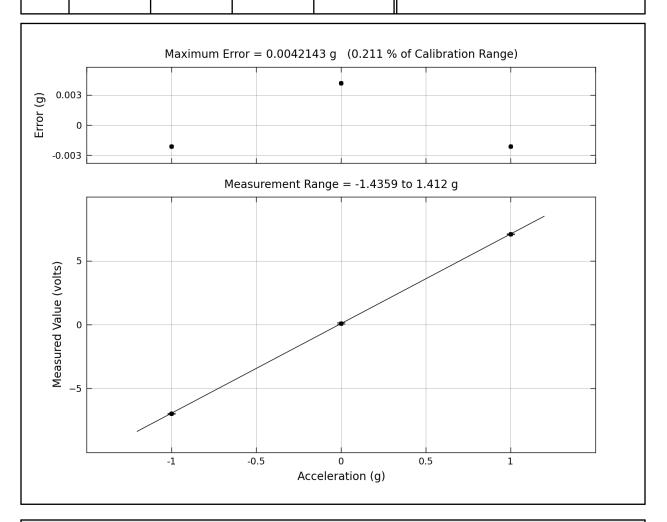
9.9000

24.700

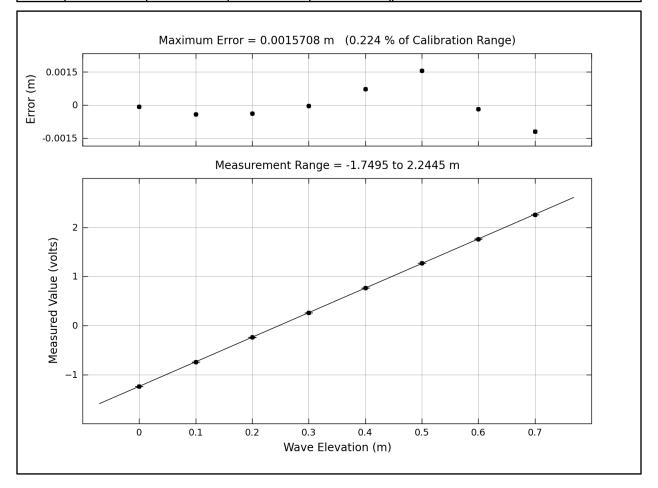
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Heave Accel Calibrated 2009-06-26 11:22


Test Facility: OEB Data Source: DASPC34 Channel 9 Sensor Model: QA900 Accel			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve	
#	(g)	(volts)	(g)	(g)		
1	-1.0000	-3.7957	-0.99839	0.0016057		
2	0.00000	0.074346	-0.0031961	-0.0031961	$Y = C_0 + C_1 \cdot V$	
3	1.0000	3.9817	1.0016	0.0015904		
					V(t) = measured value (volts),	
					$C_0 = -0.022314 \text{ g},$	
					$C_{1} = 0.25715$ g/volt.	

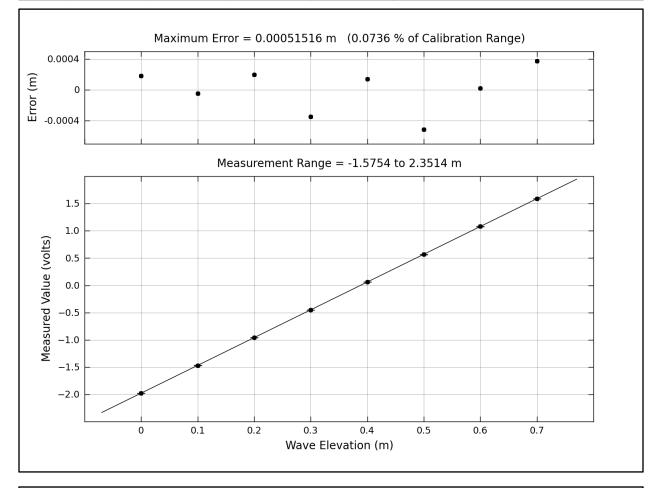
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Sway Accel Calibrated 2009-06-26 11:27


Test Facility: OEB Data Source: DASPC34 Channel 10 Sensor Model: QA900 Accel			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data	Physical	Measured	Fitted Curve	Error		
Point	Value	Value	Value		Definition of Calibration Curve	
#	(g)	(volts)	(g)	(g)		
1	-1.0000	6.6652	-1.0016	-0.0016234		
2	0.00000	0.057916	0.0032628	0.0032628	$Y = C_0 + C_1 \cdot V$	
3	1.0000	-6.4850	0.99836	-0.0016394	where $Y(t) =$ Acceleration (g),	
					V(t) = measured value (volts),	
					$C_0 = 0.012071 \text{ g},$	
					$C_1 = -0.15209$ g/volt.	

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Surge Accel Calibrated 2009-06-26 11:29

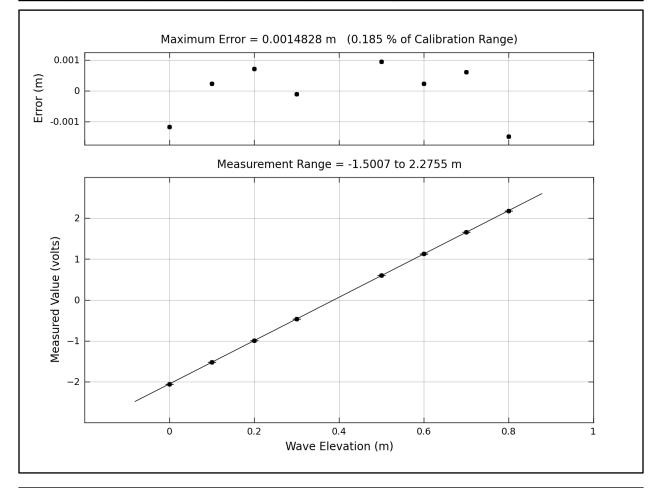

Test Facility: OEB Data Source: DASPC34 Channel 11 Sensor Model: QA900 Accel			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 15	
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve	
#	(g)	(volts)	(g)	(g)		
1	-1.0000	-6.9536	-1.0021	-0.0020939		
2	0.00000	0.11349	0.0042143	0.0042143	$Y = C_0 + C_1 \cdot V$	
3	1.0000	7.0918	0.99788	-0.0021204	where $Y(t) =$ Acceleration (g),	
					V(t) = measured value (volts),	
					$C_0 = -0.011945 \text{ g},$	
					$C_1 = 0.14239$ g/volt.	

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Downstream Wp Calibrated 2009-06-24 13:17


Data Source: OEBDAS Channel 1			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 15.0 Excitation Voltage: 10
Data Daint	Physical	· .		Error	Definition of Calibration Course
Point #	Value (m)	Value (volts)	Value (m)	(m)	Definition of Calibration Curve
1	0.00000	-1.2398	-7.4626e-05	-7.4626e-05	
2	0.10000	-0.74078	0.099587	-0.00041263	
3	0.20000	-0.23990	0.19961	-0.00038575	where $Y(t) =$ Wave Elevation (m),
4	0.30000	0.26257	0.29996	-4.1246e-05	V(t) = measured value (volts),
5	0.40000	0.76715	0.40073	0.00072618	$C_0 = 0.24752 \text{ m},$
6	0.50000	1.2721	0.50157	0.0015708	$C_1 = 0.1997$ m/volt.
7	0.60000	1.7641	0.59982	-0.00017992	
8	0.70000	2.2597	0.69880	-0.0012027	

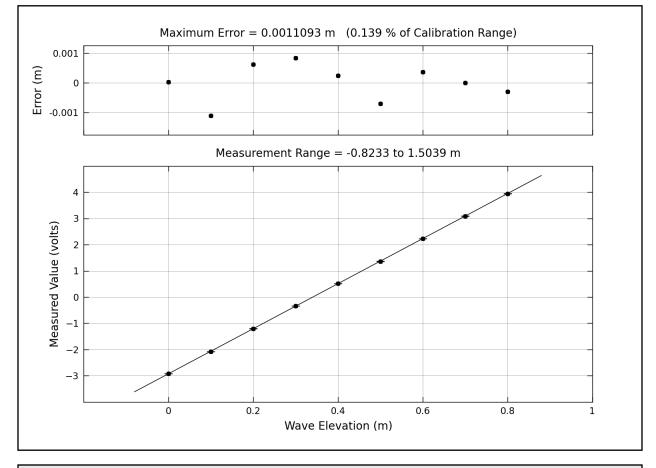
Safer Fishing Vessel Seakeeping Phase 2 Calibration of North.C Wp Calibrated 2009-06-23 13:46

Test Fa	Test Facility: OEB			F01	Filter Frequency: 10.0
Data So	Data Source: OEBDAS Channel 2			mable Gain:	Excitation Voltage: 10
Sensor Model:			Plug-In	Gain:	
Data Physical Measured Fitte		Fitted Curve	Error		
Point	Value	Value	Value		Definition of Calibration Curve
#	(m)	(volts)	(m)	(m)	
1	0.00000	-1.9754	0.00018450	0.00018450	
2	0.10000	-1.4672	0.099954	-4.6484e-05	$Y = C_0 + C_1 \cdot V$
3	0.20000	-0.95664	0.20020	0.00019676	where $Y(t) =$ Wave Elevation (m),
4	0.30000	-0.45009	0.29965	-0.00034837	V(t) = measured value (volts),
5	0.40000	0.061718	0.40014	0.00013824	$C_0 = 0.38802 \text{ m},$
6	0.50000	0.56772	0.49948	-0.00051516	$C_1 = 0.19634$ m/volt.
7	0.60000	1.0798	0.60002	1.9133e-05	
8	0.70000	1.5909	0.70037	0.00037144	



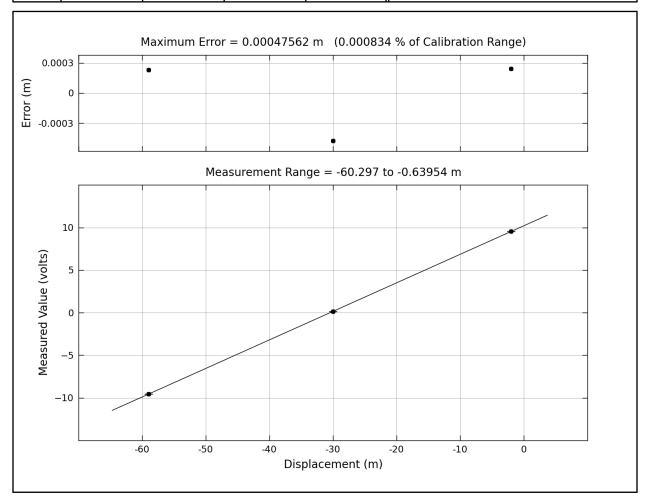
National Research Council Canada

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Upstream Wp Calibrated 2009-06-23 13:57


Data Source: OEBDAS Channel 3			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 10
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(m)	(volts)	(m)	(m)	
1	0.00000	-2.0580	-0.0011617	-0.0011617	, U
2	0.10000	-1.5210	0.10023	0.00022969	
3	0.20000	-0.98877	0.20072	0.00071517	where $Y(t) =$ Wave Elevation (m),
4	0.30000	-0.46343	0.29990	-9.6894e-05	V(t) = measured value (volts),
5	0.50000	0.60141	0.50095	0.00094969	$C_0 = 0.3874 \text{ m},$
6	0.60000	1.1273	0.60024	0.00023771	$C_1 = 0.18881 \text{ m/volt.}$
7	0.70000	1.6589	0.70061	0.00060907	
8	0.80000	2.1775	0.79852	-0.0014828	

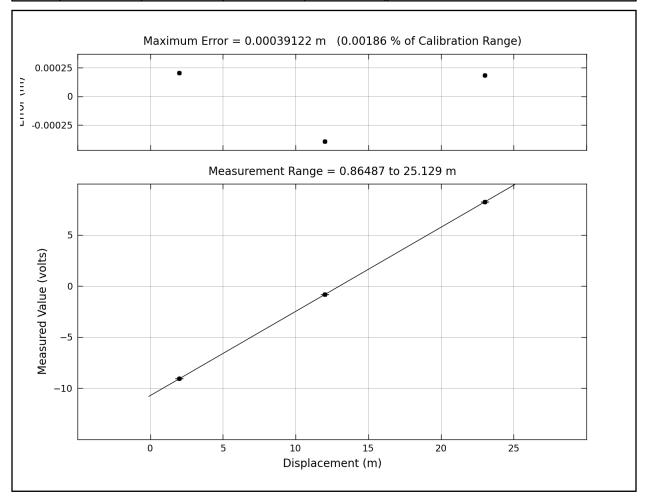
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Cal Wp/ South.C WP Calibrated 2009-06-24 13:56

Test Facility: OEB Data Source: OEBDAS Channel 4 Sensor Model:			Serial #: Program Plug-In (mable Gain:	Filter Frequency: 10.0 Excitation Voltage: 10
Data Point #	Physical Value (m)	Measured Value (volts)	Fitted Curve Value (m)	Error (m)	Definition of Calibration Curve
1 2 3 4	0.00000 0.10000 0.20000 0.30000	-2.9244 -2.0748 -1.2005 -0.33926		2.8388e-05 -0.0011093 0.00062329 0.00084394	$Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Wave Elevation (m), V(t) = measured value (volts),
5 6 7 8 9	0.40000 0.50000 0.60000 0.70000 0.80000	0.51494 1.3663 2.2348 3.0910 3.9479		0.00024064 -0.00069374 0.00036597 -4.6106e-06 -0.00029474	$C_1 = 0.11636$ m/volt.

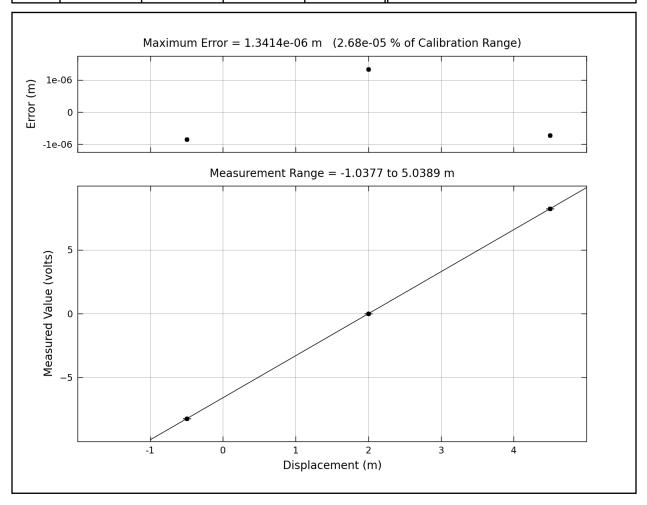


National Research Council Canada

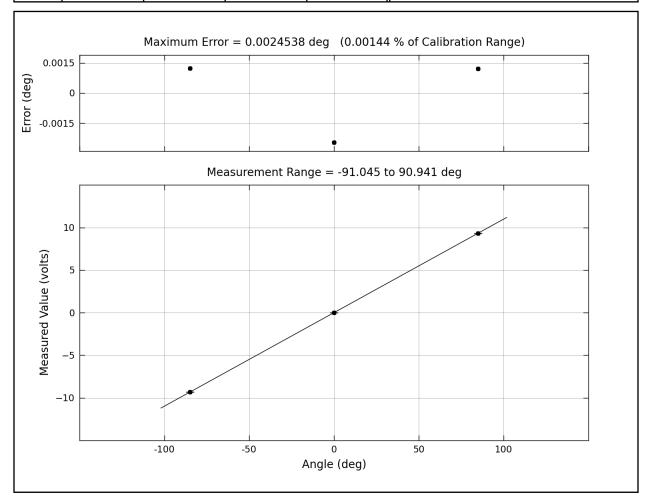
Safer Fishing Vessel Seakeeping Phase 2 Calibration of X 1 Calibrated 2008-08-14 13:48


Data Source: OEBDAS Channel 49			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(m) -59.000	(volts) -9.5651	(m) -59.000	(m) 0.00023153	Polynomial Degree = 1 (Linear Fit)
2	-30.000	0.15683	-30.000	-0.00047562	$Y = C_0 + C_1 \cdot V$
3	-2.0000	9.5440	-1.9998	0.00024175	where $Y(t) =$ Displacement (m), V(t) = measured value (volts), $C_0 = -30.468$ m, $C_1 = 2.9829$ m/volt.

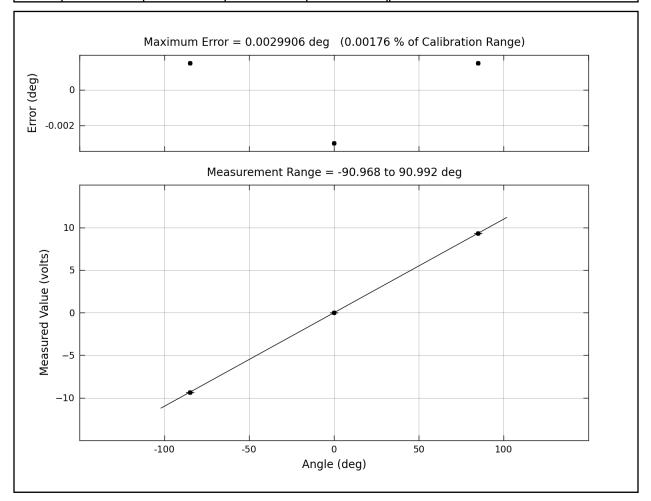
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Y 1 Calibrated 2008-08-14 13:50


Data Source: OEBDAS Channel 50			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(m)	(volts)	(m)	(m)	
1 2	2.0000 12.000	-9.0642 -0.82221	2.0002 12.000	0.00020461 -0.00039122	÷ -
3	23.000	8.2450	23.000	0.00018577	where $Y(t) =$ Displacement (m), V(t) = measured value (volts), $C_0 = 12.997$ m, $C_1 = 1.2132$ m/volt.

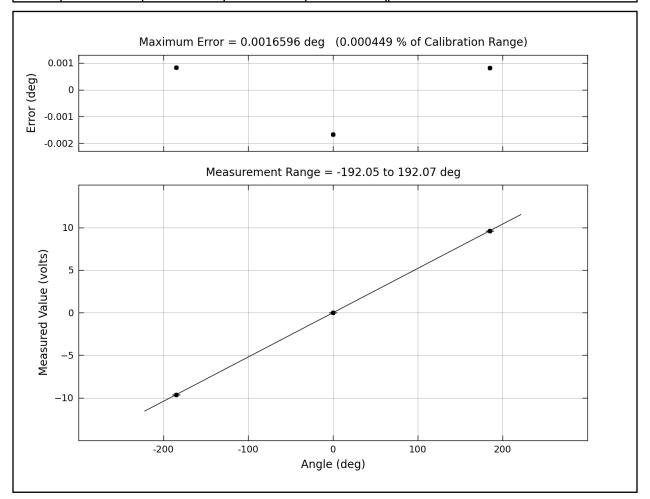
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Z 1 Calibrated 2008-09-09 14:42


Data Source: OEBDAS Channel 51			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
# 1	(m) -0.50000	(volts) -8.2301	(m) -0.50000	(m) -8.4162e-07	Polynomial Degree = 1 (Linear Fit)
2	2.0000	-0.0019385	2.0000	1.3414e-06	
3	4.5000	8.2262	4.5000	-7.2450e-07	where $Y(t) = \text{Displacement (m)},$ V(t) = measured value (volts), $C_0 = 2.0006 \text{ m},$ $C_1 = 0.30383 \text{ m/volt}.$

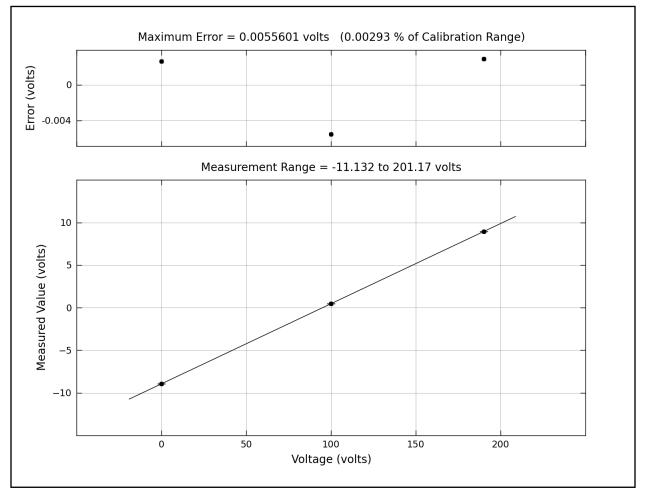
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Roll 1 Calibrated 2008-08-14 13:57


Data Source: OEBDAS Channel 52			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(deg)	(volts)	(deg)	(deg)	
1 2	-85.000 0.00000	-9.3355 0.0054835	-84.999 -0.0024538	0.0012288 -0.0024538	$Y = C_0 + C_1 \cdot V$
3	85.000	9.3473	85.001	0.0012251	where $Y(t) =$ Angle (deg), V(t) = measured value (volts), $C_0 = -0.05235$ deg, $C_1 = 9.0993$ deg/volt.

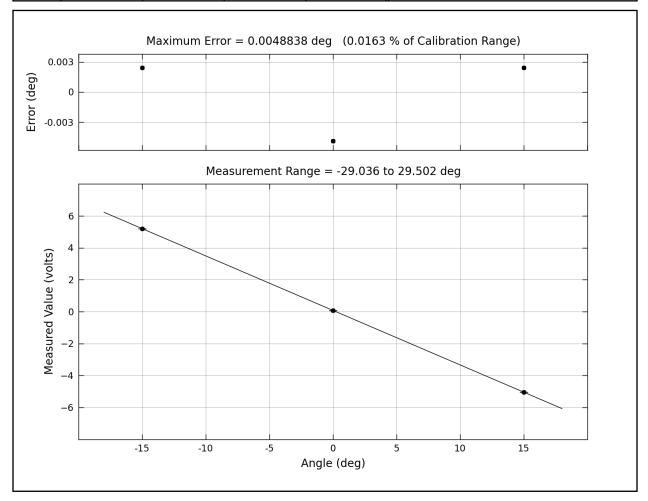
Safer Fishing Vessel Seakeeping Phase 2 Calibration of Pitch 1 Calibrated 2008-08-14 13:59


Data Source: OEBDAS Channel 53			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(deg)	(volts)	(deg)	(deg)	
1 2 3	-85.000 0.00000 85.000	-9.3439 -0.0016632 9.3416	-84.999 -0.0029906 85.001	0.0014967 -0.0029906 0.0014939	$Y = C_0 + C_1 \cdot V$

Safer Fishing Vessel Seakeeping Phase 2 Calibration of Heading 1 Calibrated 2008-08-14 14:00

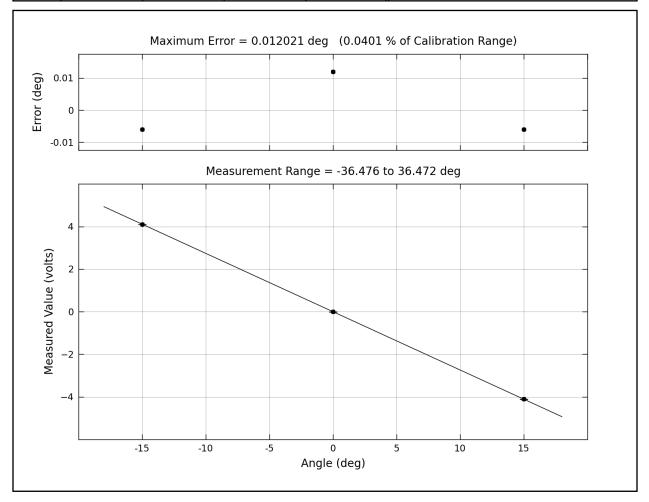

Data Source: OEBDAS Channel 54			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point	Physical Value	Measured Value	Fitted Curve Value	Error	Definition of Calibration Curve
#	(deg)	(volts)	(deg)	(deg)	
1 2 3	-185.00 0.00000 185.00	-9.6330 -0.00063172 9.6320	-0.0016596	0.00083537 -0.0016596 0.00082419	$Y = C_0 + C_1 \cdot V$
					V(t) = measured value (volts), $C_0 = 0.010473 \text{ deg},$ $C_1 = 19.206 \text{ deg/volt}.$

Safer Fishing Vessel Seakeeping Phase 2 Calibration of RMS 1 Calibrated 2008-08-14 14:02


Data Source: OEBDAS Channel 55			Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (volts)	Measured Value (volts)	Fitted Curve Value (volts)	Error (volts)	Definition of Calibration Curve
1 2 3	0.00000 100.00 190.00	-8.9511 0.46887 8.9483	0.0026321 99.994 190.00	0.0026321 -0.0055601 0.0029222	Polynomial Degree = 1 (Linear Fit) $Y = C_0 + C_1 \cdot V$ where $Y(t) =$ Voltage (volts), V(t) = measured value (volts), $C_0 = 95.017$ volts, $C_1 = 10.615$ volts/volt.

Safer Fishing Vessel Seakeeping Phase 2 Calibration of South_Waveboard Calibrated 2009-04-16 14:38

Data So	cility: OEB urce: OEBDAS (Model: mcu5	Channel 56	Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (deg)	Measured Value (volts)	Fitted Curve Value (deg)	Error (deg)	Definition of Calibration Curve
1 2 3	-15.000 0.00000 15.000	5.2037 0.081243 -5.0462	-14.998 -0.0048838 15.002	0.0024430 -0.0048838 0.0024408	$Y = C_0 + C_1 \cdot V$

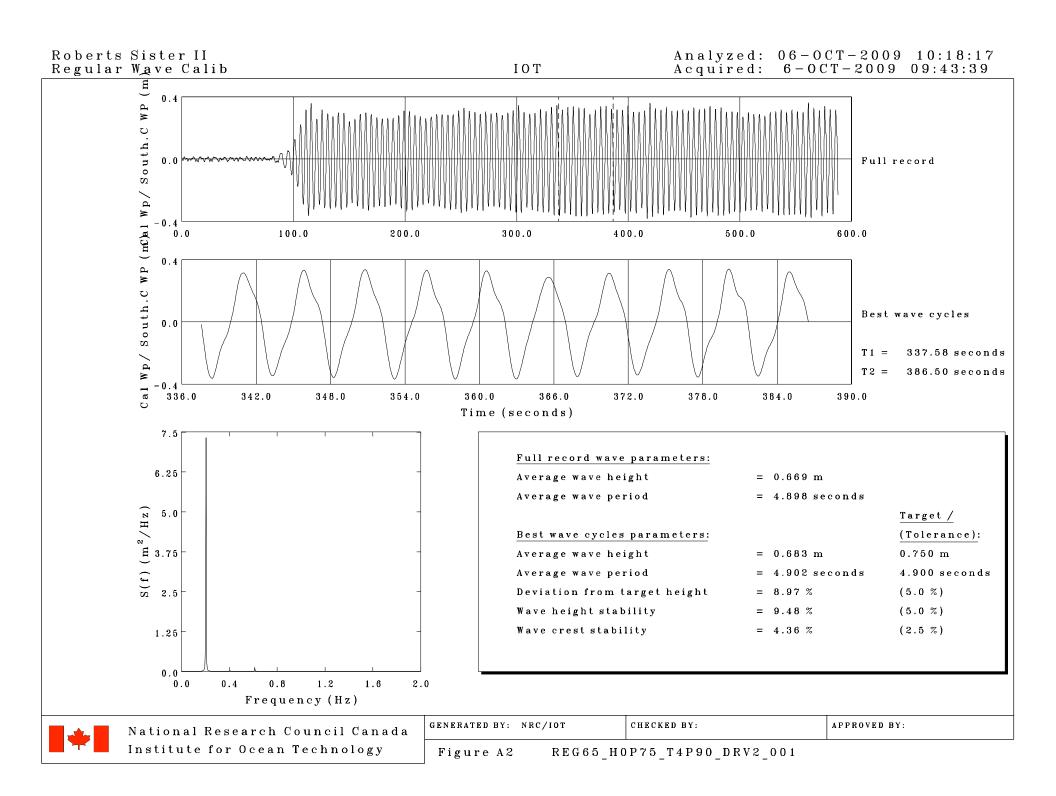


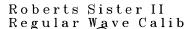
National Research Council Canada

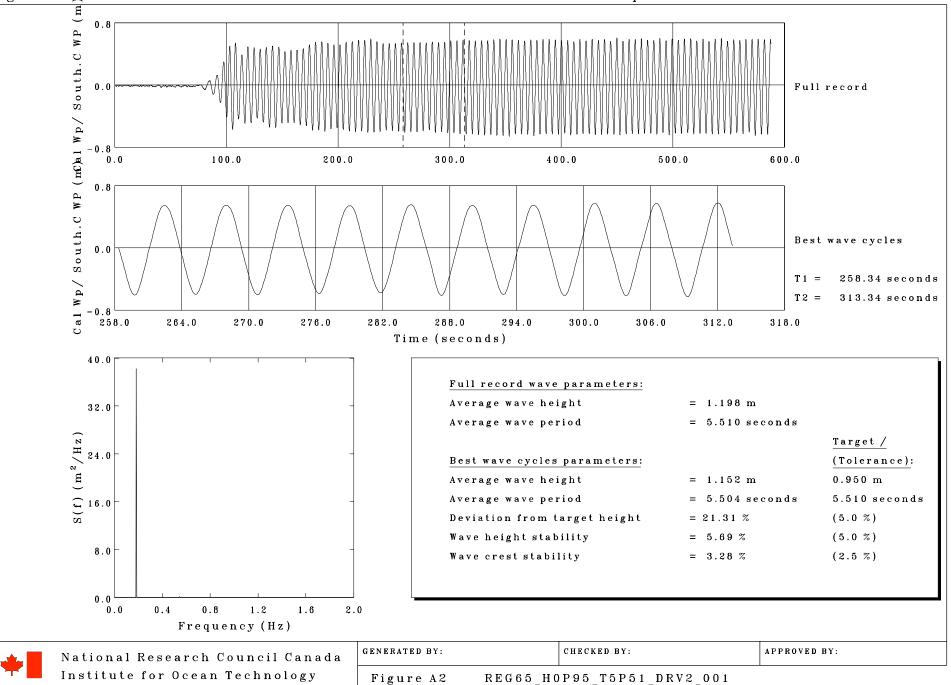
Institute for Ocean Technology

Safer Fishing Vessel Seakeeping Phase 2 Calibration of West_Waveboard Calibrated 2009-04-16 14:38

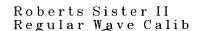
Data So	:ility: OEB urce: OEBDAS (Model: mcu7	Channel 64	Serial #: Program Plug-In (mable Gain: Gain:	Filter Frequency: Excitation Voltage:
Data Point #	Physical Value (deg)	Measured Value (volts)	Fitted Curve Value (deg)	Error (deg)	Definition of Calibration Curve
# 1 2 3	-15.000 0.00000 15.000	4.1135 -0.0039195 -4.1115	-15.006 0.012021 14.994	-0.0060035 0.012021 -0.0060173	$Y = C_0 + C_1 \cdot V$

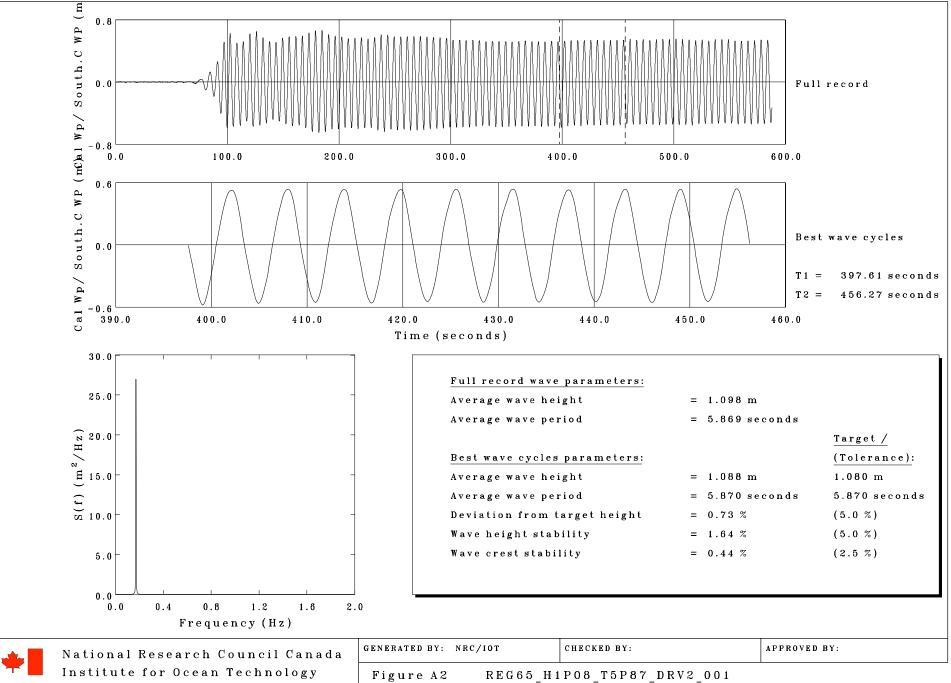


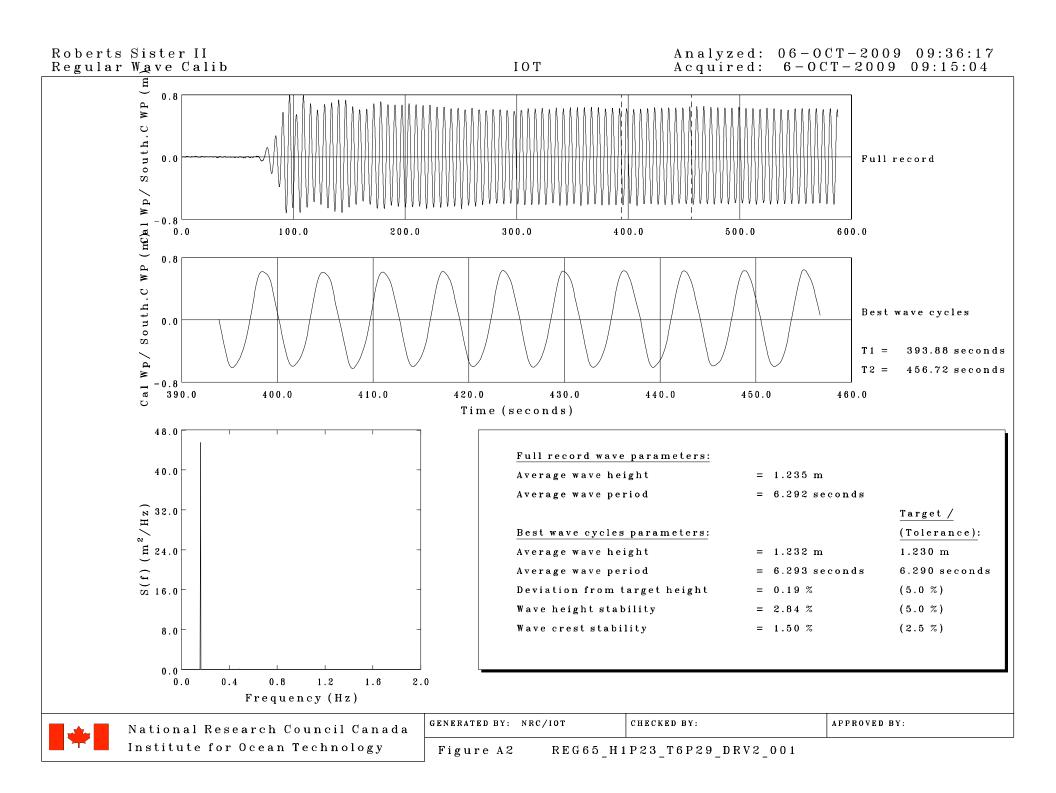


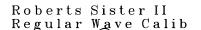

National Research Council Canada Institute for Ocean Technology TR-2009-24

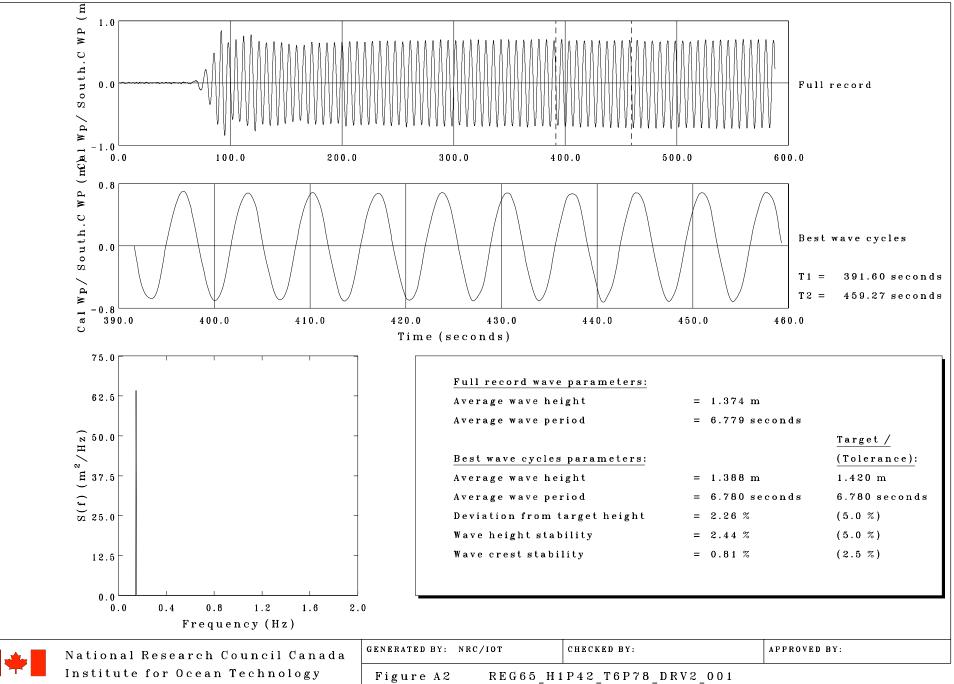
APPENDIX D

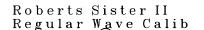

WAVE MATCHING RESULTS – REGULAR & IRREGULAR WAVES

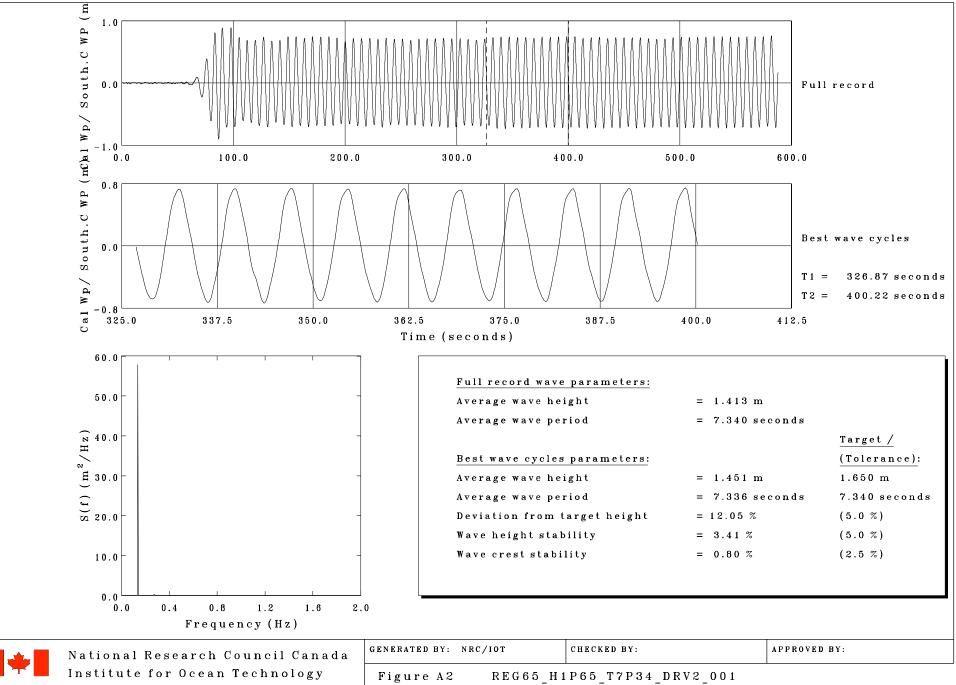


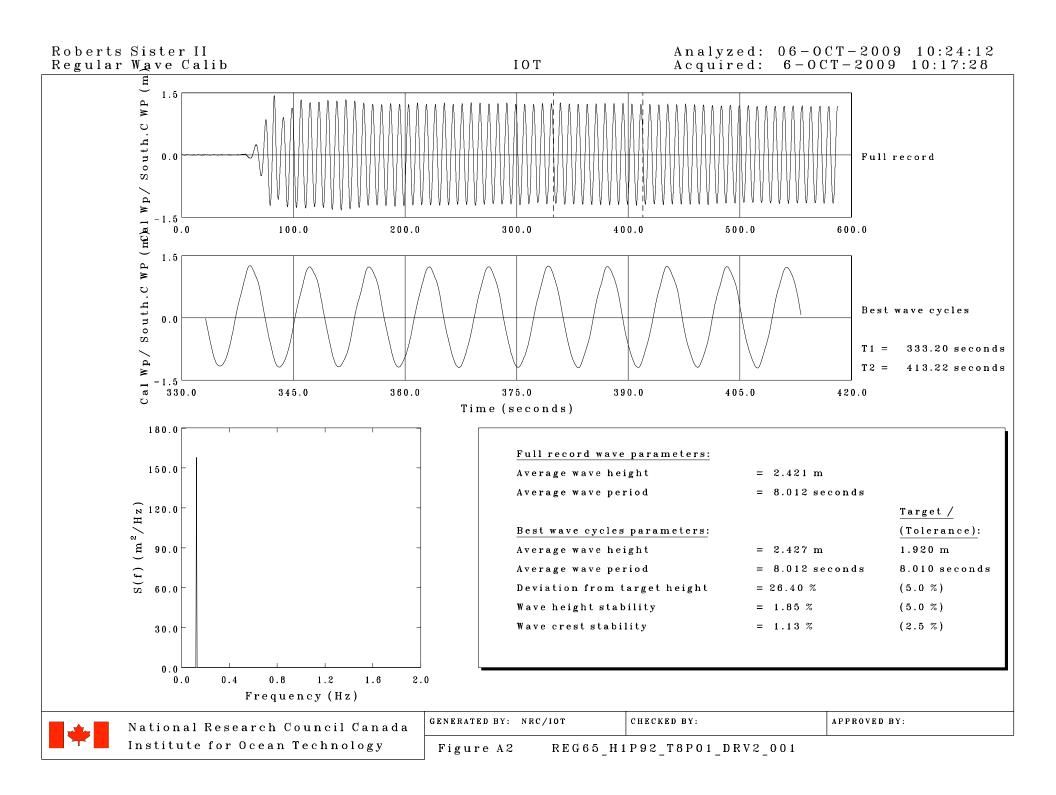


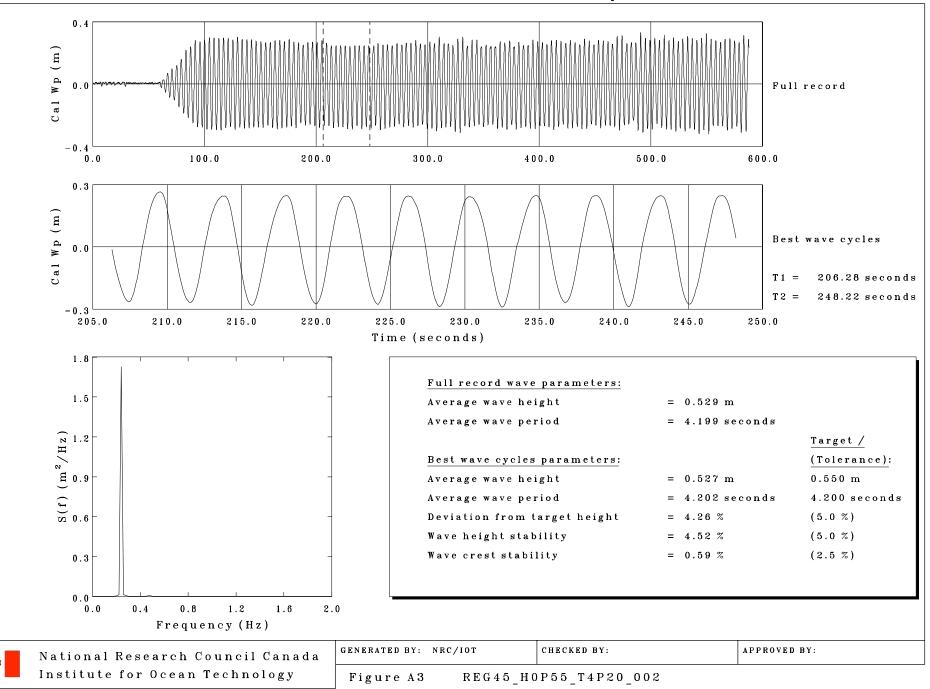


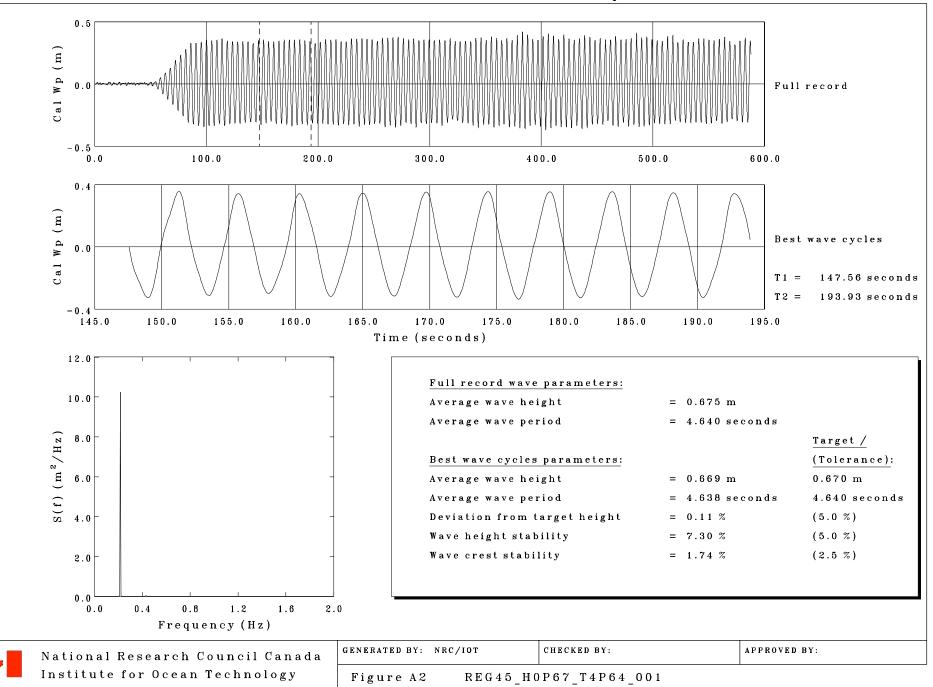

IOT

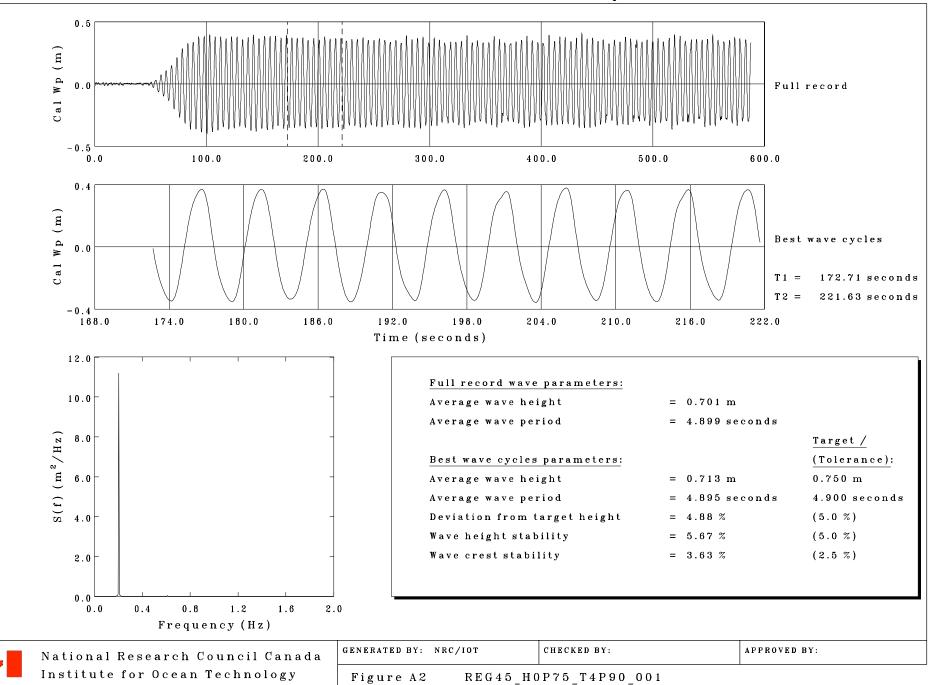


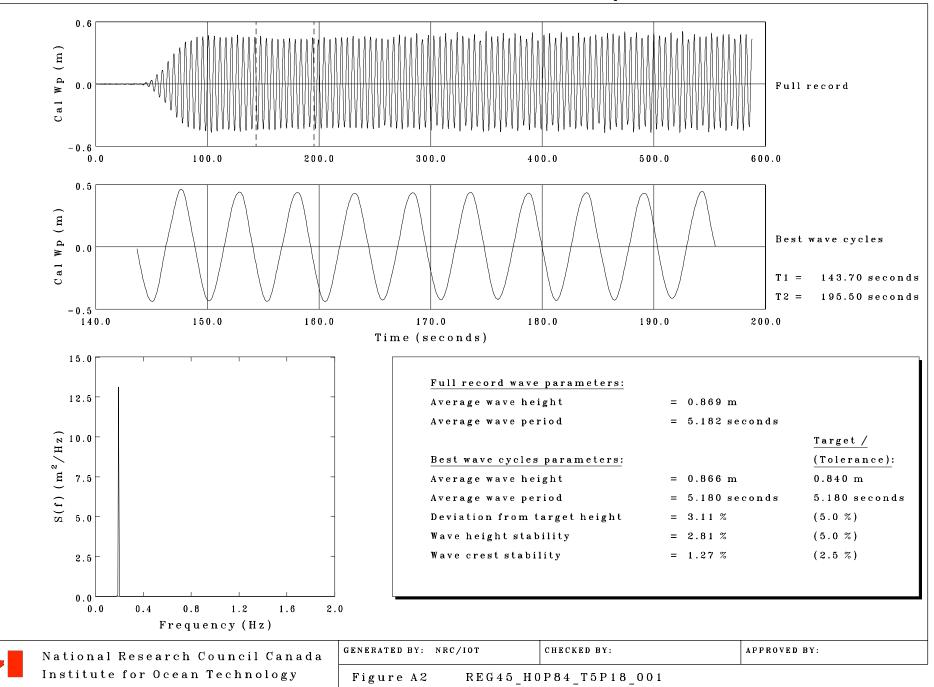


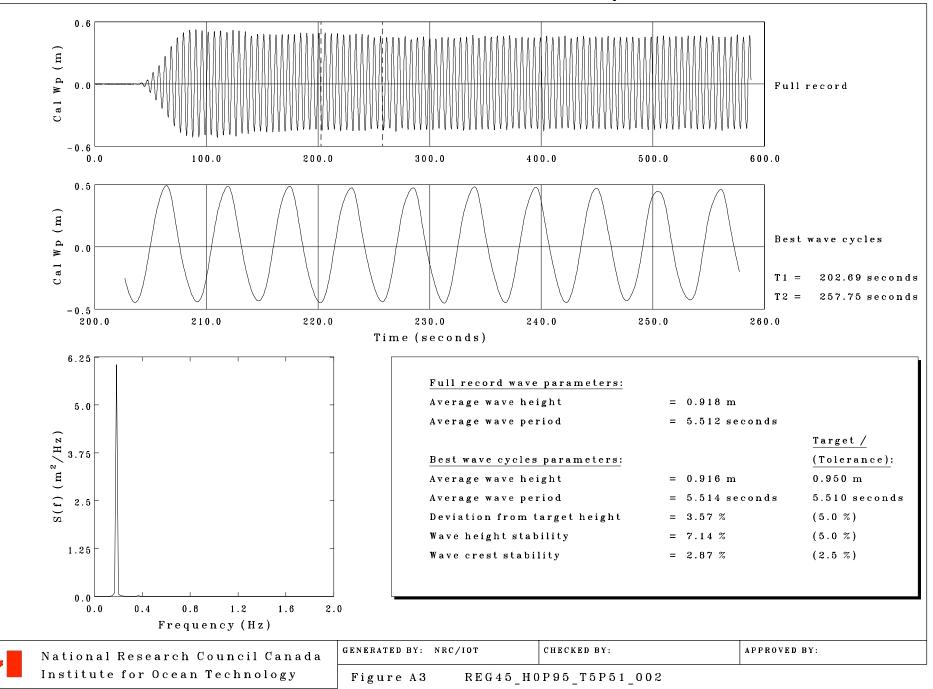


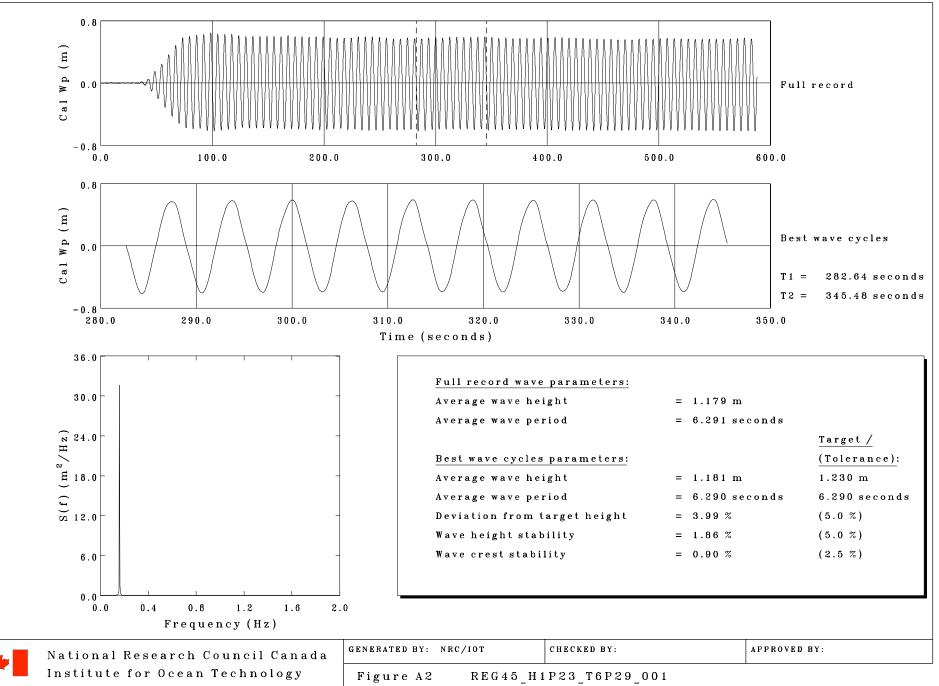


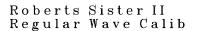


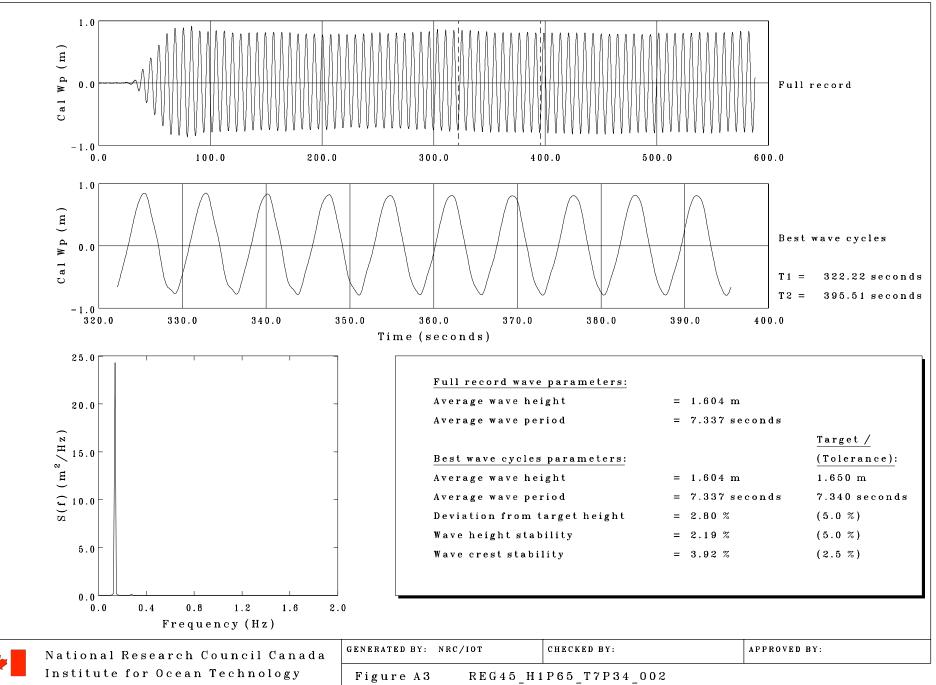


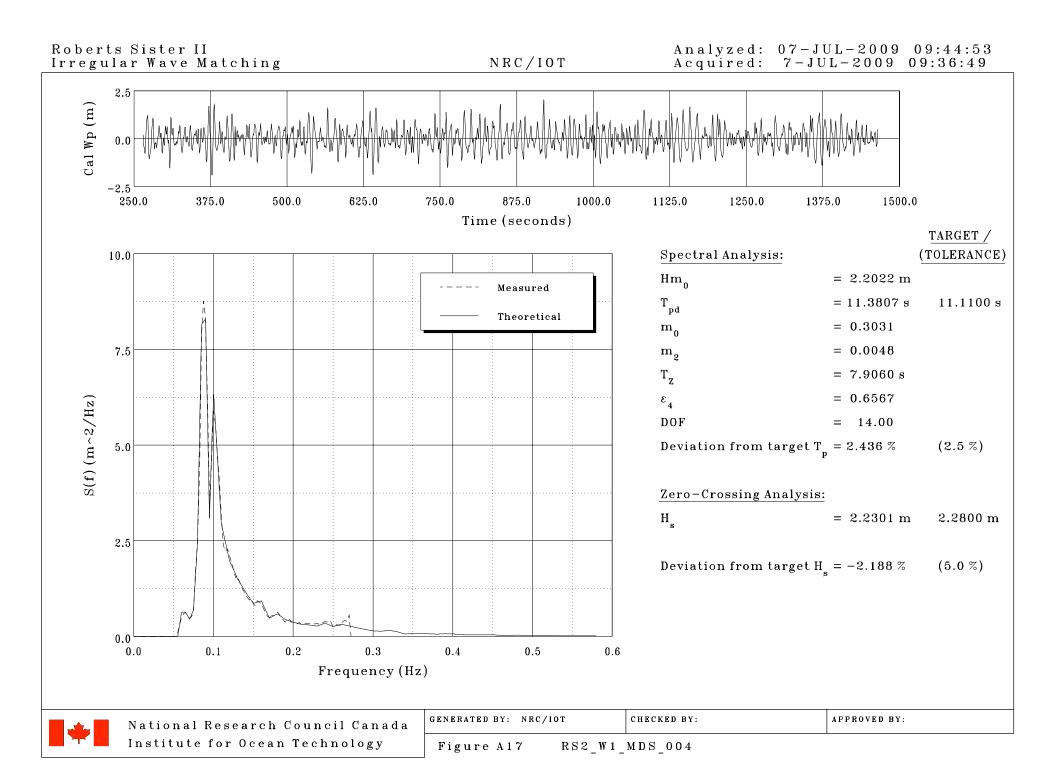

IOT

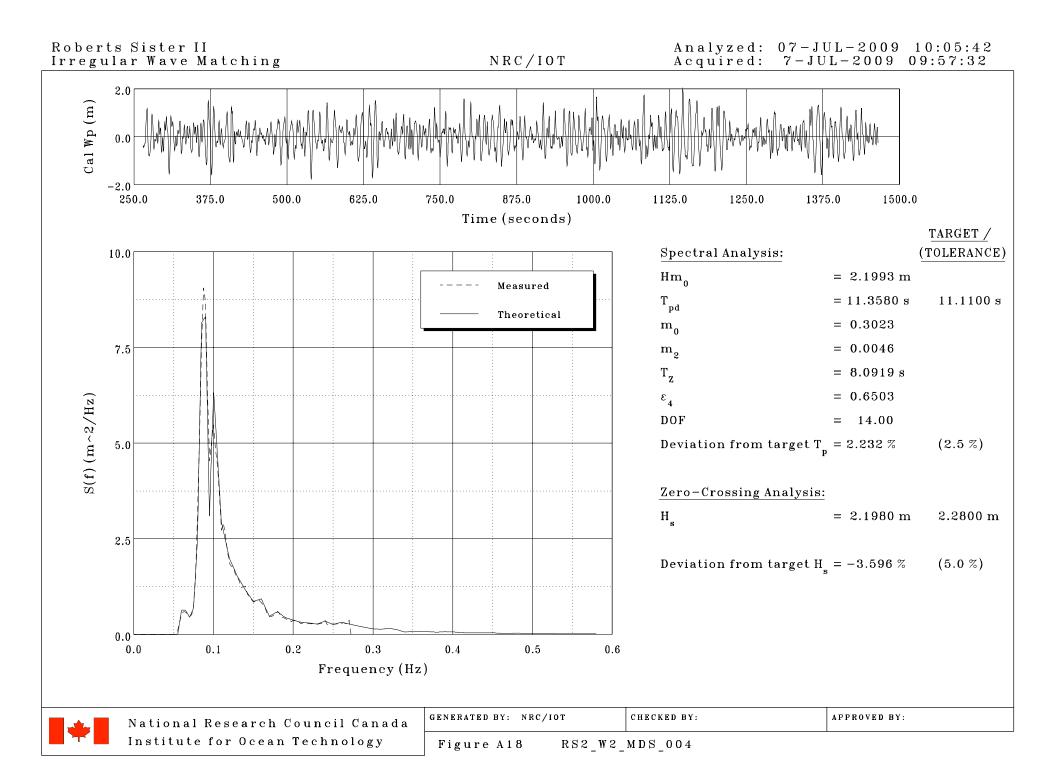


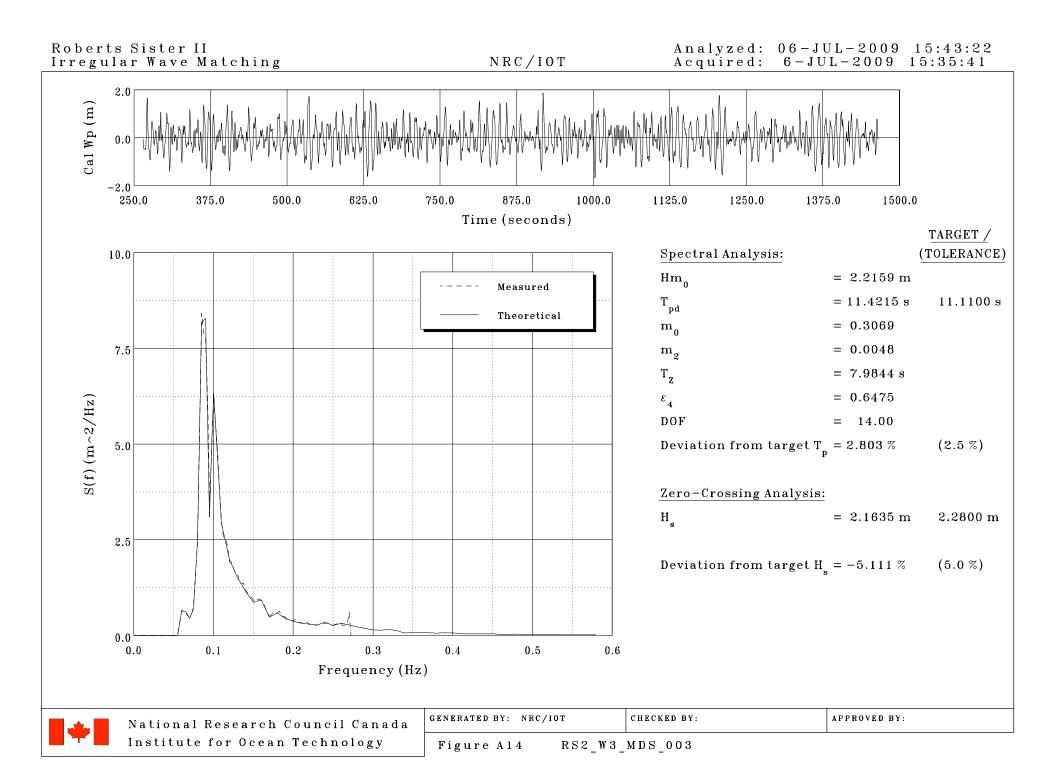


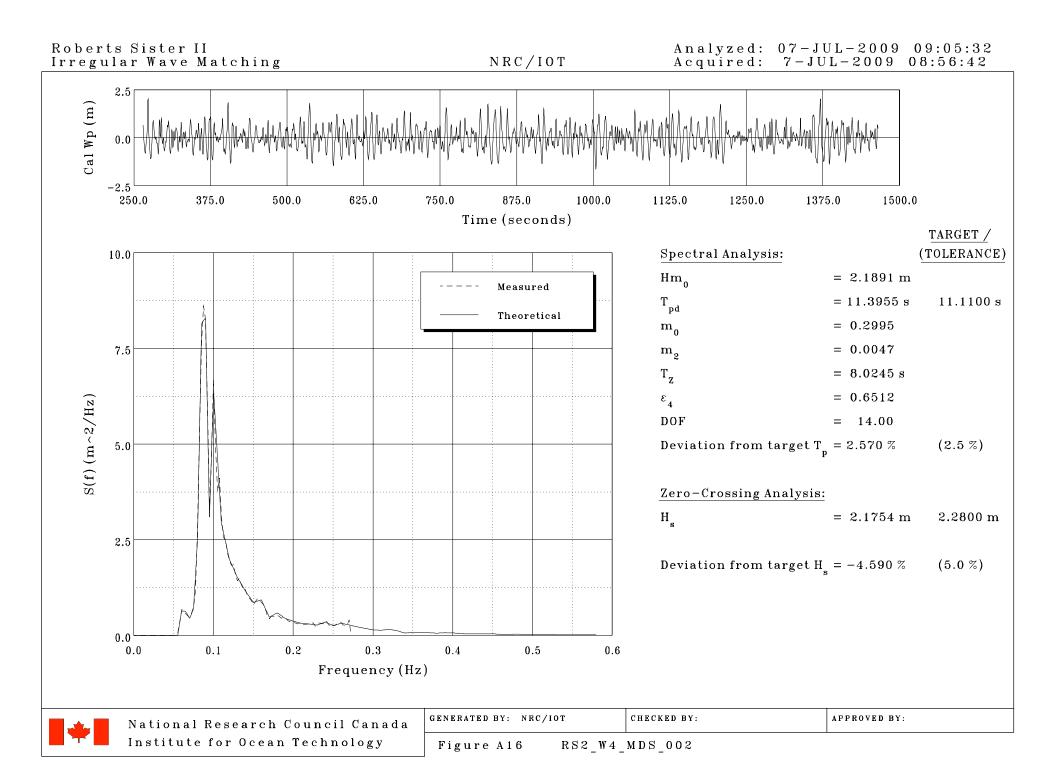





IOT




IOT



TR-2009-24

APPENDIX E

MODEL LAUNCH POSITIONS

Safer Fishing Vessel Seakeeping Proj. #42_2374_10

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

	Heading: Model speed: distance trave Total travelling	eled by mode	0.630 el	m/s (4 kr 58.00 92.06	ART is empt nots) m s		sverse distance	24.51	m		
	Non-dim	Full scale					Model s	cale			
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave Length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	NO OT WAVE
1	1.1	0.784	2.562	0.408	2.453	9.018	0.180	0.258	0.621	2.562	37.5
2	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.795	40.9
3	1.3	0.927	3.028	0.482	2.075	6.655	0.133	0.190	0.841	3.028	44.4
4	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	3.261	47.8
5	1.5	1.070	3.493	0.556	1.799	5.040	0.101	0.144	1.111	3.493	51.2
6	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.726	54.6
7	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	4.192	61.4

CASE 2 CASE 1 with ART fillied

CASE 3	Heading: Model speed: distance trave Total travellin	eled by mode	1.260 el	m/s (8 kr 58.00 46.03	ART is emp nots) m s		verse distance	24.51	m		
	Non-dim	Full scale					Model s	cale			
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.1	0.784	2.562	0.408	2.453	9.018	0.180	0.258	0.621	2.562	18.8
2	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.795	20.5
3	1.3	0.927	3.028	0.482	2.075	6.655	0.133	0.190	0.841	3.028	22.2
4	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	3.261	23.9
5	1.5	1.070	3.493	0.556	1.799	5.040	0.101	0.144	1.111	3.493	25.6
6	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.726	27.3
_	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	4.192	30.7

Safer Fishing Vessel Seakeeping Proj. #42_2374_10

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

CASE 5	Heading:	Quartering	seas		ART is empt	ty					
	Model speed:		0.630	m/s (4 kn	ots)						
	distance trave			52.00	m	Transverse distance		21.98	m		
	Total travellin	g time at spe	ed	82.54	4 s						
	Non-dim	Full scale					Model s	cale			
No	wn	w [rad/s]		f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.440	32.1
2	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	2.778	36.5
3	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	3.096	40.7
4	1.7	1.212	3.959	0.630	1.587	3.930	0.079	0.112	1.425	3.247	42.7
5	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	3.394	44.6
6	1.9	1.355	4.425	0.704	1.420	3.147	0.063	0.090	1.779	3.536	46.4
7	2.1	1.498	4.891	0.778	1.285	2.576	0.052	0.074	2.174	3.804	50.0

CASE 6 CASE 5 with ART fillied

CASE 7	Heading:	Quartering	seas		ART is empt	ty					
	Model speed:		1.260	m/s (8 knots)							
	distance trave	eled by mode	el	52.00 m		Transverse distance		21.98	m		
	Total travellin	g time at spe	ed	41.27	S						
							Madala				
	Non-dim	Full scale		7			Model s	cale	•		
No	wn	w [rad/s]	w [rad/s]	f [Hz]	Period [s]	Wave length [m]	Wave height (1/50) [m]	Wave height (1/35) [m]	Deep Water Ratio	Encounter wave frequency	No of wave encounters
1	1.2	0.856	2.795	0.445	2.248	7.726	0.155	0.221	0.725	2.085	27.4
2	1.4	0.998	3.261	0.519	1.927	5.771	0.115	0.165	0.970	2.295	30.1
3	1.6	1.141	3.726	0.593	1.686	4.435	0.089	0.127	1.263	2.465	32.4
4	1.7	1.212	3.959	0.630	1.587	3.930	0.079	0.112	1.425	2.535	33.3
5	1.8	1.284	4.192	0.667	1.499	3.506	0.070	0.100	1.597	2.596	34.1
6	1.9	1.355	4.425	0.704	1.420	3.147	0.063	0.090	1.779	2.646	34.8
7	2.1	1.498	4.891	0.778	1.285	2.576	0.052	0.074	2.174	2.718	35.7

CASE 8 CASE 7 with ART fillied

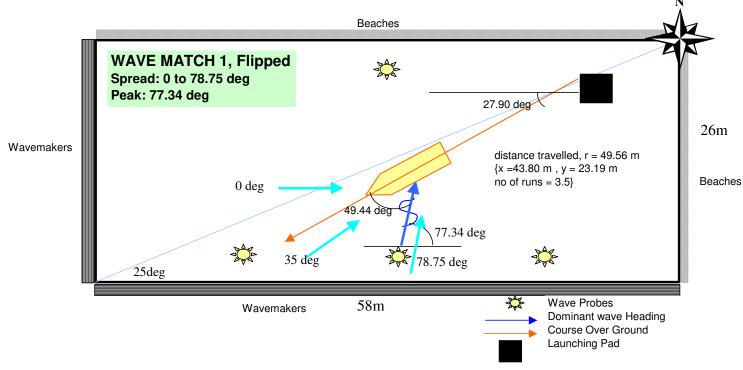
NOTE:		Indicates roll natural frequency, or closest to that	Lw	wave length, m
	ART = anti-ro	II tank	LWL	water line length, m
	Deep water a	ssumption $h \ge Lw/2$	Т	period, s
	f	frequency, Hz	Te	encounter period, s
	h	water depth in the OEB, m	W	circular frequency, rad/s
	hw	wave height, m	we	encounter wave frequency, rad/s
	Lm	model length (LWL), m	wn	nondimensional wave frequency, rad/s {w* sqrt(Lm/g)}

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Head Seas, Trawl Speed CCGA Roberts Sisters II Seakeeping Experiments - July 2009

 Model Speed (m/s) 0.410
 time for 20 min of trials in model scale (min) 6.124

 SOG
 2.6
 Knots

 COG
 73
 Degrees True North (Sea trials)

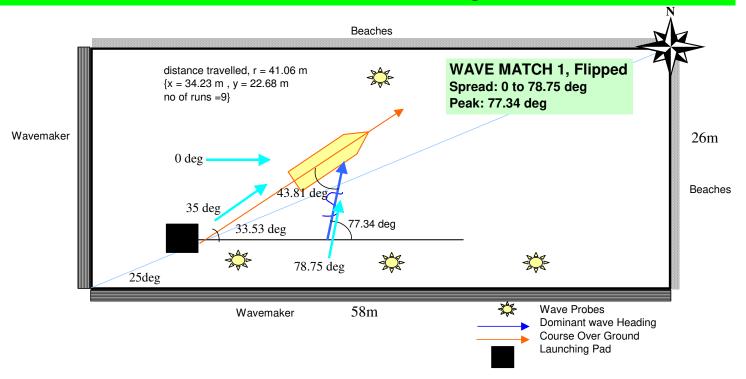

 Max Wave Direction
 122.44
 Degrees True North (Sea trials)

 Relative angle
 49.44
 Degrees (pure head seas is zero degrees)

 130.56
 (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

WAVES ARE FLIPPED: Now the waves coming from the port side


CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Following Seas, Trawl Speed

Model Speed (m/s)	0.756	time for 20 min of trials in model scale (min) 6.124
SOG	4.8	Knots
COG	253	Degrees True North (Sea trials)
Max Wave Direction	116.81	Degrees True North (Sea trials)
Relative angle	-136.19 43.81	Degrees (pure head seas is zero degrees) (Wave heading - COG)

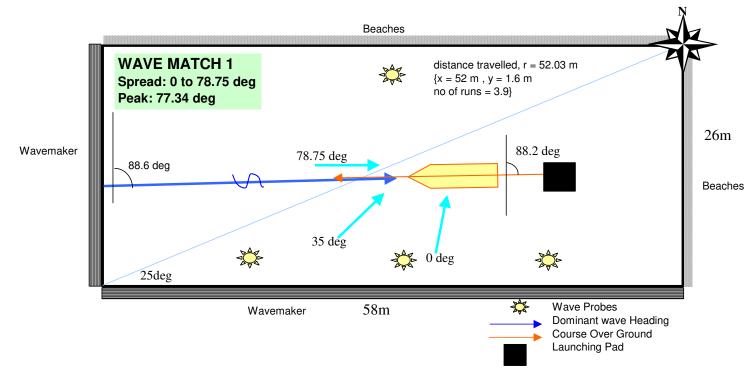
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

WAVES ARE FLIPPED: Now the waves coming from the starboard side

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Bow Seas, Trawl Speed

 Model Speed (m/s)
 0.473
 time for 20 min of trials in model scale (min)
 6.124

 SOG
 3
 Knots


 COG
 120
 Degrees True North (Sea trials)

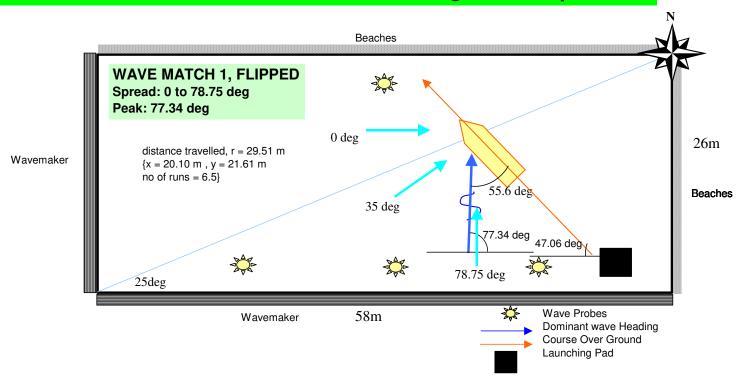
 Max Wave Direction
 119.63
 Degrees True North (Sea trials)

 Relative angle
 -0.37
 Degrees (pure head seas is zero degrees)

 179.63
 (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

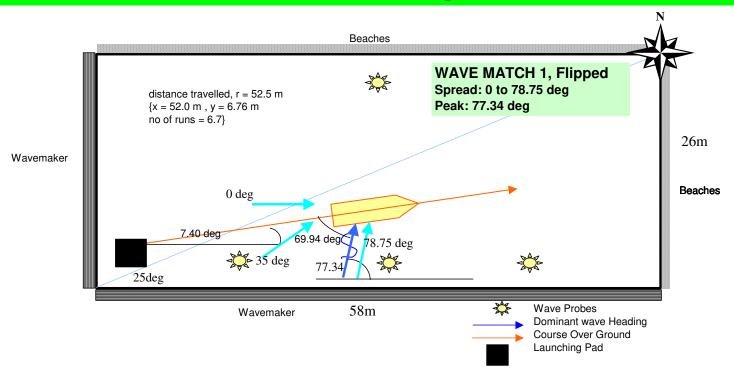

Safer Fishing Vessel Seakeeping CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Proj. #42_2374_10 Beam Seas, Trawl Speed

Model Speed (m/s) (0.410	time for 20 min of trials in model scale (min) 6.124
SOG	2.6	Knots
COG	344	Degrees True North (Sea trials)
Max Wave Direction	108.38	Degrees True North (Sea trials)
Relative angle	124.38 55.62	B Degrees (pure head seas is zero degrees) 2 (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

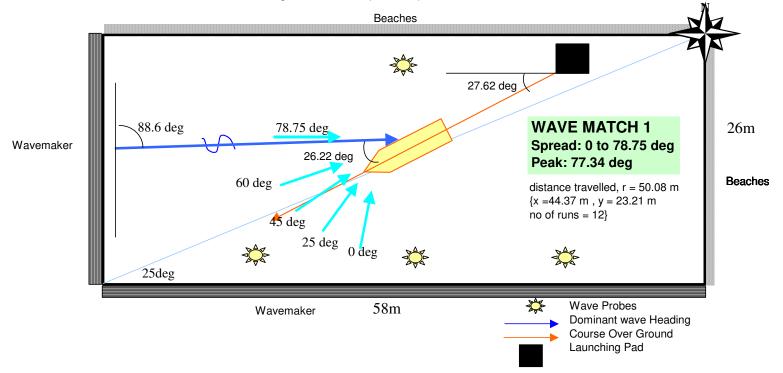
WAVES ARE FLIPPED: Now the waves coming from the port side


TR-2009-24

Safer Fishing Vessel SeakeepingCCGA Roberts Sisters II Seakeeping Experiments - July 2009Proj. #42_2374_10Quartering Seas, Trawl Speed

Model Speed (m/s) 0	.756	time for 20 min of trials in model scale (min) 6.124
SOG	4.8	Knots
COG	210	Degrees True North (Sea trials)
Max Wave Direction	99.94	Degrees True North (Sea trials)
Relative angle	-110.06 69.94	 Degrees (pure head seas is zero degrees) (Wave heading - COG)

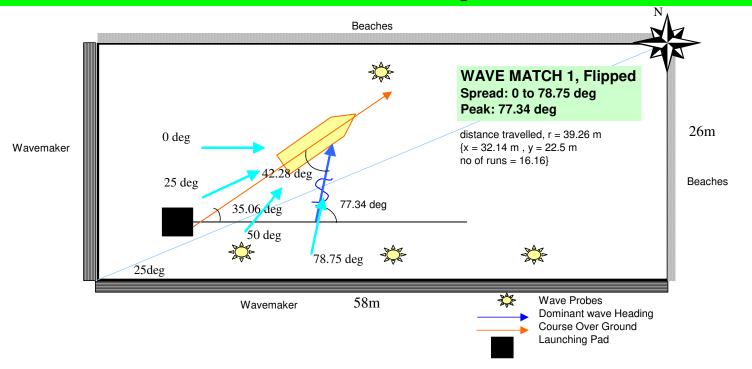
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)


WAVES ARE FLIPPED: Now the waves coming from the starboard side

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Head Seas, Cruise Speed CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Model Speed (m/s)	1.134	time for 20 min of trials in model scale (min) 6.124
SOG	7.2	Knots
COG	92	Degrees True North (Sea trials)
Max Wave Direction	118.22	Degrees True North (Sea trials)
Relative angle	26.22 153.78	2 Degrees (pure head seas is zero degrees) 3 (Wave heading - COG)

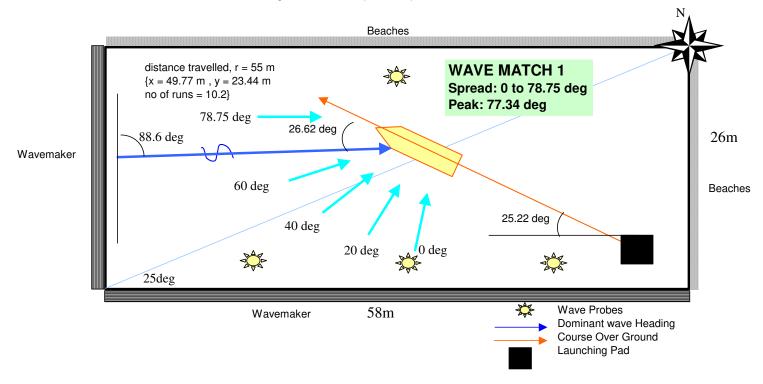
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)



Safer Fishing Vessel SeakeepingCCGA Roberts Sisters II Seakeeping Experiments - July 2009Proj. #42_2374_10Following Seas, Cruise Speed

Model Speed (m/s)	1.118	time for 20 min of trials in model scale (min) 6.124
SOG	7.1	Knots
COG	270	Degrees True North (Sea trials)
Max Wave Direction	132.28	Degrees True North (Sea trials)
Relative angle	-137.72 42.28	2 Degrees (pure head seas is zero degrees) 3 (Wave heading - COG)

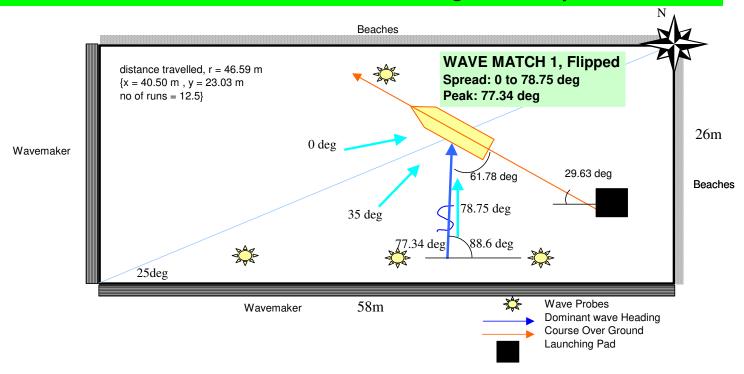
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)


WAVES ARE FLIPPED: Now the waves coming from the starboard side

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Bow Seas, Cruise Speed CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Model Speed (m/s) 1.103		time for 20 min of trials in model scale (min) 6.124
SOG	7	Knots
COG	135	Degrees True North (Sea trials)
Max Wave Direction	108.38	Degrees True North (Sea trials)
Relative angle	-26.62 153.38	2 Degrees (pure head seas is zero degrees) 3 (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

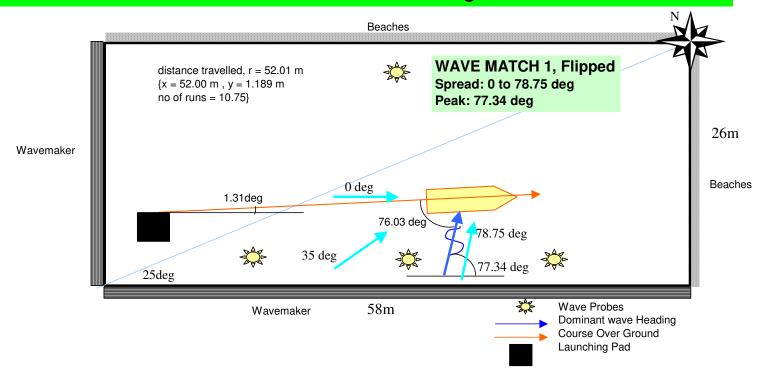

CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Beam Seas, Cruise Speed

Model Speed (m/s) 1.103		time for 20 min of trials in model scale (min) 6.124
SOG	7	Knots
COG	0	Degrees True North (Sea trials)
Max Wave Direction	118.22	Degrees True North (Sea trials)
Relative angle	118.22 61.78	2 Degrees (pure head seas is zero degrees) 3 (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

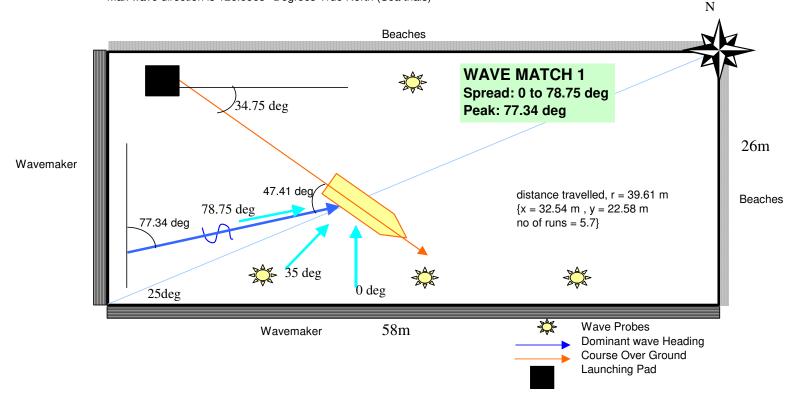
WAVES ARE FLIPPED: Now the waves coming from the port side


CCGA Roberts Sisters II Seakeeping Experiments - July 2009

Safer Fishing Vessel Seakeeping Proj. #42_2374_10 Quartering Seas, Cruise Speed

Model Speed (m/s) 1.103		time for 20 min of trials in model scale (min) 6.124
SOG	7	Knots
COG	225	Degrees True North (Sea trials)
Max Wave Direction	121.03	Degrees True North (Sea trials)
Relative angle	-103.97 76.03	7 Degrees (pure head seas is zero degrees) 3 (Wave heading - COG)

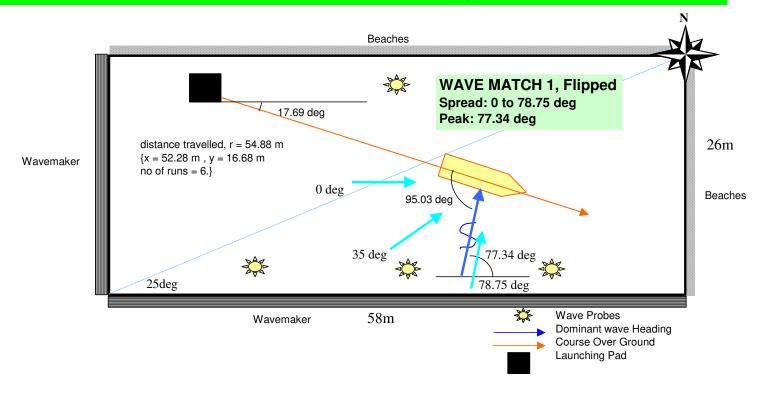
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)


WAVES ARE FLIPPED: Now the waves coming from the starboard side

Safer Fishing Vessel Seakeeping CCGA Roberts Sisters II Seakeeping Experiments - July 2009 Proj. #42_2374_10 Beam Seas, Trawl Speed with Anti Roll Tanks filled

Model Speed (m/s) 0.504		time for 20 min of trials in model scale (min) 6.124
SOG	3.2	Knots
COG	340	Degrees True North (Sea trials)
Max Wave Direction	112.59	Degrees True North (Sea trials)
Relative angle	-227.41 -47.41	Degrees (pure head seas is zero degrees) (Wave heading - COG)

Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)



Safer Fishing Vessel SeakeepingCCGA Roberts Sisters II Seakeeping Experiments - July 2009Proj. #42_2374_10Quartering Seas, Trawl Speed with Anti Roll Tanks filled

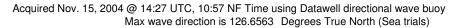
Model Speed (m/s) 0.740		time for 20 min of trials in model scale (min) 6.124
SOG	4.7	Knots
COG	206	Degrees True North (Sea trials)
Max Wave Direction	121.03	Degrees True North (Sea trials)
Relative angle	-84.97 95.03	7 Degrees (pure head seas is zero degrees) 8 (Wave heading - COG)

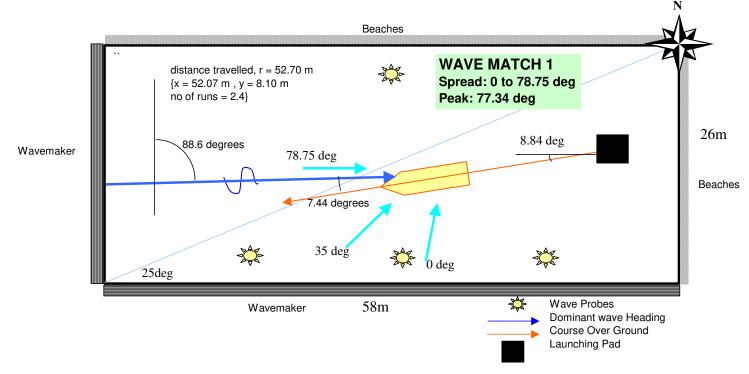
Acquired Nov. 15, 2004 @ 14:27 UTC, 10:57 NF Time using Datawell directional wave buoy Max wave direction is 126.6563 Degrees True North (Sea trials)

WAVES ARE FLIPPED: Now the waves coming from the starboard side

Safer Fishing Vessel SeakeepingCCGA Roberts Sisters II Seakeeping Experiments - July 2009Proj. #42_2374_10Bow Seas, Trawl Speed with Anti Roll Tanks filled

 Model Speed (m/s) 0.315
 time for 20 min of trials in model scale (min)
 6.124


 SOG
 2
 Knots


 COG
 115
 Degrees True North (Sea trials)

 Max Wave Direction
 122.44
 Degrees True North (Sea trials)

 Relative angle
 7.44
 Degrees (pure head seas is zero degrees)

 172.56
 (Wave heading - COG)

APPENDIX F

RUN LOG/VIDEO LOG

						ing Experiments
Model IOT	761	Model Scale 1:10.67	Proj. 42_2374_10			Offshore Engineering Basin
Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments
10-Jul-09	10:36:11		roll decay 001			zero speed roll decay tests
10-Jul-09			roll decay 002			zero speed roll decay tests
10-Jul-09	10:47:48		pitch decay 001			Pitch decay test
10-Jul-09	11:04:36		speed_run_001			rps 12.75 Measured Speed= 1.21 m/s
		calm water zig zag m	anoeuvres carried out to	tune mod	el autopilot	
10-Jul-09			Zigzag_001			1.21 m/s 5 deg rudder 5 deg yaw
10-Jul-09			Zigzag_002			1.21 m/s 10 deg rudder 10 deg yaw
10-Jul-09 10-Jul-09			speed_run_002			rps 6.63 Measured speed = 0.617 m/s
10-Jul-09			Zigzag_003 Zigzag_004			0.617 m/s, 15 deg Rudder 10 deg yaw 0.617 m/s, 25 deg Rudder 15 deg yaw
10-Jul-09			Zigzag_004 Zigzag_005			1.21 m/s 20 deg rudder 10 deg yaw
10-Jul-09		REG25 H0P75 T4P90 DRV	wave run 001			Speed = 1.21 m/s
10-Jul-09		REG25 H0P75 T4P90 DRV	wave run 002			Speed = 0.617 m/s
10-Jul-09	14:49:50		Zigzag 006			1.21 m/s 25 deg rudder 5 deg yaw
10-Jul-09	14:55:28		Zigzag_007			1.21 m/s 2 deg rudder 5 deg yaw, aborted
10-Jul-09	15:02:53		Zigzag_008			1.21 m/s 5 deg rudder 5 deg yaw, aborted
13-Jul-09	9:35:46	REG45_H0P55_T4P20_DRV	wave_run_003	1		rps 12.75
13-Jul-09	9:45:06	REG45_H0P95_T5P51_DRV	wave_run_004			rps 12.75
13-Jul-09		REG45_H0P95_T5P51_DRV	wave_run_005			rps 6.63
13-Jul-09	13:36:28	REG45_H0P95_T5P51_DRV	wave_run_006		-	rps 6.63 with auto pilot set, run aborted, rudder failure
						QUALISYS reference point changed to position of MotionPak,
13-Jul-09						Previous location was bow QUALISYS marker (Shift was X= -745.06 mm Z= 1091.63 mm)
13-Jul-09	13:50:37	REG45_H0P95_T5P51_DRV	wave run 007			rps 6.63 with auto pilot set, run aborted autopilot not working properl
13-Jul-09	13:56:17	REG45_H0P95_T5P51_DRV	wave_run_007 wave run 008			rps 6.63 with auto pilot set, full aborted autopilot not working propert
13-Jul-09		REG45_H0P95_T5P51_DRV	wave_run_008	-		rps 6.63 with auto pilot set, auto pilot tuning
13-Jul-09			wave run 010			rps 6.63 with auto pilot set, autopilot tuning no wave
13-Jul-09		REG45 H0P95 T5P51 DRV	wave run 011			rps 6.63 with autopilot set, autopilot tuning with Kalman Filter
13-Jul-09	15:11:58	REG45_H0P95_T5P51_DRV	wave_run_012			rps 6.63 with autopilot set, autopilot tuning without Kalman Filter rps 6.63 with autopilot set, auto pilot tuning with Kalman Filter, inver
14-Jul-09	9:25:00	REG45_H0P95_T5P51_DRV	wave_run_013			rudder on, negative k rps 6.63 with autopilot set, autopilot tuning with Kalman Filter, turner
14-Jul-09	9:31:42	REG45_H0P95_T5P51_DRV	wave_run_014			off invert rudder, negative k
14-Jul-09	9:51:33		sign_check_001			error noted
14-Jul-09	9:52:13		sign_check_002			tipping model to stbd
14-Jul-09	9:53:25		sign_check_003			pushing bow down
44.1.1.00	0.50.40					push model straight to port, push model straight to stbd, push mode
14-Jul-09 14-Jul-09	9:56:48 10:46:32		sign_check_004 sign_check_005			straight forward, push model straight back, weight added to top of roll tank and removed x 2
14-301-03	10.40.32		Sign_check_000			pulled model to port, model pushed to port from stbd, model pushed
14-Jul-09	10:51:40		sign check 006			to stbd from port, model pulled to stern from winch,
14-Jul-09			sign check 007			model lowered on OEB overhead crane, heave, while in cradle
14-Jul-09			sign check 008			Yaw check pull counterclockwise then clockwise
14-Jul-09	11:44:00		sign_check_009			Sway check push from port (Tank south)
14-Jul-09	11:49:54		sign_check_010			Surge west or towards bow the back
14-Jul-09	11:55:17		sign_check_011			push model from stern
14-Jul-09		RS2_w1_mds	0drift_beam_001	1	0:00:00	Drift test model drifting to probe abort and retry
14-Jul-09	13:04:14	RS2_w1_mds	0drift_beam_002	1	0:02:17	Drift test model pointing West Head to sea
14 101 00	12:00:50	RS2 w1 mds	Odrift boom 000	4	0:09:40	Drift test model pointing East Following sea Model did not stay on
14-Jul-09 14-Jul-09		RS2_w1_mds RS2_w1_mds	0drift_beam_003 0drift_beam_004	1	0:09:40	following seas, retry with larger heading Drift test model pointing East Following sea same as above
14-Jul-09		RS2_w1_mds	Odrift beam 005	1	0:11:41	Drift test model pointing Last Pollowing sea same as above
14-Jul-09				· ·		Auto Pilot Angle Setpoint = -1.77 deg
14-Jul-09		RS2_w3_mds	TBow_001	1	0:18:25	Tbow Test 1
14-Jul-09	14:19:07	RS2_w3_mds	TBow_002	1	0:20:39	Span @ 5:50 Rel @ 5:25
14-Jul-09		RS2_w3_mds	TBow_003	1	0:22:06	Span @ 3:54 Rel @ 3:39
14-Jul-09		RS2_w3_mds	TBow_004	1	0:23:54	Span @ 2:09 Rel @ 1:54
14-Jul-09	15:20:09	RS2_w3_mds	TBow_005	1	0:25:45	Span @ 1:15 Rel @ 1:00 added 2.88 kg of water added to tank, Auto Pilot Angle Setpoint t =
						8.84 deg,
15-Jul-09		RS2_w3_mds	ART_TBow_001	1	0:27:25	, Rel @ 7:15
15-Jul-09		RS2_w3_mds	ART_TBow_002	1	0:28:44	Span @ 5:45, Rel @ 5:30
15-Jul-09 15-Jul-09		RS2_w3_mds RS2_w3_mds	ART_TBow_003 ART_TBow_004	1	0:30:33 0:31:45	Span @ 3:51, Rel @ 3:36 Span @ 2:05, Rel @ 1:50
15-Jul-09 15-Jul-09		RS2_w3_mds	ART_TBow_004 ART_TBow_005	1	0:31:45	Span @ 2:05, Ref @ 1:50 Span @ 1:15, Ref @ 1:00 Moved control station and launch to north east corner for next set of
15-Jul-09			angle check 001			headings Run to collect launch angle to be able to in put new setpoint
15-Jul-09 15-Jul-09	13:40:14		angle_cneck_001			Auto Pilot Angle Setpoint = -3.1 deg
15-Jul-09 15-Jul-09	13:56:37	RS2_w1_mds	THEAD 001	1	0:35:01	Rel @ 7:07
15-Jul-09	10.00.07				0.00.01	Auto Pilot Angle Setpoint = -5 deg
15-Jul-09	14:06:15	RS2 w1 mds	THEAD 002	1	0:36:58	Span @ 6:03, Rel @ 5:40 bad release repeat with lower transit time
15-Jul-09		RS2 w1 mds	THEAD 003	1	0:37:35	Span @ 5:55, Rel @ 5:40
15-Jul-09		RS2_w1_mds	THEAD_004	1	0:39:18	Span @ 4:28, Rel @ 4:13
15-Jul-09		RS2_w1_mds	THEAD_005		0:41:16	Run with new Kalman filter settings OmegaN 3.25, Zeta =0.05

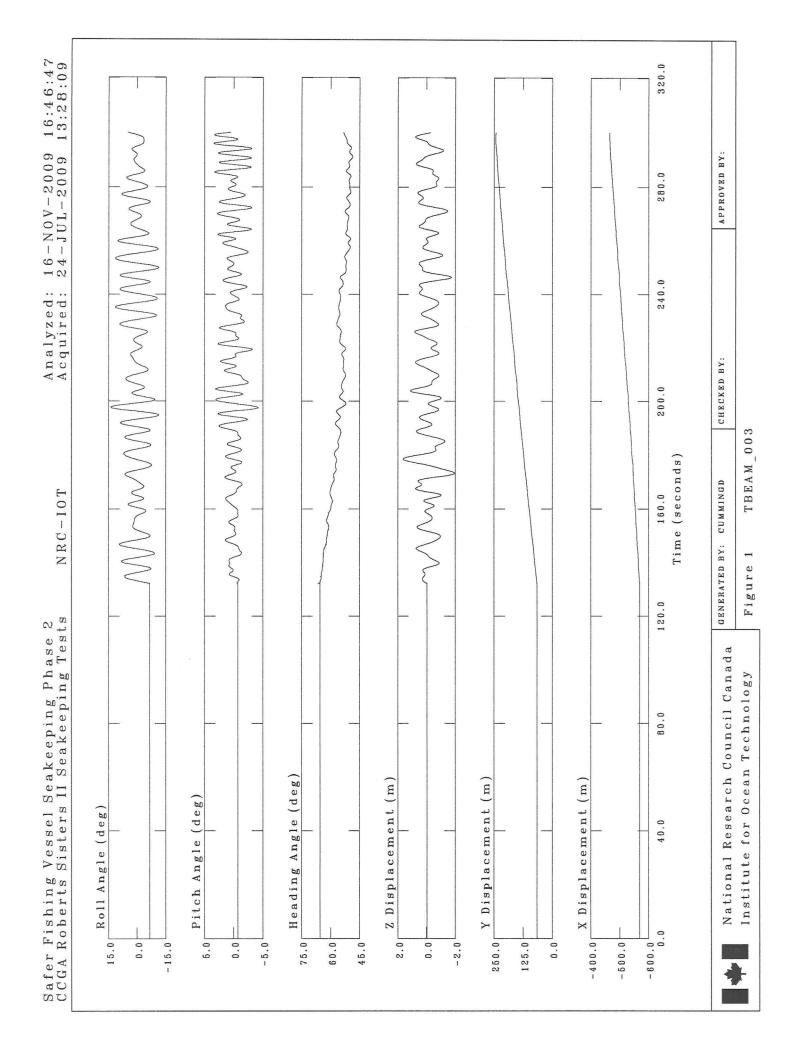
Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments
15-Jul-09	14:52:14	RS2 w1 mds	THEAD 006	1 1	0:42:24	Span @ 3:15, Rel @ 3:00
15-Jul-09	15:04:43	RS2 w1 mds	THEAD 007	1	0:44:26	Span @1:56 , Rel @ 1:41
15-Jul-09	15:15:47	RS2 w1 mds	THEAD 008	1	0:46:21	Last run with more overlap Span @1:15, Rel @ 1:00
15-Jul-09	15:29:15	RS2_w3_mds	CHEAD_001	1	0:47:41	Rel @ 7:15
15-Jul-09	15:35:59	RS2_w3_mds	CHEAD_002	1	0:48:48	Span @7:04 , Rel @ 6:49
16-Jul-09	8:43:24	RS2_w3_mds	CHEAD_003	1	0:50:04	Span @6:32 , Rel @ 6:17
16-Jul-09	8:51:34	RS2_w3_mds	CHEAD_004	1	0:50:52	Span @6:03 , Rel @ 5:48
16-Jul-09	9:01:52	RS2_w3_mds	CHEAD_005	1	0:51:49	Span @5:28 , Rel @ 5:13
16-Jul-09	9:12:58	RS2_w3_mds	CHEAD_006	1	0:52:54	Repeat Last run (missed data) Span @ 5:29 , Rel @ 5:14
16-Jul-09	9:24:10	RS2_w3_mds	CHEAD_007	1	0:53:37	Span @4:58, Rel @ 4:43
16-Jul-09	9:34:32	RS2_w3_mds	CHEAD_008	1	0:54:36	Span @4:30 , Rel @ 4:13
16-Jul-09	9:47:23	RS2_w3_mds	CHEAD_009	1	0:55:31	Span @4:01, Rel @ 3:43
16-Jul-09 16-Jul-09	9:58:06 10:07:22	RS2_w3_mds RS2_w3_mds	CHEAD_010 CHEAD_011	1	0:56:27	Span @3:30 , Rel @ 3:12
16-Jul-09	10:07:22	RS2_w3_mds RS2_w3_mds	CHEAD_011 CHEAD_012	1	0:58:07	Span @2:55, Rel @ 2:37 Span @2:19, Rel @ 2:01
16-Jul-09	10:29:24	RS2_w3_mds	CHEAD_012 CHEAD_013	1	0:59:47	Span @2.19, Her @ 2.01 Span @1:50, Rel @ 1:32
16-Jul-09	10:39:55	RS2 w3 mds	CHEAD_014	1	1:00:33	Span @1:18, Rel @ 1:00
16-Jul-09	10:49:51	RS2 w3 mds	CHEAD_015	1	1:01:40	Span @ 0:43, Rel @ 0:25
10 00.00	10.10.01	1102_110_11100	0112/18_010			Moved control station and launch to South east corner for next set of
16-Jul-09	11:00:00					headings
16-Jul-09	14:23:10	RS2 w3 mds	angle check 001			Run to collect launch angle to be able to in put new setpoint
17-Jul-09			0	Ì		
17-Jul-09	8:57:51	RS2 w3 mds	CBow 001	1	1:02:54	Rel @ 7:12 Increased RPS to 14.75 rps
17-Jul-09	9:34:00	RS2 w3 mds	CBow 002	1	1:02:34	Rel @ 7:12 Increased rps to 13.5 rps Autopilot Setpoint =-2 deg
17-Jul-09	10:04:20	RS2 w3 mds	CBow 003	1	1:04:17	Span @ 7:03, Rel @ 6:45
17-Jul-09	10:15:21	RS2 w3 mds	CBow 004	1	1:04:58	Span @ 6:35, Rel @ 6:17
17-Jul-09	10:25:35	RS2_w3_mds	CBow_005	1	1:05:57	Span @ 6:05, Rel @ 5:47
17-Jul-09	10:35:13	RS2_w3_mds	CBow_006	1	1:06:43	Span @ 5:33, Rel @ 5:15
17-Jul-09	10:45:07	RS2_w3_mds	CBow_007	1	1:07:36	Span @ 5:02, Rel @ 4:44
17-Jul-09	10:57:46	RS2_w3_mds	CBow_008	1	1:08:53	Span @ 4:32, Rel @ 4:14
17-Jul-09	11:07:08	RS2_w3_mds	CBow_009	1	1:09:47	Span @ 4:03, Rel @ 3:45
17-Jul-09	11:24:12	RS2_w3_mds	CBow_010	1	1:10:28	Span @ 3:32, Rel @ 3:14
17-Jul-09	11:34:03	RS2_w3_mds	CBow_011	1	1:11:23	Span @ 3:02, Rel @ 2:44
17-Jul-09	11:44:04	RS2_w3_mds	CBow_012	1	1:12:21	Span @ 2:35, Rel @ 2:17
17-Jul-09	11:54:04	RS2_w3_mds	CBow_013	1	1:13:10	Span @ 2:07 , Rel @ 1:49
17-Jul-09	12:04:07	RS2_w3_mds	CBow_014	1	1:14:01	Span @ 1:35 , Rel @ 1:17
17-Jul-09	12:14:06	RS2_w3_mds	CBow_015	1	1:14:33	Span @ 1:07 , Rel @ 0:49
17-Jul-09	13:50:44	RS2_w3_mds	CBow_016		1:15:25	Span @ 0:38 , Rel @ 0:20
17-Jul-09	14:07:03	RS2_w2_mds	Cbeam_001	1	1:16:02	Rel @ 7:12, Autopilot Setpoint = 2.41deg, RPS = 13.5
17-Jul-09 17-Jul-09	14:21:09 14:32:00	RS2_w2_mds RS2 w2 mds	Cbeam_002 Cbeam_003	1	1:16:53 1:17:48	Rel @ 7:12, Autopilot Setpoint = 2.41deg, RPS = 12.75 Span @ 7:03, Rel @ 6:45
17-Jul-09	14:42:03	RS2 w2 mds	Cbeam 004	1	1:17:48	Span @ 6:35, Rel @ 6:17 Bad Autopilot Setting repeat
17-Jul-09	14:50:04	RS2_w2_mds	Cbeam 005	1	1:20:14	Span @ 0.35, Rel @ 0.17 Bad Adoption Setting repeat Span @ 6:35, Rel @ 6:17
17-Jul-09	15:00:03	RS2 w2 mds	Cbeam 006	1	1:21:11	Span @ 6:04, Rel @ 5:46
17-Jul-09	15:10:04	RS2 w2 mds	Cbeam 007	1	1:22:10	Span @ 5:33, Rel @ 5:15
17-Jul-09	15:20:04	RS2 w2 mds	Cbeam 008	1	1:23:04	Span @ 5:03, Rel @ 4:45
17-Jul-09	15:30:02	RS2_w2_mds	Cbeam_009	1	1:23:57	Span @ 4:32, Rel @ 4:14
20-Jul-09				Ì		OEB Maintenance day
20 00. 00						
21-Jul-09						Rezero Probe
21-Jul-09	8:55:29	RS2 w2 mds	Cbeam 010	1	1:24:43	Span @ 4:05, Rel @ 3:47
21-Jul-09	9:05:23	RS2_w2_mds	Cbeam_011	1	1:25:41	Span @ 3:32, Rel @ 3:14
21-Jul-09	9:15:54	RS2_w2_mds	Cbeam_012	2	0:00:00	Span @ 2:53, Rel @ 2:35
21-Jul-09	9:25:52	RS2_w2_mds	Cbeam_013	2	0:03:45	Span @ 2:23, Rel @ 2:05
21-Jul-09	9:36:20	RS2_w2_mds	Cbeam_014	2	0:06:04	Span @ 1:50, Rel @ 1:32
21-Jul-09	9:45:52	RS2_w2_mds	Cbeam_015	2	0:06:27	Span @ 1:16, Rel @ 0:58
21-Jul-09	9:56:09	RS2_w2_mds	Cbeam_016	2	0:07:25	Span @ 0:42, Rel @ 0:24
21-Jul-09	10.00.00	DECOS LIADOS TODOS DDVO	0	0	0.07.50	
21-Jul-09	10:33:36	REG25_H1P92_T8P01_DRV2	Case1_1_001	2	0:07:52	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09				1		wave angle incorrectly spec'd at matching, regen new waves with
21-Jul-09 21-Jul-09	10:50:48	REG65 H1P92 T8P01 DRV2	Case1 1 002	2	0:10:07	theta=65 Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09 21-Jul-09		REG65_H1P92_18P01_DRV2 REG65_H1P92_T8P01_DRV2	Case1_1_002 Case1_1_003	2	0:10:07	Autopilot Setpoint = -2.2 deg, RPS = 6.63 Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09 21-Jul-09	11:02:17	ncd03_n1F92_18P01_DRV2	Case1_1_003	2	0.10:40	Autophot Setpoint = -2.2 deg, RPS = 0.03
21-Jul-09 21-Jul-09	11:10:42	REG65 H1P65 T7P34 DRV2	Case1 2 001	2	0:18:29	Autopilot Setpoint = -2.2 deg, RPS = 6.63
				+ -		
21-Jul-09	11:20:41	REG65 H1P65 T7P34 DRV2	Case1 2 002	2	0:20:03	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09				1 -		
21-Jul-09	11:30:44	REG65 H1P42 T6P78 DRV2	Case1 3 001	2	0:21:42	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09	11:40:51	REG65_H1P42_T6P78_DRV2	Case1_3_002	2	0:23:45	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09				1		
21-Jul-09	11:52:21	REG65_H1P23_T6P29_DRV2	Case1_4_001	2	0:25:29	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09	12:03:55		Case1_4_002	2	0:27:27	Autopilot Setpoint = -2.2 deg, RPS = 6.63
21-Jul-09	13:01:24	REG65_H1P23_T6P29_DRV2	Case1_4_003	2	n/a	Autopilot Setpoint = 4 deg, RPS = 8.6
21-Jul-09	13:12:27	REG65_H1P23_T6P29_DRV2	Case1_4_004	2	0:29:34	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09	13:22:39	REG65_H1P23_T6P29_DRV2	Case1_4_005	2	0:30:53	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09						
21-Jul-09	13:33:18	REG65_H1P08_T5P87_DRV2	Case1_5_001	2	0:32:52	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09	13:44:08	REG65_H1P08_T5P87_DRV2	Case1_5_002	2	0:34:58	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09						
	10.54.00	REG65 H0P95 T5P51 DRV2	Case1 6 001	2	0:36:14	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09 21-Jul-09	13:54:00 14:04:00	REG65 H0P95 T5P51 DRV2	Case1_6_002	2	0:38:00	Autopilot Setpoint = 0 deg, RPS = 7.6

Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments
21-Jul-09	14.14.00		Onen1 7 001	0	0.00.05	Due shorted would establish addies
21-Jul-09 21-Jul-09	14:14:00 14:23:00	REG65_H0P75_T4P90_DRV2 REG65_H0P75_T4P90_DRV2	Case1_7_001 Case1 7 002	2	0:39:25 0:39:40	Run aborted - would not take heading. Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09 21-Jul-09	14:34:00	REG65 H0P75 T4P90 DRV2	Case1_7_002 Case1_7_003	2	0:40:38	Autopilot Setpoint = 0 deg, RPS = 7.6
21-Jul-09	1 1.0 1.00		00001_7_000	-	0.10.00	
21-Jul-09	14:45:00	REG25_H1P92_T8P01_DRV2	case3_1_001	2	0:41:29	Autopilot Setpoint = 0 deg, RPS = 7.6 video late starting
21-Jul-09	14:54:00	REG65_H1P92_T8P01_DRV2	case3_1_002	2	0:42:05	Autopilot Setpoint = 0d eg, RPS = 7.6
21-Jul-09						
21-Jul-09	15:04:17	REG65_H1P65_T7P34_DRV2	case3_2_001	2	0:42:05	Autopilot Setpoint = 0 deg, RPS = 12.75
21-Jul-09 21-Jul-09	15:15:20 15:25:06	REG65_H1P65_T7P34_DRV2 REG65_H1P65_T7P34_DRV2	case3_2_002 case3_2_003	2	0:42:47 0:44:06	Autopilot Setpoint = 0 deg, RPS = 12.75 Autopilot Setpoint = 0 deg, RPS = 12.75
21-Jul-09 21-Jul-09	15.25.00	REG05_H1F05_17F34_DRV2	Case3_2_003	2	0.44.00	Autopilot Setpoint = 0 deg, $HPS = 12.75$
21-Jul-09	15:35:41	REG65 H1P42 T6P78 DRV2	case3 3 001	2	0:44:56	Autopilot Setpoint = 0 deg, RPS = 13.5
	1			-		Autopilot Setpoint = 0 deg, RPS = 13.5, no QUALISYS, repeat
22-Jul-09	9:00:07	REG65 H1P42 T6P78 DRV2	case3 3 002	2	0:45:26	follows.
22-Jul-09	9:11:20	REG65 H1P42 T6P78 DRV2	case3 3 003	2	0:46:02	Autopilot Setpoint = 0 deg, RPS = 13.5
22-Jul-09	9:21:24	REG65 H1P42 T6P78 DRV2	case3 3 004	2	n/a	Autopilot Setpoint = -3 deg, RPS = 13.5
22-Jul-09						, , , , , , , , , , , , , , , , , , , ,
22-Jul-09	9:32:59	REG65_H1P23_T6P29_DRV2	case3_4_001	2	0:47:19	Autopilot Setpoint = 0 deg, RPS = 13.5
22-Jul-09	9:42:47	REG65_H1P23_T6P29_DRV2	case3_4_002	2	n/a	Autopilot Setpoint = 0 deg, RPS = 14.8
22-Jul-09	10:04:09	REG65_H1P23_T6P29_DRV2	case3_4_003	2	0:48:09	Autopilot Setpoint = 0 deg, RPS = 15.0
22-Jul-09	10:14:39	REG65_H1P23_T6P29_DRV2	case3_4_004	2	n/a	Autopilot Setpoint = 0 deg, RPS = 15.0
22-Jul-09 22-Jul-09	10:24:54	REG65 H1P08 T5P87 DRV2	case3 5 001	2	0:48:51	Autopilot Setpoint = 0 deg, RPS = 15.0
22-Jul-09 22-Jul-09	10:24:54	REG65_H1P08_15P87_DRV2 REG65_H1P08_T5P87_DRV2	case3_5_001 case3_5_002	2	0:48:51	Autopilot Setpoint = 0 deg, RPS = 15.0 Autopilot Setpoint = 0 deg, RPS = 15.3
22-Jul-09 22-Jul-09	10:34:51	REG65 H1P08 T5P87 DRV2	case3_5_002	2	0:50:50	Autopilot Setpoint = 0 deg, RPS = 15.3
22-Jul-03			00000_0_000	-	0.00.00	
22-Jul-09	10:54:51	REG65_H0P95_T5P51_DRV2	case3_6_001	2	n/a	Autopilot Setpoint = 0 deg, RPS = 15.3
22-Jul-09	11:04:51	REG65_H0P95_T5P51_DRV2	case3_6_002	2	0:51:24	Autopilot Setpoint = -1 deg, RPS = 15.3
22-Jul-09	11:14:52	REG65_H0P95_T5P51_DRV2	case3_6_003	2	0:52:14	Autopilot Setpoint = -3 deg, RPS = 15.3
22-Jul-09						
22-Jul-09	11:24:59	REG65_H0P75_T4P90_DRV2	case3_7_001	2	0:52:57	Autopilot Setpoint = 0 deg, RPS = 13.5
22-Jul-09	11:35:01	REG65_H0P75_T4P90_DRV2	case3_7_002	2	0:53:56	Autopilot Setpoint = 2 deg, RPS = 13.5
22-Jul-09	11:45:01	REG65_H0P75_T4P90_DRV2	case3_7_003	2	0:54:38	Autopilot Setpoint = 2 deg, RPS = 13.5
22-Jul-09 22-Jul-09						Add Water to ART
22-Jul-09 22-Jul-09	12:58:02	REG65 H1P92 T8P01 DRV2	case2 1 001	2	0:55:08	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09	13:08:12	REG65 H1P92 T8P01 DRV2	case2 1 002	2	0:58:34	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09	10.00.12		00002_1_002	-	0.00.01	
22-Jul-09	13:19:01	REG65 H1P65 T7P34 DRV2	case2 2 001	2	0:59:53	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09	13:28:46	REG65_H1P65_T7P34_DRV2	case2_2_002	2	1:01:22	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09						
22-Jul-09	13:38:48	REG65_H1P42_T6P78_DRV2	case2_3_001	2	1:02:56	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09	13:48:48	REG65_H1P42_T6P78_DRV2	case2_3_002	2	1:04:24	Autopilot Setpoint = 0 deg, RPS = 6.63
22-Jul-09 22-Jul-09	10.50.57		0 4 001	2	1.05.40	Autorilat Catagiat Order BBC 7.0
22-Jul-09 22-Jul-09	13:58:57 14:08:20	REG65_H1P23_T6P29_DRV2 REG65_H1P23_T6P29_DRV2	case2_4_001 case2_4_002	2	1:05:49 1:07:17	Autopilot Setpoint = 0 deg, RPS = 7.6 Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09	14.00.20	112005_11125_10125_01172	002	2	1.07.17	
22-Jul-09	14:18:24	REG65 H1P08 T5P87 DRV2	case2 5 001	2	1:08:44	Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09	14:29:11	REG65 H1P08 T5P87 DRV2	case2 5 002	2	1:10:09	Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09						· · ·
22-Jul-09	14:39:21	REG65_H0P95_T5P51_DRV2	case2_6_001	2	1:11:23	Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09	14:50:43	REG65_H0P95_T5P51_DRV2	case2_6_002	2	1:11:56	Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09	15.00.41		0 7 001	0	1.10.11	Autorilat Catagiat - 0 dag BBC - 7.0
22-Jul-09 22-Jul-09	15:00:41 15:11:50	REG65_H0P75_T4P90_DRV2 REG65_H0P75_T4P90_DRV2	case2_7_001 case2 7 002	2	1:13:11 1:14:14	Autopilot Setpoint = 0 deg, RPS = 7.6 Autopilot Setpoint = 0 deg, RPS = 7.6
22-Jul-09 22-Jul-09	13.11.30	11EG05_10F75_14F90_DRV2	60562_1_002	2	1.14.14	Autophot Scipoint = 0 deg, nrs = 7.0
22-Jul-09	15:21:20	REG65 H1P92 T8P01 DRV2	case4 1 001	2	n/a	Autopilot Setpoint = 0 deg, RPS = 12.75
22-Jul-09	15:31:34	REG65_H1P92_T8P01_DRV2	case4_1_002	2	n/a	Autopilot Setpoint = 2 deg, RPS = 12.75
22-Jul-09		REG65_H1P92_T8P01_DRV2	case4_1_003	2	1:14:33	Autopilot Setpoint =2 deg, RPS = 12.75
	1				ĺ	
23-Jul-09	8:37:27	REG65_H1P65_T7P34_DRV2	case4_2_001	2	1:15:40	Autopilot Setpoint = 2 deg, RPS = 12.75
23-Jul-09	8:47:30	REG65_H1P65_T7P34_DRV2	case4_2_002	2	1:16:34	Autopilot Setpoint = 2 deg, RPS = 12.75
23-Jul-09	8:58:07	REG65_H1P65_T7P34_DRV2	case4_2_003	2	1:17:24	Autopilot Setpoint = 2 deg, RPS = 12.75
23-Jul-09		25005 11/2		-		
23-Jul-09	9:07:49	REG65_H1P42_T6P78_DRV2	case4_3_001	2	1:18:21	Autopilot Setpoint = 2 deg, RPS = 13.5
23-Jul-09 23-Jul-09	9:17:31	REG65_H1P42_T6P78_DRV2	case4_3_002	2	1:19:19	Autopilot Setpoint = 2 deg, RPS = 13.5
23-Jul-09 23-Jul-09	9:27:30	REG65_H1P42_T6P78_DRV2	case4_3_003	2	1:20:19	Autopilot Setpoint = 2 deg, RPS = 13.5
23-Jul-09 23-Jul-09	9:37:23	REG65 H1P23 T6P29 DRV2	case4 4 001	2	1:21:15	Autopilot Setpoint = 2 deg, RPS = 15.0
23-Jul-09	9:47:32	REG65 H1P23 T6P29 DRV2	case4_4_001	2	1:22:07	Autopilot Setpoint = 2 deg, RPS = 15.0
23-Jul-09	10:02:23	REG65 H1P23 T6P29 DRV2	case4_4_002	2	1:23:09	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09				1		,
23-Jul-09		REG65_H1P08_T5P87_DRV2	case4_5_001	2	1:23:37	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09	10:22:40	REG65_H1P08_T5P87_DRV2	case4_5_002	2	1:24:44	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09	10:33:11	REG65_H1P08_T5P87_DRV2	case4_5_003	2	1:25:36	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09						
23-Jul-09		REG65_H0P95_T5P51_DRV2	case4_6_001	2	1:26:34	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09		REG65_H0P95_T5P51_DRV2	case4_6_002	2	1:27:21	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09	11:03:42	REG65_H0P95_T5P51_DRV2	case4_6_003	2	1:28:17	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09 23-Jul-09	11:13:34	REG65 H0P75 T4P90 DRV2	case4 7 001	2	1:28:46	Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09 23-Jul-09	11:13:34	REG65_H0P75_14P90_DRV2 REG65_H0P75_T4P90_DRV2	case4_7_001 case4_7_002	2	1:28:46	Autopilot Setpoint = 4 deg, RPS = 15.0 Autopilot Setpoint = 4 deg, RPS = 15.0
23-Jul-09 23-Jul-09	11:33:31	REG65 H0P75 T4P90 DRV2	case4_7_002	2	1:29:28	Autophot Setpoint = 4 deg, $RPS = 15.0$ Autophot Setpoint = 4 deg, $RPS = 15.0$

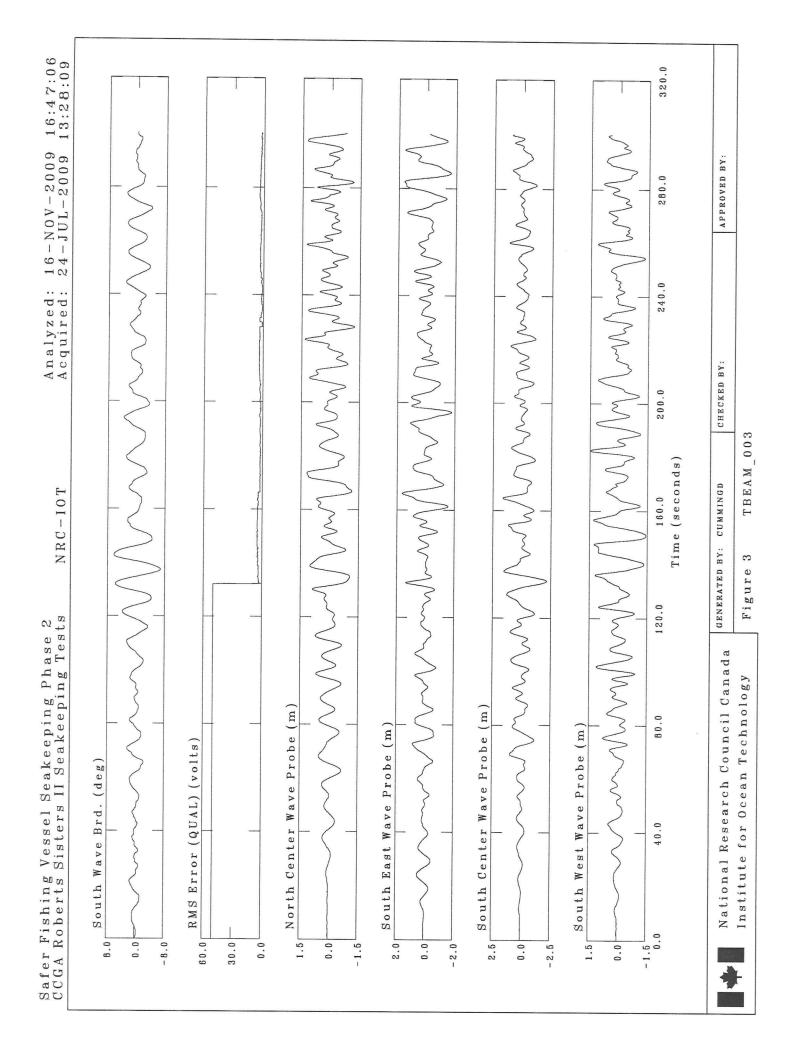
				Video	Video	
Date	Time	Wave Drive Signal	File Name	Tape #	Time	Comments
23-Jul-09						set up for dynamic roll decays with ART filled
23-Jul-09	12:46:54		Roll_ART_s0p6_001	NA	NA	Low speed roll decay with ART filled
23-Jul-09	14:11:29		Roll ART s0p6 002	NA	NA	Low speed roll decay with ART filled
23-Jul-09	14:15:19		Roll ART s0p6 003	NA	NA	Low speed roll decay with ART filled
23-Jul-09						Remove water from ART
23-Jul-09	14:24:21		Roll s0p6 001	NA	NA	Low speed roll decay
23-Jul-09	14:28:23		Roll s0p6 002	NA	NA	Low speed roll decay
23-Jul-09	14:33:24		Roll s0p6 003	NA	NA	Low speed roll decay
23-Jul-09	14:37:12		Roll s1p2 001	NA	NA	High speed roll decay
23-Jul-05	14:40:43		Roll s1p2_001	NA	NA	High speed foll decay
23-Jul-09	14:43:52		Roll s1p2_002	NA	NA	High speed roll decay
23-301-09	14.43.32		Hull_STp2_003	11/4	IN/A	Added water to ART
23-Jul-09	14:52:58		Roll ART s1p2 001	NA	NA	High speed roll decay with ART filled
23-Jul-09 23-Jul-09	14:57:43		Roll_ART_s1p2_001 Roll_ART_s1p2_002	NA	NA	High speed roll decay with ART filled
						High speed roll decay with ART filled
23-Jul-09	15:00:48		Roll_ART_s1p2_003	NA	NA	Install Baffles to ART
23-Jul-09	15 05 04					
23-Jul-09	15:25:24		Roll_ARTB_s0p6_001	NA	NA	Low speed roll decay with ART filled, baffles fitted
23-Jul-09	15:29:02		Roll_ARTB_s0p6_002	NA	NA	Low speed roll decay with ART filled, baffles fitted
23-Jul-09	15:32:18		Roll_ARTB_s0p6_003	NA	NA	Low speed roll decay with ART filled, baffles fitted
23-Jul-09	15:36:03		Roll_ARTB_s1p2_001	NA	NA	High speed roll decay with ART filled, baffles fitted
23-Jul-09	15:38:48		Roll_ARTB_s1p2_002	NA	NA	High speed roll decay with ART filled, baffles fitted
23-Jul-09	15:43:02		Roll_ARTB_s1p2_003	NA	NA	High speed roll decay with ART filled, baffles fitted
24-Jul-09	8:51:18	REG65 H1P23 T6P29 DRV2	Case2B 4 001	3		Autopilot Setpoint = 0 deg, RPS = 7.6 Aborted due to bad heading
24-Jul-09	9:01:15	REG65 H1P23 T6P29 DRV2	Case2B 4 002	3	0:00:00	Autopilot Setpoint = 0 deg, RPS = 7.6 With ART and Baffles
24-Jul-09	9:11:15	REG65 H1P23 T6P29 DRV2	Case2B 4 003	3	0:01:12	Autopilot Setpoint = 0 deg, RPS = 7.6 With ART and Baffles
24-Jul-09 24-Jul-09	0.11.10	112000_111 20_10F29_DRV2	003020_4_003	5	0.01.12	Autophot Ocipoint – O dog, HFO = 7.0With Ant and Dallies
24-Jul-09 24-Jul-09	9:21:16	REG65 H1P08 T5P87 DRV2	Case2B 5 001	3	0:02:27	Autopilot Setpoint = 0 deg, RPS = 7.6 With ART and Baffles
24-Jul-09 24-Jul-09	9:21:16	REG65_H1P08_T5P87_DRV2 REG65_H1P08_T5P87_DRV2	Case2B_5_001 Case2B 5 002		0:02:27	Autopilot Setpoint = 0 deg, RPS = 7.6 With ART and Baffles Autopilot Setpoint = 0 deg, RPS = 7.6 With ART and Baffles
	9:31:34	REG65_HIP08_15P87_DRV2	Case2B_5_002	3	0:03:55	Autopilot Setpoint = 0 deg, RPS = 7.6 with ART and Ballies
24-Jul-09						
24-Jul-09	9:41:57	REG65_H1P23_T6P29_DRV2	Case4B_4_001	3	0:05:15	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09	9:51:57	REG65_H1P23_T6P29_DRV2	Case4B_4_002	3	0:05:47	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09	10:02:00	REG65_H1P23_T6P29_DRV2	Case4B_4_003	3	0:06:33	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09						
24-Jul-09	10:11:59	REG65_H1P08_T5P87_DRV2	Case4B_5_001	3	0:07:27	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09	10:22:00	REG65_H1P08_T5P87_DRV2	Case4B_5_002	3	0:08:23	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09	10:32:01	REG65_H1P08_T5P87_DRV2	Case4B_5_003	3	0:08:55	Autopilot Setpoint = 0 deg, RPS = 15.0 With ART and Baffles
24-Jul-09						
24-Jul-09	10:42:16	REG65 H1P42 T6P78 DRV2	case4B 3 001	3	0:09:39	Autopilot Setpoint = 0 deg, RPS = 13.5 With ART and Baffles
24-Jul-09	10:52:15	REG65 H1P42 T6P78 DRV2	case4B 3 002	3	0:10:21	Autopilot Setpoint = 0 deg, RPS = 13.5 With ART and Baffles
24-Jul-09	11:07:03	REG65 H1P42 T6P78 DRV2	case4B 3 003	3	0:11:05	Autopilot Setpoint = 0 deg, RPS = 13.5 With ART and Baffles
24-Jul-09						
24-Jul-09	11:17:04	REG65 H1P42 T6P78 DRV2	case2B 3 001	3	0:11:50	Autopilot Setpoint = 0 deg, RPS = 6.63 With ART and Baffles
24-Jul-09	11:27:04	REG65 H1P42 T6P78 DRV2	case2B 3 002	3	0:13:23	Autopilot Setpoint = 0 deg, RPS = 6.63 With ART and Baffles
24-Jul-09						
24-Jul-09	11:35:41		Roll ARTB 001			zero speed roll decay with ART and Baffles
24 001 00	11.00.41		1101_711110_001			Water removed from ART
24-Jul-09	11:49:24		Roll B 001			zero speed roll decay - no water in ART
24-Jul-09	11.43.24		11011_0_001			Zero speed foil decay - no water in Arth
24-Jui-09						Autopilet Seteciet 22 deg BBS 6.62 Boffles left in ABT beading
	10.00 50		TREAM share out			Autopilot Setpoint = 22 deg, RPS = 6.63 Baffles left in ART, heading
	13:00:50	n/a	TBEAM_check_001	n/a	n/a	check run, no waves
24-Jul-09	13:08:25	RS2_W1_mds	TBEAM_001	3	0:00:00	Rel 7:12 Autopilot Setpoint = 25 deg, RPS = 6.63 Baffles left in
24-Jul-09	13:18:23	RS2_W1_mds	TBEAM_002	3	0:15:58	Rel 7:12 Autopilot Setpoint = 30 deg, RPS = 5.2 Baffles left in
24-Jul-09	13:28:09	RS2_W1_mds	TBEAM_003	3	0:16:45	Rel 7:12 Autopilot Setpoint = 30 deg, RPS = 5.2 Baffles left in
24-Jul-09		RS2_W1_mds	TBEAM_004	3	0:17:48	Rel 7:12 Autopilot Setpoint = 22 deg, RPS = 5.2 Baffles left in
24-Jul-09	13:57:14	RS2_W1_mds	TBEAM_005	3	0:18:41	Rel 7:12 Autopilot Setpoint = 22 deg, RPS = 5.2 Baffles left in
24-Jul-09	14:10:09	RS2_W1_mds	TBEAM_006	3	0:19:42	aborted run
24-Jul-09	14:20:06	RS2_W1_mds	TBEAM_007	3	0:19:48	aborted run
24-Jul-09		RS2_W1_mds	TBEAM_008	3	0:20:01	Span @ 6:55, Rel @ 6:37
24-Jul-09		RS2 W1 mds	TBEAM 009	3	0:20:57	Span @ 6:25, Rel @ 6:07
24-Jul-09	14:50:05	RS2 W1 mds	TBEAM 010	3	0:22:00	model heading off, repeat follows
24-Jul-09	15:00:23	RS2 W1 mds	TBEAM 011	3	0:22:49	Span @ 5:59, Rel @ 5:41
24-Jul-09	15:10:52	RS2_W1_mds	TBEAM 012	3	0:23:43	Span @ 5:33, Rel @ 5:15
24-Jul-09	15:20:31	RS2 W1 mds	TBEAM 013	3	0:24:44	Span @ 5:02, Rel @ 4:44
24-Jul-09	15:33:42	RS2_W1_mds	TBEAM_014	3	0:24:44	Span @ 5:02, Rel @ 4:44
		102_11103	100.0014		0.23.40	
27-Jul-09	8:25:00					Waveprobes rezeroed
27-Jul-09	8:54:29	RS2_W1_mds	TBEAM_015	3	0:26:36	Span @ 4:34, Rel @ 4:16
27-Jul-09	9:04:52	RS2_W1_mds	TBEAM_016	3	0:27:26	Span @ 4:01, Rel @ 3:43
27-Jul-09	9:14:23	RS2_W1_mds	TBEAM_017	3	0:28:17	Span @ 3:21, Rel @ 3:03
27-Jul-09	9:24:52	RS2 W1 mds	TBEAM 018	3	0:29:15	Span @ 2:58, Rel @ 2:40
27-Jul-09	9:34:52	RS2 W1 mds	TBEAM 019	3	0:30:04	Span @ 2:27, Rel @ 2:09
27-Jul-09	9:44:52	RS2 W1 mds	TBEAM 020	3	0:30:56	Span @ 1:51, Rel @ 1:33
27-Jul-09	9:54:52	RS2_W1_mds	TBEAM 021	3	0:31:44	Span @ 1:20 Rel @ 1:02
		RS2_W1_mds	TBEAM 022	3	0:32:53	Span @ 0:49 Rel @ 0:31
27-Jul-09	10:05:53					

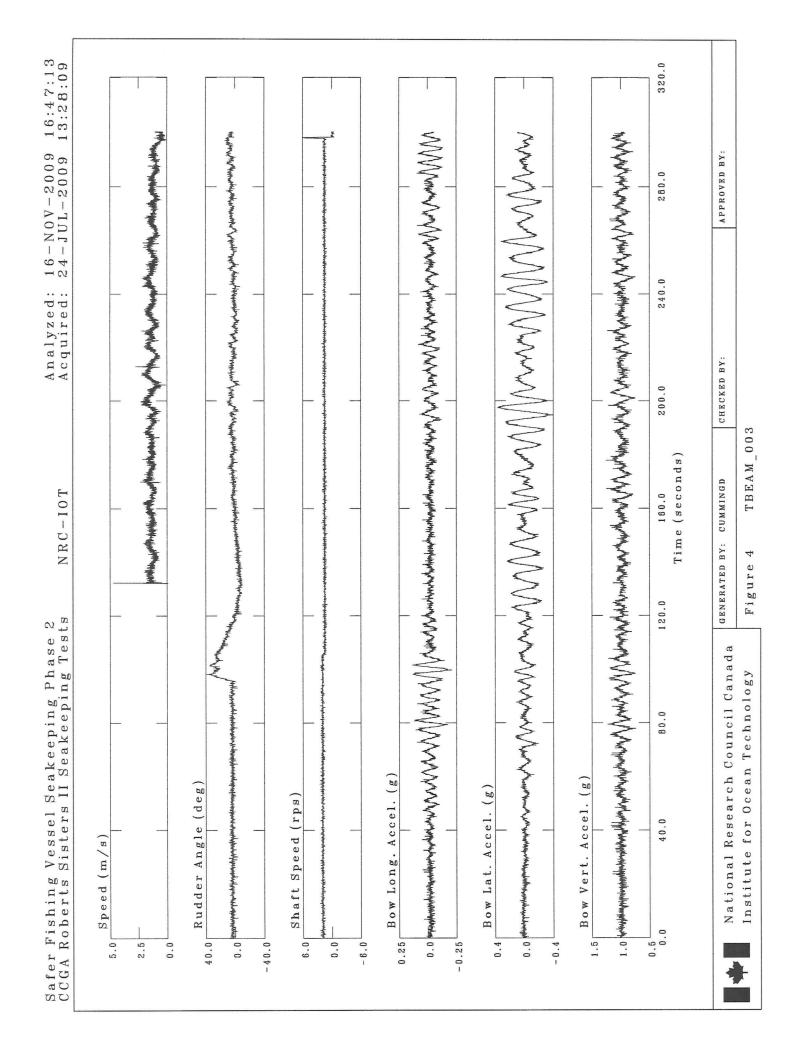
27.Jubo 112521 REG65 HTPS TPS DRV2 caseR2 2002 3 0.93733 Autopice Sepont - 2 day, RPS - 6.63 27.Jubo 11352 REG65 HTPS DRV2 caseR4 1.001 3 0.4036 Autopice Sepont - 2 day, RPS - 6.63 27.Jubo 11353 REG65 HTPS TPS 0.61312 Autopice Sepont - 2 day, RPS - 12.75 27.Jubo 12.554 REG65 HTPS TPS 0.6421 Autopice Sepont - 2 day, RPS - 12.75 27.Jubo 12.514 REG65 HTPS TPS 0.6421 Autopice Sepont - 2 day, RPS - 12.75 27.Jubo 13.3410 REG65 HTPS TPS case48 0.023 0.6421 Autopice Sepont - 2 day, RPS - 12.75 27.Jubo 13.3410 REG65 HTPS TPS case48 0.023 0.6421 Autopice Sepont - 2 day, RPS - 16.00 27.Jubo 13.3416 REG65 HTPS TPS case48 0.023 0.64730 Autopice Sepont - 2 day, RPS - 16.70 27.Jubo 13.34		Time	Wave Drive Signal	File Name	Tape #	Time	Comments
27.1.4.09 11652.8 REG65.11192 1199.2 0.24.4.0 Autopict Septon - 2.56, MPS - 6.5. 27.1.4.09 11.1.3.1 REG65.11192, MPS - 6.5. 0.36.1.0 Autopict Septon - 2.56, MPS - 6.5. 27.1.4.09 11.3.3.1 REG65.11192, MPS - 6.5. 0.36.1.0 0.36.1.0 Autopict Septon - 2.56, MPS - 6.5. 27.1.4.09 11.3.53.1 REG65.11192, TPS - 173.2 0.40.2 3 0.41.1.2 Autopict Septon - 2.56, MPS - 173.2 27.1.4.09 11.3.53.1 REG65.11192, TPS - 173.2 0.41.2 Autopict Septon - 2.56, MPS - 1.2.7 27.1.4.09 11.3.54.2 REG65.11192, TPS - 179.2 0.42.2 0.41.12 Autopict Septon - 2.56, MPS - 1.2.7 27.1.4.09 11.3.54.7 REG65.11192, TPS - 179.2 0.42.2 0.42.21 Autopict Septon - 2.56, MPS - 1.2.7 27.1.4.09 13.44.1 REG65.11192, TPS - 179.2 0.42.3 0.42.40 Autopict Septon - 2.56, MPS - 1.2.7 27.1.4.09 13.44.1 REG65.1192, TPS - 199.2 0.42.51 0.42.51 Autopict Septon - 2.56, MPS - 1.2.7 27.4.4.09 13.44.1 REG65.1495, TPS - 199.2 0.42.51 0.	27-Jul-09	1	<u> </u>		1		Add water to ART Baffles installed
27-Jub 0 11052	27-Jul-09	10:55:08	REG65 H1P92 T8P01 DRV2	case2B 1 001	3	0:33:14	Autopilot Setpoint = 0 deg, RPS = 6.63
27-Julio 11-14 Case28 2 (of 1) Cose2 3 Cose3 3 Cose2 3				case2B 1 002	3	0:34:43	
27-Jule 01 11252-11 PEGG6 H1965 TFP3-0 BVV2 case32_2002 3 0.53751 Autopic Septim 1.2 day, RP5 = 6.6 27-Jule 01 132 Autopic Septim 1.2 day, RP5 = 6.6 27-Jule 01 3 0.4006 Autopic Septim 1.2 day, RP5 = 6.6 27-Jule 01 132 Autopic Septim 1.2 day, RP5 = 6.6 27-Jule 01 3 0.4106 Autopic Septim 1.2 day, RP5 = 6.6 27-Jule 01 12054 12056 11252 Autopic Septim 1.2 day, RP5 = 12.75 27-Jule 01 12054 12056 11252 Autopic Septim 1.2 day, RP5 = 12.75 27-Jule 01 13244 REGS + 11955 TP912, DP12 Case#8 _ 0.00 3 0.4311 Autopic Septim 1.2 day, RP5 = 12.75 27-Jule 01 13244 REGS + 11955 TP912, DP12 Case#8 _ 0.00 3 0.4311 Autopic Septim 1.2 day, RP5 = 12.75 27-Jule 01 13244 REGS + 11955, TP912, DP12 Case#8 _ 0.00 3 0.4311 Autopic Septim 1.2 day, RP5 = 12.75 27-Jule 01 13344 REGS + 10955, TP19, DP12 Case#8 _ 0.00 3 0.44111 Autopic Septim 1.2 day, RP5 = 1.00 <	27-Jul-09						
27.Jub 00 1133.22 PEGRS JHP82, T7P4 JPV2 case#8 2, 003 3 0.590.7 Autopilo Seption - 2 day, IPS = 6.83 27.Jub 01 1136.53 PEGRS JHP82, TPP1 JPV2 case#8 1, 002 3 0.41163 Autopilo Seption - 2 day, IPS = 1275 27.Jub 01 120.543 PEGRS JHP82, TPP1 JPV2 case#8 2, 003 3 0.41163 Autopilo Seption - 2 day, IPS = 1275 27.Jub 01 120.447 REGRS JHP82, TPP3 JPV2 case#8 2, 003 3 0.4113 Autopilo Seption - 2 day, IPS = 1275 27.Jub 01 131.437 REGRS JHP55, TPP3 JPV2 case#8 2, 003 3 0.4114 Autopilo Seption - 2 day, IPS = 1275 27.Jub 01 133.410 REGRS JHP55, TPP3 JPV2 case#8 2, 003 3 0.4111 Autopilo Seption - 2 day, IPS = 1275 27.Jub 01 133.410 REGRS JHP57, TPP3 JPV2 case#8 2, 003 3 0.4501 Autopilo Seption - 2 day, IPS = 16.00 27.Jub 01 132.51 REGRS JHP57, TPP3 JPV2 case#8 2, 003 3 0.473 Autopilo Seption - 2 day, IPS = 16.00 27.Jub 01 132.52 REGRS JHP57, TAPS, DPV2 case#8 2, 001 <td>27-Jul-09</td> <td>11:15:44</td> <td>REG65_H1P92_T8P01_DRV2</td> <td>case2B_2_001</td> <td>3</td> <td>0:36:12</td> <td>Autopilot Setpoint = 2 deg, RPS = 6.63 Wrong wave, repeat run</td>	27-Jul-09	11:15:44	REG65_H1P92_T8P01_DRV2	case2B_2_001	3	0:36:12	Autopilot Setpoint = 2 deg, RPS = 6.63 Wrong wave, repeat run
27-Judo 11-54-22 REG65 (H192, T8P0) DFV2 case41 1.003 3 0-4112 Autopic Sepont -2 dog, RPS -12.75 27-Judo 11-55-22 REG65 (H192, T8P0) DFV2 case41 1.003 3 0-4112 Autopic Sepont -2 dog, RPS -12.75 27-Judo 12-5-20 REG65 (H195, T7P3) DFV2 case42 1.003 3 0-4123 Autopic Sepont -2 dog, RPS -12.75 27-Judo 13-447 REG66 (H195, T7P3) DFV2 case42 2.003 3 0-411 Autopic Sepont -2 dog, RPS -12.75 27-Judo 13-447 REG66 (H195, T7P3, DFV2 case42 6.003 3 0-4411 Autopic Sepont -2 dog, RPS -12.75 27-Judo 13-4416 REG65 (H195, T7P3, DFV2 case42 6.001 3 0-451 Autopic Sepont -2 dog, RPS -15.00 27-Judo 13-4416 REG65 (H195, TPS) DFV2 case42 6.001 3 0-4534 Autopic Sepont -2 dog, RPS -15.00 27-Judo 13-4416 REG65 (H195, TPS) DFV2 case42 6.001 3 0-4534 Autopic Sepont -2 dog, RPS -15.00 27-Judo 11-4510 REG65 (H195, TPS) DFV2 case43 7.001 3 0-4534	27-Jul-09	11:25:21	REG65_H1P65_T7P34_DRV2	case2B_2_002	3	0:37:53	Autopilot Setpoint = 2 deg, RPS = 6.63
27.Jub 11.45.42 REGGS HIPS2 TEPD DRV2 caae4 1.001 3 0.40.36 Autopilo Sepont -2 dag, RPS -12.75 27.Jub 11.55.8 REGGS HIPS2 TEPD DRV2 caae4 1.002 3 0.41.33 Autopilo Sepont -2 dag, RPS -12.75 27.Jub 11.55.8 REGGS HIPS2 TEPD DRV2 caae4 2.001 3 0.42.40 Autopilo Sepont -2 dag, RPS -12.75 27.Jub 11.31.41.7 REGGS HIPS2 TFP3.DRV2 caae4 2.001 3 0.42.41 Autopilo Sepont -2 dag, RPS -12.75 27.Jub 11.31.41.7 REGGS HIPS5 TFP3.DRV2 caae4 2.002 3 0.43.21 Autopilo Sepont -2 dag, RPS -12.75 27.Jub 11.31.41.8 REGGS HIPS5 TFP3.DRV2 caae4 2.003 3 0.44.11 Autopilo Sepont -2 dag, RPS -15.00 27.Jub 11.51.16 REGGS HIPS5 TFP3.DRV2 caae4 2.001 3 0.43.21 Autopilo Sepont -2 dag, RPS -15.00 27.Jub 11.51.16 REGGS HIPS5 TFP3.DRV2 caae4 2.002 3 0.47.00 Autopilo Sepont -2 dag, RPS -15.00 27.Jub 11.51.12 REGGS HIPS5 TFP3.DRV2 caae4 7.001 3 0.47.00 Autopilo Sepont -2 dag, RPS -15.00 27.Jub 11.51.52 REGGS HIPS5 TFP3.DRV2 caa	27-Jul-09	11:35:32	REG65 H1P65 T7P34 DRV2	case2B 2 003	3	0:39:07	Autopilot Setpoint = 2 deg, RPS = 6.63
27JJJJ0 113533 REGIS HIPSZ TEPD JPVZ case49 1.002 3 0.4112 Autopic Sepont -2 dag, RPS -12.75 27JJJ0 10.011 REGIS HIPSZ TEPD JPVZ case49 0.031 0.4133 Autopic Sepont -2 dag, RPS -12.75 27JJJ0 10.411 Autopic Sepont -2 dag, RPS -12.75 27JJ0 0.4240 Autopic Sepont -2 dag, RPS -12.75 27JJJ0 10.411 Autopic Sepont -2 dag, RPS -12.75 1.75 1.75 1.75 27JJJ0 11.355.16 REGIS HIPSZ TPSJ DRVZ case49 2.03 3.04411 Autopic Sepont -2 dag, RPS -10.75 27JJJ0 11.355.46 REGIS HIPSZ TPSJ DRVZ case49 2.03 3.04501 Autopic Sepont -2 dag, RPS -15.00 27JJJ0 1135.54 REGIS HIPSZ TPSJ DRVZ case49 2.03 3.0470 Autopic Sepont -2 dag, RPS -15.00 27JJJ0 114106 REGIS HIPSZ TPSJ DRVZ case49 2.03 3.0470 Autopic Sepont -2 dag, RPS -15.00 27JJJ0 141516 REGIS HIPSZ TPSI DRVZ case49 2.03 3.0473 Autopic Sepont -2 dag, RPS -16.00 27J	27-Jul-09						
27-Jule 1 1155.31 REGGS HIPS2 TRPD, DIV2 case41_1.002 3 0.4112 Autopic Sepont - 2 day, RPS - 12.75 27-Jule 1 202.14 12.05.14 REGGS HIPS2 TRPD, DIV2 case43_2.001 3 0.4132 Autopic Sepont - 2 day, RPS - 12.75 27-Jule 10 13.41 REGGS HIPS2 TRPD, DIV2 case43_2.002 3 0.4421 Autopic Sepont - 2 day, RPS - 12.75 27-Jule 10 13.41 REGGS HIPS2, TRPB, DIV2 case43_2.003 3 0.4421 Autopic Sepont - 2 day, RPS - 12.75 27-Jule 10 13.41 REGGS HIPS2, TRPS, DIV2 case43_6.003 3 0.4411 Autopic Sepont - 2 day, RPS - 12.75 27-Jule 10 13.41 REGGS HIPS7, TRPS, DIV2 case43_6.003 3 0.4531 Autopic Sepont - 2 day, RPS - 15.00 27-Jule 10 13.45 REGGS HIPS7, TAPS, DIV2 case43_6.003 3 0.473 Autopic Sepont - 2 day, RPS - 15.00 27-Jule 10 14.15 REGGS HIPS7, TAPS, DIV2 case43_6.001 3 0.473 Autopic Sepont - 2 day, RPS - 15.00 27-Jule 11 14.15 REGGS HIPS7, TAPS, DIV2 case43_6.001<	27-Jul-09	11:45:42	REG65 H1P92 T8P01 DRV2	case4B 1 001	3	0:40:36	Autopilot Setpoint =2 deg, RPS = 12.75
27-Jules 100-477 REG65 HP65 TP34_DP1V2 case88_2 0 3 0.42-40 Aurgoid Sepoint -2 dag, RPS = 12.75 27-Jules 131437 REG65 HP65 TP34_DP1V2 case48_2 0.03 0.4411 Aurgoid Sepoint -2 dag, RPS = 12.75 27-Jules 1334410 REG65 HP65 TP35 DP1V2 case48_2 0.03 0.4111 Aurgoid Sepoint -2 dag, RPS = 15.00 27-Jules 1334410 REG65 HP65 TP55 DP1V2 case48_6 0.03 0.45.01 Aurgoid Sepoint -2 dag, RPS = 15.00 27-Jules 143544 REG65 HP675 TP30 DP1V2 case48_7 0.01 3 0.45.01 Aurgoid Sepoint -2 dag, RPS = 15.00 27-Jules 14521 REG65 HP675 T490 DP1V2 case48_7 0.01 3 0.47.33 Aurgoid Sepoint -2 dag, RPS = 7.6 27.34.04 13.04.24 REG65 HP675 TA90 DP1V2 case48_7 0.01 3 0.50.37 Aurgoid Sepoint -2 dag, RPS = 7.6 27.34.04 15.20.31	27-Jul-09	11:55:33	REG65_H1P92_T8P01_DRV2	case4B_1_002	3	0:41:12	
27 Julio 130447 REG65, HIP65, T785, DIV2 case48, 2, 003 3 0.4240 Autopiol Segonit - 2 dog, RPS = 12.75 27 Julio 132415 REG65, HIP65, T783, DIV2 case48, 2, 003 3 0.4411 Autopiol Segonit - 2 dog, RPS = 12.75 27 Julio 132415 REG65, HIP65, T785, DIV2 case48, 6, 001 3 n.16 Autopiol Segonit - 2 dog, RPS = 12.75 27 Julio 134116 REG65, HIP65, T595, DIV2 case48, 6, 004 3 0.4501 Lalophot Segonit - 2 dog, RPS = 15.00 27 Julio 142518 REG65, HIP75, T4950, DIV2 case48, 7, 001 3 0.4551 Autopiol Segonit - 2 dog, RPS = 15.00 27 Julio 144.106 REG65, HIP75, T4950, DIV2 case48, 7, 003 3 0.4730 Autopiol Segonit - 2 dog, RPS = 7.6 27 Julio 144.106 REG65, HIP75, T4950, DIV2 case42, 7, 001 3 0.4411 Autopiol Segonit - 2 dog, RPS = 7.6 27 Julio 152.124 REG65, HIP75, T4950, DIV2 case28, 7, 001 3 0.4516 Autopiol Segonit - 2 dog, RPS = 7.6 27 Julio 152.124 REG65, HIP75, T4P80, DIV2 ca	27-Jul-09	12:05:41	REG65 H1P92 T8P01 DRV2	case4B 1 003	3	0:41:53	Autopilot Setpoint =2 deg, RPS = 12.75
27 July 6 131427 REG65, HIP65, T794, DIV2 case48, 2, 002 3 0.4321 Autopilot Seption1 – 2 dig, RPS = 12.75 27 July 6 133410 REG65, HOP5, T794, DIV2 case48, 6, 001 3 0.411 Autopilot Seption1 – 2 dig, RPS = 12.75 27 July 6 133410 REG65, HOP5, TPS1, DIV2 case48, 6, 001 3 nin Autopilot Seption1 – 2 dig, RPS = 15.00 27 July 6 133410 REG65, HOP5, TPS1, DIV2 case48, 6, 004 3 0.4554 Autopilot Seption1 – 2 dig, RPS = 15.00 27 July 6 141528 REG65, HOP5, T4P90, DIV2 case48, 7, 002 3 0.47.00 Autopilot Seption1 – 2 dig, RPS = 15.00 27 July 6 141528 REG65, HOP5, T4P90, DIV2 case48, 7, 002 3 0.47.01 Autopilot Seption1 – 2 dig, RPS = 7.6 27 July 6 1415128 REG65, HOP5, T4P90, DIV2 case48, 7, 001 3 0.54.75 Autopilot Seption1 – 2 dig, RPS = 7.6 27 July 6 151124 REG65, HOP5, T4P90, DIV2 case28, 7.001 3 0.54.95 Autopilot Seption1 – 2 dig, RPS = 7.6 27 July 6 15124 REG65, HOP5, T4P90, DIV2	27-Jul-09						
27.4.00 13:14.27 REG65 HPES_T724.0 0.43.21 Autopiot Sepoint 2 dog, RPS = 12.75 27.4.00 13:24.11 REG65 HPES_T725.0 0.43.21 Autopiot Sepoint 2 dog, RPS = 12.75 27.4.00 13:55.41 REG65 HPES_T725.0 0.44.11 Autopiot Sepoint 2 dog, RPS = 15.00 27.4.00 13:55.41 REG65 HPPS_T9FS1.DIV2 case46.2.004 3 0.45.01 27.4.00 14:55.28 REG65 HPPS_T9FS1.DIV2 case46.7.002 3 0.45.01 Autopiot Sepoint 2 dog, RPS = 15.00 27.4.00 14:55.28 REG65 HPPS_T14P90.DIV2 case46.7.002 3 0.47.00 Autopiot Sepoint 2 dog, RPS = 15.00 27.4.00 14:55.21 REG65 HPPS_T14P90.DIV2 case46.7.002 3 0.47.00 Autopiot Sepoint 2 dog, RPS = 7.6 27.4.00 14:55.21 REG65 HPPS_T14P90.DIV2 case28.5.00 3 0.42.11 Autopiot Sepoint 2 dog, RPS = 7.6 27.4.040 15:124 REG65 HPPS_T4P90.DIV2 case28.5.003 3 na Autopiot Sepoint 2 dog, RPS = 7.6	27-Jul-09	13:04:47	REG65 H1P65 T7P34 DRV2	case4B 2 001	3	0:42:40	Autopilot Setpoint =2 deg, RPS = 12.75
27-Julos case46 6.001 a nu Autopiot Sepont - 2 dg, RPS = 15:00 27-Julos 133-110 RE665 H0P55 T5P5 DFV2 case46 6.002 3 nu failed model much, repeat run follows 27-Julos 135-110 RE665 H0P55 T5P5 DFV2 case46 6.002 3 0.45.01 Autopiot Sepont - 2 dg, RPS = 15.00 27-Julos 135-128 RE665 H0P55 T5P5 DFV2 case46 7_001 3 0.45.01 Autopiot Sepont - 2 dg, RPS = 15.00 27-Julos 14.2512 RE665 H0P55 T4P5 DFV2 case46 7_002 3 0.47.00 Autopiot Sepont - 2 dg, RPS = 15.00 27-Julos 14.45103 RE665 H0P55 T4P5 DFV2 case26 6_01 3 0.47.13 Autopiot Sepont - 2 dg, RPS = 7.6 27-Julos 14.45103 RE665 H0P55 T5P5 DFV2 case26 5_0.03 3 n.47.16 Autopiot Sepont - 2 dg, RPS = 7.6 27-Julos 14.25103 RE665 H0P55 T4P5 DFV2 case26 7_002 3 0.51.45 Autopiot Sepont - 2 dg, RPS = 7.6 27-Julos 14.2010 15.0231 RE665 H0P55 T4P5 DFV2 case26 7_002 3 0.51.45 Autopiot Sepont - 2 d	27-Jul-09	13:14:37	REG65_H1P65_T7P34_DRV2	case4B_2_002	3	0:43:21	
27-Julo 133-10 REG65 H095 TSP5 DRV case86 0.001 3 n/a Autopic Seption - 2 deg, RPs - 15.00 27-Julo 14.05 <td< td=""><td>27-Jul-09</td><td>13:24:15</td><td>REG65 H1P65 T7P34 DRV2</td><td>case4B 2 003</td><td>3</td><td>0:44:11</td><td>Autopilot Setpoint =2 deg, RPS = 12.75</td></td<>	27-Jul-09	13:24:15	REG65 H1P65 T7P34 DRV2	case4B 2 003	3	0:44:11	Autopilot Setpoint =2 deg, RPS = 12.75
27-Jul 09 1534-16 REG65 H0P5 TP51 DRV2 case48 0.002 3 n/a failed model kunch, repear nu follows 27-Jul 09 15354 REG65 H0P5 TP51 DRV2 case48 0.004 3 0.4551 Autopilo Stepont -2 deg, RP5 = 15.00 27-Jul 09 14.1528 REG65 H0P5 TSP51 DRV2 case48 0.700 3 0.4635 Autopilo Stepont -2 deg, RP5 = 15.00 27-Jul 09 14.1528 REG65 H0P5 TSP51 DRV2 case48 0.7003 3 0.4743 Autopilo Stepont -2 deg, RP5 = 15.00 27-Jul 09 14.100 REG65 H0P5 TSP51 DRV2 case48 0.7003 3 0.4743 Autopilo Stepont -2 deg, RP5 = 7.6 27-Jul 09 150.00 27 Job 095 TSP51 DRV2 case28 0.902 3 0.4743 Autopilo Stepont -2 deg, RP5 = 7.6 27-Jul 09 150.243 REG65 H0P5 TSP51 DRV2 case28 0.902 3 0.5037 Autopilo Stepont -2 deg, RP5 = 7.6 27-Jul 09 150.201 REG65 H0P5 TSP51 DRV2 case28 0.902 3 na na Autopilo Stepont -2 deg, RP5 -7.6 27-Jul 09 152.01 REG65 H0P57 T4P90 DRV2 case28 0.902	27-Jul-09						
27-Jul op 1155.48 REG65 Holps TSPS Description 2 deg, RPS 15:00 27-Jul op 14:1528 REG65 HoPS TSPD Case88 7:00 3 0.4554 Autopild Septonin - 22 deg, RPS = 15:00 27-Jul op 14:1528 REG65 HOP75 TAP00 0.4635 Autopild Septonin - 22 deg, RPS = 15:00 27-Jul op 14:41 REG65 HOP75 TAP00 DAV Autopild Septonin - 22 deg, RPS = 15:00 27-Jul op 14:41 REG65 HOP55 TSPS DRV case88 0.01 3 0.497:16 Autopild Septonin - 22 deg, RPS = 7.6 27-Jul op 15:124 REG65 HOP55 TSPS DRV case88 7.001 3 0.497:16 Autopild Septonin - 22 deg, RPS = 7.6 27-Jul op 15:124 REG65 HOP55 TSPS DRV case82 7.002 3 0.51:45 Autopild Septonin - 22 deg, RPS = 7.6 27-Jul op 14:249 REG65 HOP55 TSPS OE OE OE	27-Jul-09	13:34:10	REG65 H0P95 T5P51 DRV2	case4B 6 001	3	n/a	Autopilot Setpoint =2 deg, RPS = 15.00
27 Julio9 135548 REG65 H0PS TSPS DPS TSP		13:44:16					
27 Juli 09 140510 REG65 H6P65 T5P1_DFV case48 0.04 3 0.4554 Autopic Septimi - 2 deg, RP5 = 15.00 27 Juli 09 14.1122 REG65 H6P75 T4P0 DRV case48 7.001 8 0.4635 Autopic Septimi - 2 deg, RP5 = 15.00 27 Juli 09 14.21 REG65 H6P75 T4P0 DRV case48 7.003 3 0.4740 Autopic Septimi - 2 deg, RP5 = 15.00 27 Juli 09 14.2106 REG65 H6P55 T4P0 DRV case28 0.02 3 0.4740 Autopic Septimi - 2 deg, RP5 - 7.6 7.71400 15.01 Autopic Septimi - 2 deg, RP5 - 7.6 7.71400 15.01 Autopic Septimi - 2 deg, RP5 - 7.6 7.71400 15.01 Autopic Septimi - 2 deg, RP5 - 7.6 7.71400 15.02 Autopic Septimi - 2 deg, RP5 - 7.6 7.71400 16.2031 REG65 H6P75 T4P90 DRV2 case28 7.002 3 0.5145 Autopic Septimi - 2 deg, RP5 - 7.6 7.74400 15.2031 REG65 H6P75 T4P90 DRV2 case28 7.002 3 0.5145 Autopic Septim 1-					3	0:45:01	
27-Jul 09 Link 1528 REGG JMP75, T4P90_DRV2 case48, 7, 001 3 0.46.35 Autopict Septomi -2. dog, RPS = 15.00 27-Jul 09 14.45128 REGG HMP75, T4P90_DRV2 case48, 7, 001 3 0.47.00 Autopict Septomi -2. dog, RPS = 15.00 27-Jul 09 14.45103 REGG HMP75, T4P90_DRV2 case28, 6, 001 3 0.47.01 Autopict Septomi -2. dog, RPS = 7.6 27-Jul 09 14.35103 REGG HMP95, T5P51 DRV2 case28, 6, 002 3 0.4911 Autopict Septomi -2. dog, RPS = 7.6 27-Jul 09 15112.4 REGG HMP95, T5P51 DRV2 case28, 7, 002 3 0.5037 Autopict Septomi -2. dog, RPS = 7.6 27-Jul 09 15112.4 REGG HMP75, T4P90_DRV2 case28, 7, 002 3 0.5145 Autopict Septomi -2. dog, RPS = 7.6 27-Jul 09 152212 Check, run, 012 4 0.1310 RPS = 6.8 17.58p.09 142.24 REGG HMP75, T4P90_DRV2 case28, 7, 002 3 0.5145 Autopict Septomi -2. dog, RPS = 7.6 17.58p.09 142.41 REGG HMP75, T4P90_DRV2 case28, 7, 002 3 0.5145 Autopict Septomi res.0016							
27-Julio9 1415.28 REG65, H0P75, 14P80, DFV2 caseAB, 7, 002 3 0.447.03 Autopilot Septont -2 dag, RPS = 15.00 27-Julio9 142.21 REG65, H0P75, 14P80, DFV2 caseAB, 7, 003 3 0.477.04 Autopilot Septont -2 dag, RPS = 15.00 27-Julio9 150.01 REG65, H0P75, 14P80, DFV2 caseAB, 7, 003 3 0.477.04 Autopilot Septont -2 dag, RPS = 7.6 27-Julio9 150.02 REG65, H0P85, T5P5, DFV2 caseAB, 7, 001 3 0.481.1 Autopilot Septont -2 dag, RPS = 7.6 27-Julio9 152.0231 REG65, H0P85, T5P5, DFV2 case2B, 5, 003 3 na Autopilot Septont -2 dag, RPS = 7.6 27-Julio9 152.0231 REG65, H0P75, T4P90, DRV2 case2B, 7, 002 3 0.51145 Autopilot Septont -2 dag, RPS = 7.6 17-Septo9 162.0231 REG65, H0P75, T4P90, DRV2 case2B, 7, 002 3 0.51145 Autopilot Septont -2 dag, RPS = 7.6 17-Septo9 162.0231 REG65, M0P75, T4P90, DRV2 case2B, 7, 002 3 0.51145 Autopilot Septont -2 dag, RPS = 7.6 17-Septo9 152.0231 REG64, M0P75, T4P90, DRV2							
27.Julo9 142.512 REG65.H0P75_14P90_DPV2 case48_7_003 3 0.47.00 Autopilot Sepont = 2.de, RPS = 15.00 27.Julo9 14.51.03 REG65.H0P55_17P50_DPV2 case28_6_001 3 0.47.43 Autopilot Sepont = 2.de, RPS = 7.6 27.Julo9 14.51.03 REG65.H0P55_17P51_DPV2 case28_6_002 3 0.48.11 Autopilot Setpoint = 2.de, RPS = 7.6 27.Julo9 14.51.03 REG65_H0P55_17P50_DPV2 case28_6_002 3 0.49.16 Autopilot Setpoint = 2.de, RPS = 7.6 27.Julo9 15.20.31 REG65_H0P55_17P90_DPV2 case28_5_003 an not carried out of demo for vising Governos. 27.Julo9 1522.51 REG65_H0P75_14P90_DPV2 case28_7_002 3 0.51.45 Autopilot Setpoint = 2.deg, RPS = 7.6 27.Julo9 1522.51 REG65_H0P75_14P90_DPV2 case28_7_002 3 0.51.45 Autopilot Setpoint = 2.deg, RPS = 7.6 17.Sepo9 142.212 Check_nun 012 Check_nu		14:15:28	REG65 H0P75 T4P90 DRV2	case4B 7 001	3	0:46:35	Autopilot Setpoint =2 deg. BPS = 15.00
27-Jul-09 144.106 REG65.H0P75_14P90_DRV2 case48_7_003 3 0.47.43 Autopilot Setpoint = 2 deg, RPS = 15.00 27-Jul-09 145.103 REG65_H0P95_T5P51_DRV2 case28_6_001 3 0.48.11 Autopilot Setpoint = 2 deg, RPS = 7.6 27-Jul-09 152.124 REG65_H0P75_T4P90_DRV2 case28_6_002 3 0.49.16 Autopilot Setpoint = 2 deg, RPS = 7.6 27-Jul-09 151:124 REG65_H0P75_T4P90_DRV2 case28_5_003 3 na Autopilot Setpoint = 2 deg, RPS = 7.6 Min ART and Ballies 27-Jul-09 152:031 REG65_H0P75_T4P90_DRV2 case28_5_002 3 na Autopilot Setpoint = 2 deg, RPS = 7.6 Min ART and Ballies 27-Jul-09 152:053 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Setpoint = 2 deg, RPS = 7.6 Min ART and Ballies 27-Jul-09 152:053 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Setpoint = 2 deg, RPS = 7.6 Min ART and Ballies 27-Jul-09 152:053 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Setpoint = 2 deg, RPS = 7.6							
27-Jule9 15:103 REG65, H0P95, T5P51, DRV2 case28, 6, 002 3 0.48:11 Autopicit Sepoint = 2 deg, RPS = 7.6 27-Jule9 15:24.3 REG65, H0P95, T5P51, DRV2 case28, 6, 002 3 0.48:16 Autopicit Sepoint = 2 deg, RPS = 7.6 27-Jule9 18:20.31 REG65, H0P5, T4P50, DRV2 case28, 5, 003 3 ns Autopicit Sepoint = 2 deg, RPS = 7.6 27-Jule9 15:20.31 REG65, H0P5, T4P50, DRV2 case28, 7, 001 3 0.50.37 Autopicit Sepoint = 2 deg, RPS = 7.6 27-Jule9 15:20.31 REG65, H0P75, T4P90, DRV2 case28, 7, 002 3 0.51.45 Autopicit Sepoint = 2 deg, RPS = 7.6 27-Jule9 15:20.31 REG65, H0P75, T4P90, DRV2 case28, 7, 002 3 0.51.45 Autopicit Sepoint = 2 deg, RPS = 7.8 17-Sep.09 14:06.47 RS2 w3, mds TBow, 007 4 0.13.10 RPS = 6.8.3 17-Sep.09 14:20.54 RS2 w3, mds TBow, 007 4 0.15.46 Span Ø ± 22.4 Span Ø ± 22.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
27-Julog 145103 REGGE H0P95_TSP51_DFV2 case28.6.001 3 0.4811 Autopiot Sepont = 2 deg, RP5 = 7.6 27-Julog 15:1124 REGGE H0P5_TSP51_DFV2 case28.7.001 3 0.4916 Autopiot Sepont = 2 deg, RP5 = 7.6 27-Julog 15:1124 REGGE H0P75_T4P90_DFV2 case28.7.001 3 0.50.37 Autopiot Sepont = 2 deg, RP5 = 7.6 27-Julog 15:1124 REGGE H0P75_T4P90_DFV2 case28.7.001 3 na Autopiot Sepont = 2 deg, RP5 = 7.6 27-Julog 15:212 Case28.5.003 3 na Autopiot Sepont = 2 deg, RP5 = 7.6 27-Julog 12:22:12 Case28.7.012 3 0.51.45 Autopiot Sepont = 2 deg, RP5 = 7.6 17:Sep.09 12:22:12 Cheak_run_012 CEs estup to contrue testing after long break 17:Sep.09 12:22:12 Cheak_run_012 CES estup to contrue testing after long break 17:Sep.09 12:22:12 Cheak_run_012 CES estup to contrue testing after long break 17:Sep.09 12:22:12 Cheak_run_012 CES estup to contrue testing after long break 17:Sep.09 14:24:04 </td <td></td> <td>14.41.00</td> <td>1.2000_10170_14100_01102</td> <td>0000-0_7_000</td> <td>5</td> <td>0.47.40</td> <td></td>		14.41.00	1.2000_10170_14100_01102	0000-0_7_000	5	0.47.40	
27-Jul-09 FEG65_H0P95_T5P51_DRV2 case28_6_002 3 0.49:16 Autopilot Setpoint = 2 deg, RPS = 7.6 27-Jul-09 F51124 REG65_H0P75_T4P90_DRV2 case28_7_001 3 0.50:37 Autopilot Setpoint = 2 deg, RPS = 7.6 27-Jul-09 F52.031 REG65_H1P06_T5P87_DRV2 case28_7_002 3 na nucarried out for dom for visiting Governos. 27-Jul-09 F52.933 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Setpoint = 2 deg, RPS = 7.6 RFS = 7.6 17-Sep.09 152:923 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Setpoint = 2 deg, RPS = 7.6 RFS = 7.6 17-Sep.09 14:04:047 RS2_W3_mds TBow 006 4 0.13:10 RPS = 8.28 RM64 RFS = 9.6 RFS = 8.28 RFS		14:51:03	BEG65 H0P95 T5P51 DBV2	case2B_6_001	3	0.48.11	Autopilot Setpoint -2 deg RPS - 7.6
27-Jul-09 Image: Constraint of the second seco							
27-Jul-09 FS1124 REG65_H0P75_T4P90_DRV2 case28_7_011 3 0.50:37 Autopilot Sepoint =2 deg, RPS = 7.6 27-Jul-09 15:20:31 REG65_H1P08_T5P87_DRV2 Case28_5_003 a Autopilot Sepoint =2 deg, RPS = 7.6 27-Jul-09 15:20:31 REG65_H1P08_T5P87_DRV2 Case28_7_002 3 0.51:45 Autopilot Sepoint =2 deg, RPS = 7.6 27-Jul-09 15:29:52 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0.51:45 Autopilot Sepoint =2 deg, RPS = 7.6 17:59:p09 16:29:47 RS2 wd, mds TBow, 006 4 0.000 RPS = 6.63 17:59:p09 14:20:31 RS2 wd, mds TBow, 007 4 0.13:10 RPS = 8.28 Run Aborted 17:59:p09 14:41:04 RS2 wd, mds TBow, 008 4 0.17:40 Span @ 6:28, Rel @ 6:10 17:59:p09 15:20:41 RS2 wd, mds TBow, 010 4 0.23:24 Span @ 5:27, Rel @ 5:06 17:59:p09 15:20:41 RS2 wd, mds TBow, 014 0.23:22 Span @ 0:27, Rel @ 5:06 Span @ 0:17, Rel @ 4:01 RPS = 7.9 17:59:p09 <td></td> <td>10.02.40</td> <td>TEG05_101 05_10F01_DRV2</td> <td>Ca362D_0_002</td> <td>5</td> <td>0.43.10</td> <td>-autopilot detpoint = 2 deg, nr d = 7.0</td>		10.02.40	TEG05_101 05_10F01_DRV2	Ca362D_0_002	5	0.43.10	-autopilot detpoint = 2 deg, nr d = 7.0
127-Jul-09 127-Jul-09 127-Jul-09 127-Jul-09 127-Jul-09 127-Jul-09 127-Jul-09 127-Jul-09 128-Jul-08 127-Jul-09 128-Jul-08 128-Jul		15.11.24	BEG65 H0P75 T4P00 DPV2	case2B 7 001	3	0.20.32	Autonilot Setopint -2 deg. RPS - 7.6
Z.7-Jul-09 IS20.31 REG65_HTP08_T5P87_DRV2 Case26_5_003 na Autopicit Septom 1 = 2 deg, RPS = 7.6 Wth ART and Baffles nu carried out for demotor visiting Governors. 27-Jul-09 15.29.33 REG65_H0P75_T4P90_DRV2 case26_7_002 3 0.51145 Autopicit Septom 1 = 2 deg, RPS = 7.6 17-Sep-09 13.22.12 Check.run 012 0 0EB setup to continue testing after long break. 17-Sep-09 14.22.54 RS2_w3 mds TBow 006 4 0.00.00 RPS = 6.63 17-Sep-09 14.22.54 RS2_w3 mds TBow 007 4 0.13:10 RPS = 6.83 17-Sep-09 14.22.54 RS2_w3 mds TBow 008 4 0.15:45 RPS = 6.23 17-Sep-09 14.50:13 RS2_w3 mds TBow 009 4 0.23:24 Span @ 5.27, Rel @ 5:09 Bed yaw Repeat 17-Sep-09 15:008 RS2_w3 mds TBow 014 0.22:34 Span @ 5.27, Rel @ 5:09 Ed St RS2 w3 mds 17-Sep-09 15:008 RS2_w3 mds TBow 014 0.23:24 Span @ 4.19, Rel @ 4:01 RPS = 7.9 17-Sep-09 15:0241 RS2_w3 mds		13.11.24	TEG05_10175_14F50_D1V2	000020_1_001	5	0.00.07	hat op ot obtain t = 2 deg, nr o = 1.0
27-Jul-09 FEG85_H1P08_T5P87_DRV2 Case2B_5_003 3 n.n. carried out for demo for visiting Governors. 27-Jul-09 152953 REG65_H0P75_T4P90_DRV2 case2B_7_002 3 0.51:45 Autopilot Setpoint =2 deg, RPS = 7.6 17-Sep-09 1322:12 Check run_012 Check run_012 Check run_012 Check run_012 17-Sep-09 1430647 RS2_w3_mds TBow.006 4 0.00:00 RPS = 6.63 17-Sep-09 1420543 RS2_w3_mds TBow.006 4 0.11:10 RPS = 6.63 17-Sep-09 142054 RS2_w3_mds TBow.007 4 0.11:3:10 RPS = 2.8 Run Aborted 17-Sep-09 142013 RS2_w3_mds TBow.009 4 0.17:40 Span@ 6:28, ReI@ 6:10 17-Sep-09 15:20:41 RS2_w3_mds TBow.011 4 0.23:24 Span@ 6:27, ReI@ 6:50 Bed yaw Repeat 17-Sep-09 15:20:41 RS2_w3_mds TBow.012 4 0.26:44 Syan@ 0:60, ReI@ 6:40 RPS = 7.9 17-Sep-09 15:20:41 RS2_w3_mds TBow.014 0.23:23 Spa	27-Jui-09						Autopilot Sotpoint - 2 dog. PPS - 7.6 With APT and Pofflog. Extra
27-Jul-09 r	27 101 00	15:00:01	DECCE HIDOR TEDRT DDV2	Case2R E 002	2	-	
27-Jule9 15:28:53 REG65_H0P75_T4P90_DRV2 case28_7_002 3 0:51:45 Autopliot Setpoint =2 deg, RPS = 7.6 17-Sep-09		15:20:31	REG65_HTP08_15P87_DRV2	Case2B_5_003	3	na	run carried out for demo for visiting Governors.
17. Sep-08 OEB setup to continue testing after long break 17. Sep-09 13.22:12 Check, run_012 0.00:00 RPS = 6.63 17. Sep-09 14.20:33 RS2, w3, mds TBow, 006 4 0.00:00 RPS = 6.63 17. Sep-09 14.20:34 RS2, w3, mds TBow, 008 4 0:15:45 RPS = 8.28 RW 17. Sep-09 14.40:04 RS2, w3, mds TBow, 000 4 0:13:10 RPS = 8.28 RW 6:10 17. Sep-09 14.40:04 RS2, w3, mds TBow, 010 4 0:23:24 Span @ 5.27, Rel @ 5:09 Bad yaw Repeat 17. Sep-09 15:0041 RS2, w3, mds TBow, 011 4 0:28:45 Span @ 1:18, Rel @ 3:00 DIS 17. Sep-09 15:20:41 RS2, w3, mds TBow, 015 4 0:33:56 Span @ 1:18, Rel @ 3:00 DIS 17:89:09 15:58:47 roll_decay_003 Rel @ 4:00 Rel @ 3:00 RES = 7.9 T7:7 TSep-09 8:50:47 Rel @ 3:00 RES = 7.4 Rel @ 4:00 Rel @ 4:00 Rel @ 4:00 Rel @ 4:00 <t< td=""><td></td><td>45.00.50</td><td>DE005 10075 T4000 D010</td><td></td><td>0</td><td>0.54.45</td><td>A taribit Octoriation DDO 7.0</td></t<>		45.00.50	DE005 10075 T4000 D010		0	0.54.45	A taribit Octoriation DDO 7.0
T-Sep-09 1322:12 Check run 012 PRS = 6.3 17-Sep-09 140647 RS2 w3 mds TBow 007 4 0.1310 RPS = 8.28 NAbored 17-Sep-09 1427.54 RS2 w3 mds TBow 007 4 0.1310 RPS = 8.28 NAbored 17-Sep-09 1427.54 RS2 w3 mds TBow 009 4 0.17.40 Span @ 52.7. Rel @ 5.09 Bad yaw Repeat 17-Sep-09 145013 RS2 w3 mds TBow 010 4 0.223.24 Span @ 52.4. Rel @ 5.09 Bad yaw Repeat 17-Sep-08 152.0.41 RS2 w3 mds TBow 011 4 0.228.22 Span @ 4.19, Rel @ 5.01 RPS = 7.9 17-Sep-08 152.0.41 RS2 w3 mds TBow 013 4 0.238.25 Span @ 4.19, Rel @ 3.00 RPS = 7.7 17-Sep-08 15.40.17 RS2 w3 mds TBow 015 4 0.31.55 Span @ 4.19, Rel @ 3.00 RPS = 7.7 17-Sep-08 15.40.17 RS2 w3 mds TBow 016 4 0.33.25 Span @ 0.20, Rel @ 1.44 18-Sep-09 92.02.9 Rel 90.020 RS2 w3 mds TBo		15:29:53	REG65_H0P75_14P90_DRV2	case2B_7_002	3	0:51:45	
17-SepO9 14:06-47 R52, w3.mds TBow_007 4 0.00:00 RPS = 6.63 17-SepO9 14:2730 R52, w3.mds TBow_008 4 0.13:10 RPS = 8.28 R0.Mobrd 17-SepO9 14:2754 R52, w3.mds TBow_008 4 0.13:10 RPS = 8.28 R0.Mobrd 17-SepO9 14:40:04 R52, w3.mds TBow_009 4 0.17:40 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-SepO9 14:59:54 R52, w3.mds TBow_010 4 0.22:24 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-SepO9 15:20:41 R52, w3.mds TBow_010 4 0.22:45 Span @ 1:19, Rel @ 4:01 RPS = 7.9 17-SepO9 15:20:21 R52, w3.mds TBow_015 4 0.31:56 Span @ 3:18, Rel @ 3:00 RPS = 7.7 17-SepO9 15:46:17 R52, w3.mds TBow_016 4 0.33:26 Span @ 0:20, Rel @ 1:44 18-SepO9 16:46:17 R52, w3.mds TBow_016 4 0.33:26 Span @ 0:20, Rel @ 0:44 18-SepO9 R52, w3.mds TBow_017 4 0.33:26 Span @ 0:20, Rel @ 0:44 18:5e 18:5e	17-Sep-09						OEB setup to continue testing after long break
17-SepO9 14:06-47 R52, w3.mds TBow_007 4 0.00:00 RPS = 6.63 17-SepO9 14:2730 R52, w3.mds TBow_008 4 0.13:10 RPS = 8.28 R0.Mobrd 17-SepO9 14:2754 R52, w3.mds TBow_008 4 0.13:10 RPS = 8.28 R0.Mobrd 17-SepO9 14:40:04 R52, w3.mds TBow_009 4 0.17:40 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-SepO9 14:59:54 R52, w3.mds TBow_010 4 0.22:24 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-SepO9 15:20:41 R52, w3.mds TBow_010 4 0.22:45 Span @ 1:19, Rel @ 4:01 RPS = 7.9 17-SepO9 15:20:21 R52, w3.mds TBow_015 4 0.31:56 Span @ 3:18, Rel @ 3:00 RPS = 7.7 17-SepO9 15:46:17 R52, w3.mds TBow_016 4 0.33:26 Span @ 0:20, Rel @ 1:44 18-SepO9 16:46:17 R52, w3.mds TBow_016 4 0.33:26 Span @ 0:20, Rel @ 0:44 18-SepO9 R52, w3.mds TBow_017 4 0.33:26 Span @ 0:20, Rel @ 0:44 18:5e 18:5e							
17-Sep-09 142303 RS2 w3 mds TBow 007 4 0.13:10 RPS = 8.28 Run Aborted 17-Sep-09 144104 RS2 w3 mds TBow 009 4 0.15:45 RPS = 8.28 RPS = 8.28 17-Sep-09 144104 RS2 w3 mds TBow 009 4 0.17:40 Span @ 5:28, Rel @ 5:0 17-Sep-09 1450:13 RS2 w3 mds TBow 010 4 0.223:4 Span @ 5:27, Rel @ 5:08 Bad yaw Repeat 17-Sep-09 15:10:08 RS2 w3 mds TBow 012 4 0.228:16 Span @ 4:19, Rel Ø 4:01 Red oat lower RPS 17-Sep-09 15:20:41 RS2 w3 mds TBow 014 4 0.28:12 Span @ 3:18, Rel Ø 3:00 RPS = 7.7 17-Sep-09 15:32:47 RS2 w3 mds TBow 014 4 0:31:56 Span @ 2:02, Rel Ø :44 18-Sep-09 8:40:00 Start pumps and go to High Presure 18:5ep-09 Span @ 0:20, Rel Ø :144 18-Sep-09 9:12:35 RS2 w3 mds TBow 017 4 0:33:56 Span @ 0:20, Rel Ø :144 18-Sep-09 9:00:08:13 RS2 w3 mds ART_Tbow 006 4 0:33:56 Span @ 0:20, Rel Ø :144							
17-Sep09 142754 RS2 w3 mds TBow 008 4 0.15:45 RPS = 8.28 17-Sep09 144:014 RS2 w3 mds TBow 000 4 0.17:40 Span @ 628, Rel @ 6:10 17-Sep09 14:59:54 RS2 w3 mds TBow 010 4 0.22:42 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-Sep09 15:008 RS2 w3 mds TBow 012 4 0.22:44 Span @ 5:19, Rel @ 4:01 Red o at lower RPS 17-Sep09 15:20:41 RS2 w3 mds TBow 012 4 0.22:45 Span @ 1:19, Rel @ 4:01 RPS = 7.9 17-Sep09 15:20:41 RS2 w3 mds TBow 014 4 0.30:15 Span @ 1:19, Rel @ 4:01 RPS = 7.9 17-Sep09 15:46:17 RS2 w3 mds TBow 016 4 0.33:26 Span @ 0:20, Rel @ 1:44 18-Sep-09 18:46:00 1 0.33:26 Span @ 0:20, Rel @ 0:32 144 18-Sep-09 18:35 RS2 w3 mds TBow 016 4 0:33:26 Span @ 0:20, Rel @ 0:32 18-Sep-09 10:06:13 RS2 w3 mds TBow 016 4 0:33:46 RPS = 7.4 18-Sep-09 10:19:47 RS2 w3 mds							
17-Sep.09 144104 RS2 w3 mds TBow_009 4 0.17.40 Span @ 6:28, Rel @ 5:10 17-Sep.09 14:59:54 RS2 w3 mds TBow_011 4 0.23:24 Span @ 5:27, Rel @ 5:00 Bad yaw Repeat 17-Sep.09 14:59:54 RS2 w3 mds TBow_012 4 0.22:45 Span @ 5:27, Rel @ 5:00 Bad yaw Repeat 17-Sep.09 15:00:41 RS2 w3 mds TBow_012 4 0.22:45 Span @ 4:19, Rel @ 4:01 Red o at lower RPS 17-Sep.09 15:32:21 RS2 w3 mds TBow_014 4 0:30:15 Span @ 4:19, Rel @ 4:01 RPS = 7.9 17-Sep.09 15:46:17 RS2 w3 mds TBow_016 4 0:31:56 Span @ 2:02, Rel @ 1:44 18-Sep.09 90:20:9 RS2 w3 mds TBow_016 4 0:33:23 Span @ 0:50, Rel @ 0:32 18-Sep.09 9:12:35 RS2 w3 mds TBow_017 4 0:33:56 Span @ 0:02, Rel @ 1:44 18-Sep.09 9:12:35 RS2 w3 mds ART_Toow_006 4 0:33:16 Repeat un due to heading track 18-Sep.09 9:50:58 RS2 w3 mds ART_Toow_007 4 0:37:16 Repeat un due to heading track			RS2_w3_mds		4		
17-Sep-09 14:50:13 RS2 w3 mds TBow 010 4 0.22:14 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-Sep-09 15:10:06 RS2 w3 mds TBow 011 4 0.25:16 Span @ 5:27, Rel @ 5:09 Bad yaw Repeat 17-Sep-09 15:10:06 RS2 w3 mds TBow 012 4 0.26:45 Span @ 5:18, Rel @ 5:00 Bad yaw Repeat 17-Sep-09 15:20:21 RS2 w3 mds TBow 013 4 0.26:45 Span @ 4:19, Rel @ 4:01 RPS = 7.9 17-Sep-09 15:46:17 RS2 w3 mds TBow 015 4 0:33:56 Span @ 2:02, Rel @ 1:44 0:30:15 18-Sep-09 15:46:47 RS2 w3 mds TBow_016 4 0:33:23 Span @ 0:20, Rel @ 1:44 18-Sep-09 9:02:09 RS2 w3 mds TBow_016 4 0:33:56 Span @ 0:20, Rel @ 1:44 18-Sep-09 9:02:09 RS2 w3 mds ART Tbow_006 4 0:33:51 RPS = 7.4 18-Sep-09 10:08:13 RS2 w3 mds ART Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2 w3 mds ART Tbow_007 4 0:37:16 Repeat run due to hea							
17:5ep-09 14:59:54 RS2 w3 mds TBow 011 4 0:26:45 Span @ 5:24, Rel @ 5:06 17:5ep-09 15:10:08 RS2 w3 mds TBow 013 4 0:26:45 Span @ 4:19, Rel @ 4:01 Re do at lower RPS 17:5ep-09 15:20:41 RS2 w3 mds TBow 014 4 0:30:15 Span @ 4:19, Rel @ 4:01 RPS = 7.9 17:5ep-09 15:32:17 RS2 w3 mds TBow 015 4 0:31:56 Span @ 0:20; Rel @ 3:00 RSP = 7.7 17:5ep-09 15:58:47 roll decay 003 Roll decay test Start pumps and go to High Pressure 18:5ep-09 9:02:09 RS2 w3 mds TBow 016 4 0:33:23 Span @ 0:50; Rel @ 0:32 18:5ep-09 9:02:09 RS2 w3 mds TBow 016 4 0:33:36 Span @ 0:50; Rel @ 0:32 18:5ep-09 9:02:09 RS2 w3 mds ART_Tbow 006 4 0:34:53 RPS = 7.4 18:5ep-09 10:08:13 RS2 w3 mds ART_Tbow 007 4 0:39:40 Span @ 6:02; Rel @ 5:44 Auto Pilot Angle Setpoint t = -8.6 18:5ep-09 10:37:08 RS2 w3 mds ART_Tbow 009 4 0:39:40 Span @ 6:02; Rel @ 5:44 Auto Pilot A			RS2_w3_mds	TBow_009	4	0:17:40	Span @ 6:28, Rel @ 6:10
17:5ep:09 15:10:08 R52_w3_mds TBow 012 4 0:28:45 Span @ 4:19, Rel @ 4:01 Red o at lower RPS 17:5ep:09 15:20:41 R52_w3_mds TBow 013 4 0:28:22 Span @ 3:18, Rel @ 3:00 17:5ep:09 15:32:41 R52_w3_mds TBow 014 4 0:30:15 Span @ 3:18, Rel @ 3:00 17:5ep:09 15:46:17 R52_w3_mds TBow 015 4 0:31:56 Span @ 3:18, Rel @ 3:00 RPS = 7.7 17:5ep:09 15:58:47 Roll decay test Roll decay test Roll decay test 18:5ep:09 8:40:00 Start pumps and go to High Pressure 18:5ep:09 9:12:35 R52_w3_mds TBow 016 4 0:33:26 Span @ 0:20; Rel @ 1:44 18:5ep:09 9:12:35 R52_w3_mds ART_Tbow_006 4 0:34:53 RPS = 7.4 18:5ep:09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:39:40 Span @ 6:02; Rel @ 5:44 Auto Pilot Angle Setpoint t = 4.6 18:5ep:09 10:19:47 R52_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02; Rel @ 5:44 Auto Pilot Angle Setpoint t = 4.6 18:5ep:09 10:40:433 R			RS2_w3_mds		4	0:23:24	Span @ 5:27, Rel @ 5:09 Bad yaw Repeat
17:Sep-09 15:20:41 RS2 w3 mds TBow 013 4 0:32:822 Span @ 3:18, Rel @ 3:00 17:Sep-09 15:32:21 RS2 w3 mds TBow 015 4 0:30:15 Span @ 4:19, Rel @ 4:01 RPS = 7.9 17:Sep-09 15:38:47 RS2 w3 mds TBow 015 4 0:31:56 Span @ 2:18, Rel @ 3:00 RPS = 7.7 17:Sep-09 15:58:47 roll_decay_003 Roll decay test Roll decay test 18:Sep-09 9:02:09 RS2_w3 mds TBow 016 4 0:33:36 Span @ 2:02, Rel @ 1:44 18:Sep-09 9:12:35 RS2_w3 mds TBow 016 4 0:33:56 Span @ 0:50, Rel @ 0:32 18:Sep-09 9:12:35 RS2_w3 mds TBow 006 4 0:34:53 RPS = 7.4 18:Sep-09 9:50:58 RS2_w3 mds ART_Tbow 007 4 0:37:16 Repeat run due to heading track 18:Sep-09 10:08:13 RS2_w3 mds ART_Tbow 007 4 0:37:16 Repeat run due to heading track 18:Sep-09 10:37:08 RS2_w3 mds ART_Tbow 009 4 0:42:09 Span @ 4:18, Rel @ 4:00 18:Sep-09 10:37:08 RS	17-Sep-09	14:59:54	RS2_w3_mds		4	0:25:16	Span @ 5:24, Rel @ 5:06
17-Sep-09 15:32:21 RS2 w3 mds TBow 015 4 0:30:15 Span @ 4:19, Rel @ 4:01 RPS = 7.9 17-Sep-09 15:46:17 RS2 w3 mds TBow 015 4 0:31:66 Span @ 3:18, Rel @ 3:00 RPS = 7.7 17-Sep-09 15:58:47 roll decay 003 Roll decay test Roll decay test 18-Sep-09 8:40:00 Start pumps and go to High Pressure 18-Sep-09 9:12:35 RS2_w3 mds TBow 016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3 mds TBow 017 4 0:33:56 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:12:35 RS2_w3 mds ART_Tbow 006 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2_w3 mds ART_Tbow 007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2_w3 mds ART_Tbow 007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:37:08 RS2_w3 mds ART_Tbow 009 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pliot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w	17-Sep-09	15:10:08	RS2_w3_mds	TBow_012	4	0:26:45	Span @ 4:19, Rel @ 4:01 Re do at lower RPS
17-Sep-09 15:46:17 RS2_w3_mds TBow_015 4 0:31:56 Span @ 3:18, Rel @ 3:00 RPS = 7.7 17-Sep-09 15:58:47 roll_decay_003 Roll decay test Roll decay test 18-Sep-09 9:02:09 RS2_w3_mds TBow_016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:26 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:12:35 RS2_w3_mds ART_Tbow_006 4 0:33:56 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:50:58 RS2_w3_mds ART_Tbow_006 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_007 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:48:03 RPS = 7.4 Span @ 1:12, Rel @ 2:54 Rel @ 2:02 18-Sep-09 10:38:42 RS2_w3_mds	17-Sep-09	15:20:41	RS2_w3_mds	TBow_013	4	0:28:22	Span @ 3:18, Rel @ 3:00
17-Sep-09 15:58:47 roll_decay_003 Roll decay test 18-Sep-09 8:40:00 Start pumps and go to High Pressure 18-Sep-09 9:02:09 RS2_w3_mds TBow_016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:56 Span @ 0:50, Rel @ 0:32 18-Sep-09			RS2_w3_mds		4		
18-Sep-09 8:40:00 Start pumps and go to High Pressure 18-Sep-09 9:02:09 RS2_w3_mds TBow_016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:26 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:12:35 RS2_w3_mds ART_Dow_006 4 0:33:56 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint 1 = deg, 18-Sep-09 9:50:58 RS2_w3_mds ART_Tbow_006 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6	17-Sep-09	15:46:17	RS2_w3_mds	TBow_015	4	0:31:56	Span @ 3:18, Rel @ 3:00 RPS = 7.7
18-Sep-09 9:02:09 RS2_w3_mds TBow_016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:26 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:50:58 RS2_w3_mds ART_tow_006 4 0:34:53 RPS = 7.4 18-Sep-09 9:50:58 RS2_w3_mds ART_tow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2_w3_mds ART_tow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_tow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_tow_009 4 0:42:09 Span @ 4:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_tow_009 4 0:42:09 Span @ 4:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_tow_010 4 0:44:11 Span @ 2:44,	17-Sep-09	15:58:47		roll_decay_003			Roll decay test
18-Sep-09 9:02:09 RS2_w3_mds TBow_016 4 0:33:23 Span @ 2:02, Rel @ 1:44 18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:26 Span @ 0:50, Rel @ 0:32 18-Sep-09 9:50:58 RS2_w3_mds ART_tow_006 4 0:34:53 RPS = 7.4 18-Sep-09 9:50:58 RS2_w3_mds ART_tow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:08:13 RS2_w3_mds ART_tow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_tow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_tow_009 4 0:42:09 Span @ 4:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_tow_009 4 0:42:09 Span @ 4:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_tow_010 4 0:44:11 Span @ 2:44,	18-Sep-09	8:40:00			1	1	Start pumps and go to High Pressure
18-Sep-09 9:12:35 RS2_w3_mds TBow_017 4 0:33:56 Span @ 0:50, Rel @ 0:32 18-Sep-09 2.88 kg of water added to tank, Auto Pilot Angle Setpoint t = deg, 			BS2 w3 mds	TBow 016	4	0:33:23	
18-Sep-09 2.88 kg of water added to tank, Auto Pilot Angle Setpoint t = deg, 18-Sep-09 9:50:58 RS2_w3_mds ART_Tbow_006 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t = -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t = -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 1:12, Rel @ 2:26 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 2:26 18-Sep-09 13:59 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:51:56							
18-Sep-09 deg, 18-Sep-09 9:50:58 RS2_w3_mds ART_Tow 006 4 0:34:53 RPS = 7.4 18-Sep-09 9:50:58 RS2_w3_mds ART_Tow 006 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tow 007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tow 008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tow 009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tow 009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tow 010 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:38:42 RS2_w3_mds ART_Tow 010 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 13:15:39 RS2_w1_mds THEAD_009	10 000 00	0.12.00	1102_110_1100	12011_011		0.00.00	
18-Sep-09 9:50:58 RS2_w3_mds ART_Tbow_006 4 0:34:53 RPS = 7.4 18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_009 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:38:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:58:42 RS2_w1_mds THEAD_009 4 0:42:09 Span @ 6:02, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:39:23 RS2_w1_mds	18-Sep-09						
Image: Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 1:12, Rel @ 0:54 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6		9:50:58	RS2 w3 mds	ART Thow 006	4	0:34:53	
18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w1_mds ART_Tbow_010 4 0:44:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 11 4 0:46:17 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:51:56 overiap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:39:16 RS2_w1_mds		0.00.00		/		0.0 1.00	
18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w1_mds ART_Tbow_010 4 0:44:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 11 4 0:46:17 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:51:56 overiap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:39:16 RS2_w1_mds	-				1		
18-Sep-09 10:08:13 RS2_w3_mds ART_Tbow_007 4 0:37:16 Repeat run due to heading track 18-Sep-09 10:19:47 RS2_w3_mds ART_Tbow_008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 11:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:47:33 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg repeat 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:16 RS2_w1_mds THEAD_012 4 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg repeat 18-Sep-09 </td <td></td> <td></td> <td> </td> <td></td> <td>1</td> <td></td> <td>Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 deg.</td>					1		Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.0 deg.
18:Sep-09 10:19:47 RS2 w3 mds ART Tbow 008 4 0:39:40 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18:Sep-09 10:37:08 RS2 w3 mds ART Tbow 009 4 0:42:09 Span @ 6:02, Rel @ 5:44 Auto Pilot Angle Setpoint t= -8.6 18:Sep-09 10:48:03 RS2 w3 mds ART Tbow 010 4 0:42:09 Span @ 4:18, Rel @ 4:00 18:Sep-09 10:58:42 RS2 w3 mds ART Tbow 010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18:Sep-09 10:58:42 RS2 w3 mds ART Tbow 011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18:Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18:Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -2 deg repeat 18:Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18:Sep-09 13:39:26 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18:Sep-09 14:09:11 <	18-Sen-00	10.08.13	BS2 w3 mds	ART Thow 007	4	0.37.16	
18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 4:18, Rel @ 4:00 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 4:18, Rel @ 4:00 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 Moved to North position removed water from ART 18-Sep-09 13:15:39 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:68, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 0:55:39 Span @ 3:36, Rel @ 3:36	.5 55p-09	10.00.10	1102_W0_1103	/	-	0.07.10	
18-Sep-09 10:37:08 RS2_w3_mds ART_Tbow_009 4 0:42:09 Span @ 4:18, Rel @ 4:00 18-Sep-09 10:48:03 RS2_w3_mds ART_Tbow_010 4 0:42:09 Span @ 4:18, Rel @ 4:00 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 10:58:42 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:15:39 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:05 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS = 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_015 4	18-Sen-00	10.10.17	BS2 w3 mde	ART Thow ODP	Λ	0.30.10	Span @ 6:02 Rel @ 5:44 Auto Pilot Angle Setpoint t_ 9.9 dog
18-Sep-09 10:48:03 RS2_w3_mds ART_Tow_010 4 0:44:11 Span @ 2:44, Rel @ 2:26 18-Sep-09 10:58:42 RS2_w3_mds ART_Tow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 10:58:42 RS2_w1_mds THEAD_009 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:05 RS2_w1_mds THEAD_012 4 0:53:33 Span @ 6:08, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 14:39:05 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:19:35 RS2_w1_mds THEAD_016							
18-Sep-09 10:58:42 RS2_w3_mds ART_Tbow_011 4 0:46:17 Span @ 1:12, Rel @ 0:54 18-Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:46:17 Moved to North position removed water from ART 18-Sep-09 13:15:39 RS2_w1_mds THEAD_019 4 0:47:33 RPS = 7.4 18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:47:33 RPS = 7.4 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:47:33 RPS = 7.4 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:47:33 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg repeat overlap 18-Sep-09 13:49:05 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18-Sep-09 14:09:11 RS2_w1_mds THEAD_013 4 0:55:39 Span @ 4:58, Rel @ 4:38 RPS = 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds							
18-Sep-09 Moved to North position removed water from ART 18-Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:47:33 RPS = 7.4 18-Sep-09 13:39:23 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:05 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS = 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 3:36, Rel @ 3:16 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:30:19 RS2_w1_mds THEAD_017 4 100:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09							
18-Sep-09 13:15:39 RS2_w1_mds THEAD_009 4 0:47:33 RPS = 7.4 18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:45 Autopilot set point -2 deg repeat 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:08, Rel @ 4:38 RPS = 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 4:58, Rel @ 4:38 RPS = 7.0 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 1:32, Rel @ 1:02 18-Sep-09 14:19:35 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 <td></td> <td>10.38:42</td> <td>no2_w3_mas</td> <td>ערו_ווע_woul</td> <td>4</td> <td>0.40:17</td> <td></td>		10.38:42	no2_w3_mas	ערו_ווע_woul	4	0.40:17	
18-Sep-09 13:29:10 RS2_w1_mds THEAD_010 4 0:49:46 Autopilot set point -3 deg 18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 Span @ 6:05, Rel @ 5:45 Autopilot set point -2 deg repeat overlap 18-Sep-09 13:39:23 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:45 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 2:07 18-Sep-09 14:43:019 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:02:47 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:53:00 RS2_w		12-15-20	DS2 wit mds		4	0.47.99	
Image: Non-state interval Span							
18-Sep-09 13:39:23 RS2_w1_mds THEAD_011 4 0:51:56 overlap 18-Sep-09 13:39:05 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 3:36, Rel @ 3:16 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to v	10-Seb-08	13:29:10	HO2_W1_Mas	THEAD_010	4	0:49:46	
18-Sep-09 13:49:05 RS2_w1_mds THEAD_012 4 Span @ 6:08, Rel @ 5:48 Autopilot set point -2 deg 18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 3:68, Rel @ 2:07 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok.	10 8 00	10.00.00	DC0 und mode		4	0.51.50	
18-Sep-09 13:59:16 RS2_w1_mds THEAD_013 4 0:53:33 Span @ 4:58, Rel @ 4:38 RPS= 7.0 18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 3:36, Rel @ 2:07 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:43:09 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09						0:51:56	
18-Sep-09 14:09:11 RS2_w1_mds THEAD_014 4 0:55:39 Span @ 3:36, Rel @ 3:16 18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:00 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok.						0.50.00	
18-Sep-09 14:19:35 RS2_w1_mds THEAD_015 4 0:57:06 Span @ 2:27, Rel @ 2:07 18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 2:27, Rel @ 2:07 RPS = 6.7 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 1:22, Rel @ 1:02 22-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok.							
18-Sep-09 14:30:19 RS2_w1_mds THEAD_016 4 0:58:54 Span @ 1:22, Rel @ 1:02 18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 2:27, Rel @ 2:07 RPS = 6.7 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok.							
18-Sep-09 14:43:09 RS2_w1_mds THEAD_017 4 1:00:53 Span @ 2:27, Rel @ 2:07 RPS = 6.7 18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok. 1 1 1							
18-Sep-09 14:53:00 RS2_w1_mds THEAD_018 4 1:02:47 Span @ 1:22, Rel @ 1:02 22-Sep-09 used hand tach to verify shaft rps settings, all ok.							
22-Sep-09 used hand tach to verify shaft rps settings, all ok.							
	18-Sep-09	14:53:00	RS2_w1_mds	THEAD_018	4	1:02:47	Span @ 1:22, Rel @ 1:02
	22-Sep-09						used hand tach to verify shaft rps settings, all ok.
launon mouti anu sian hvulaulius	22-Sep-09				1		launch model and start hydraulics
22-Sep-09 calm water speed check runs.					1		
		9:33:26		speed run 003			RPS 6.63 Measured speed = 3.94 knots FS, 0.632 m/s MS.
22-Sep-09 9:50:13 Speed_run_004 RPS 12.75 Measured speed = 1.21 m/s MS.					1		
	22-Sep-09	11:23:16		speed run 005			RPS 6.63 checking QUALISYS

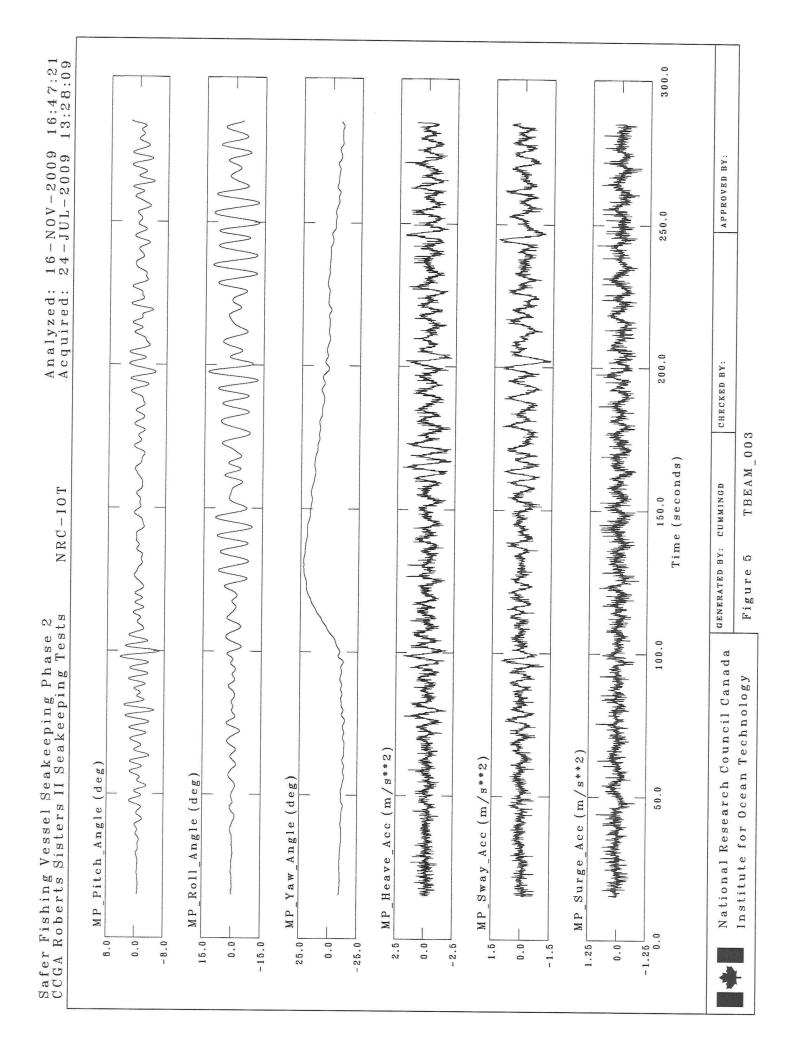
Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments	
_							
22-Sep-09	11.07.50	DC01 mede	ADT Truest 001		1.04.00	set up art_tquart wave runs for further QUALISYS and speed check.	
22-Sep-09	11:37:53	RS2_w1_mds	ART_Tquart_001	4	1:04:08	QUALISYS bad, cover stbd fwd marker and repeat below. Rel Autopilot Setpoint = -11.36 deg, RPS = 6.63 Baffles left in, tank	
22-Sep-09	11:50:41	RS2_w1_mds	ART_Tquart_002	4	1:06:03	filled	
22-Sep-09	12:15:39	RS2 w1 mds	ART_Tquart 003	4	1:08:18	Rel Autopilot Setpoint = -16.0 deg, RPS = 7.5 Baffles left in, tank filled, still poor QUALISYS, cover port fwd marker, repeat run follows.	
						Rel Autopilot Setpoint = -16.0 deg, RPS = 8.4 Baffles left in, tank filled, QUALISYS still rough at mid tank, re-acquire body file and	
22-Sep-09	12:37:25	RS2_w1_mds	ART_Tquart_004	4	1:28:38	check as follows below. QUALISYS check run in waves, still dropping out thru middle of tank, uncover all markers, reposition port fwd marker to just aft of bow	
22-Sep-09 22-Sep-09			check_run_013 check_run_014	n/a 5	n/a 0:01:42	marker and re-acquire body file with model at mid-tank. QUALISYS check run in waves.	
22-Sep-09	14:54:29		check_run_015	n/a	n/a	QUALISYS check run, no waves., still dropping out, cover centerline marker aft of stack and re-try.	
22-Sep-09 22-Sep-09	15:05:37		check run 016	n/a	n/a	QUALISYS check run, no waves.	
						QUALISYS check run in waves, same configuration as above. Slightly better tracking, cover centerline marker on fwd wheelhouse roof and	
22-Sep-09	15:09:11	RS2_w1_mds	check_run_017	n/a	n/a	re-try as follows.	
22-Sep-09 22-Sep-09 22-Sep-09		RS2_w1_mds RS2_w1_mds	check_run_018 check_run_019	n/a n/a	n/a n/a	QUALISYS check run in waves,still poor, uncover both centerline markers and cover stbd midships marker, re-check in waves. QUALISYS check run in waves, no significant improvement remove model, shut down wavemaker hydraulics	
23-Sep-09				1		launch model, all QUALISYS markers uncovered.	
23-Sep-09 23-Sep-09				1			
23-Sep-09			check_run_020	n/a	n/a	QUALISYS check run, no waves.	
23-Sep-09	9:24:18		check_run_021	n/a	n/a	QUALISYS check run, no waves.	
23-Sep-09 23-Sep-09	9:30:06		check_run_022	n/a	n/a	QUALISYS check run, no waves.	
23-Sep-09	9:46:20		check_run_023	n/a	n/a	shorten port fwd marker QUALISYS check run, no waves.	
23-Sep-09	10.05.07		shaels was 004			cover marker aft of stack	
23-Sep-09 23-Sep-09			check_run_024 check_run_025	n/a n/a	n/a n/a	QUALISYS check run, no waves. QUALISYS check run, no waves.	
23-Sep-09	10:32:44	RS2_w1_mds	check_run_026	n/a	n/a	QUALISYS check run, no waves.	
00 0 00	10.50.10	DC01 .mda	ADT Truest 005	-	0.01.40	Rel Autopilot Setpoint = -16.0 deg, RPS = 8.4 Baffles left in, tank full,	
23-Sep-09 23-Sep-09		RS2_w1_mds RS2_w1_mds	ART_Tquart_005 ART_Tquart_006	5 5	0:01:42 0:03:08	data from 103 to 295 Span @6:40 , Rel @ 6:20 data from 262 to 461	
23-Sep-09		RS2_w1_mds	ART_Tquart_000	5	0:04:57	Span @5:44 , Rel @5:24 data from 443 to 645	
23-Sep-09		RS2_w1_mds	ART_Tquart_008	5	0:06:17	Span @4:48 , Rel @4:28 data from 634 to 826	
23-Sep-09		RS2_w1_mds	ART_Tquart_009	5	0:07:36	Span @ 3:52, Rel @3:42 data from 805 to 1003	
23-Sep-09		RS2_w1_mds	ART_Tquart_010	5	0:09:01	Span @2:53 , Rel @2:33 data from 996 to 1203	
23-Sep-09	12:04:29	RS2_w1_mds	ART_Tquart_011	5	0:10:17	stuck in launch, repeat follows	
23-Sep-09 23-Sep-09	12:16:34	RS2 w1 mds	ART Tquart 012	5	0:10:28	following two time segments in reverse sequence. Span @1:52, Rel @1:32 data from 1290 to 1470	
23-Sep-09		RS2_w1_mds	ART_Tquart_012	5	0:11:39	Span @2:02 , Rel @1:42 data from 1188 to 1379	
23-Sep-09		 RS2_w4_mds	ART_Tbeam_001	5	0:12:50	Rel Autopilot Setpoint = 1 deg, RPS = 6.63 Baffles left in, ART active, data from 126 to 398	
23-Sep-09	13:54:31	RS2_w4_mds	ART_Tbeam_002	5	0:14:37	Rel Autopilot Setpoint = 5 deg, RPS = 6.63 Baffles left in, ART active, data from 154 to 360	
23-Sep-09	14:05:32	RS2_w4_mds	ART_Tbeam_003	5	0:16:37	Rel Autopilot Setpoint = 6 deg, Span @6:30 , Rel @5:55 data from 350 to 515 Rel Autopilot Setpoint = 5 deg Span @5:42 , Rel @5:07 data from	
23-Sep-09		RS2_w4_mds	ART_Tbeam_004	5	0:18:06	502 to 725	
23-Sep-09 23-Sep-09		RS2_w4_mds RS2 w4 mds	ART_Tbeam_005 ART_Tbeam_006	5 5	0:19:42	Span @4:38 , Rel @4:03 data from 725 to 950 Span @ 3:29, Rel @2:54 data from 950 to 1170	
23-Sep-09 23-Sep-09		RS2_w4_mds	ART_Tbeam_007	5	0:23:13	Span @ 3.29, Rel @ 2.54 data from 1149 to 1382	
23-Sep-09		RS2 w4 mds	ART Tbeam 008	5	0:24:53	Span @1:22 , Rel @0:47 data from 1362 to 1470	
23-Sep-09						remove model, shut down wavemaker hydraulics	
24-Sep-09						relocate launch platform to approx middle of west wavemaker	
24-Sep-09 24-Sep-09	11:25:19		check_run_027	n/a	n/a	QUALISYS check run Rel Autopilot Setpoint = -7.0 deg, RPS = 8.4 uncover marker aft of stack	
24-Sep-09 24-Sep-09			check_run_028	n/a	n/a	QUALISYS check run Rel_Autopilot Setpoint = -9.4 deg, RPS = 8.4	
24-96h-08						cover marker port fwd	
24-Sep-09	11:42:37		check_run_029	n/a	n/a	QUALISYS check run Rel Autopilot Setpoint = -9.4 deg, RPS = 8.4 Rel Autopilot Setpoint = -9.4 deg, RPS = 8.4, no autopilot, repeat run	
24-Sep-09	13:16:28	RS2_w1_mds	Tquart_001	n/a	n/a	follows.	
24-Sep-09	13:27:55	RS2_w1_mds	Tquart_002	5	0:27:24	Rel Autopilot Setpoint = -9.4 deg, RPS = 8.4 data from 139 to 337	
24-Sep-09	13:39:02	RS2_w1_mds	Tquart_003	5	0:29:04	Rel Autopilot Setpoint = -14.4 deg, RPS = 9.4 data from 133 to 280 Rel Autopilot Setpoint = -12.4 deg, Span @6:54 , Rel @6:24 data	
24-Sep-09		RS2_w1_mds	Tquart_004	5	n/a	from 257 to 440	
24-Sep-09		RS2_w1_mds	Tquart_005	5	0:30:19	Span @6:05 , Rel @5:35 data from 403 to 571	
24-Sep-09 24-Sep-09		RS2_w1_mds RS2_w1_mds	Tquart_006 Tquart_007	5 5	0:31:53 0:33:14	RPS = 9.0 Span @5:20 , Rel @4:50 data from 550 to 724 Span @4:33 , Rel @4:03 data from 702 to 880	
24-Sep-09 24-Sep-09		RS2_w1_mds RS2_w1_mds	Tquart_007	5	0:33:14	Span @4:33, Rel @4:03 data from 702 to 880 Span @3:46, Rel @3:16 data from 855 to 1035	
24-Sep-09	14:53:51	RS2_w1_mds	Tquart_009	5	0:36:05	Span @2:58 , Rel @2:28 data from 1012 to 1195	
24-Sep-09		RS2_w1_mds	Tquart_010	5	0:37:29	Span @2:09, Rel @1:39 data from 1180 to 1345	


Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments
24-Sep-09	15:19:54	RS2_w1_mds	Tquart_011	5	0:39:12	Span @1:23 , Rel @0:53 data from 1328 to 1470
24-Sep-09			. –			remove model, shut down wavemaker hydraulics
25-Sep-09						model launched, start wavemaker hydraulics.
25-Sep-09						autopilot setting changed to reflect higher speed.
25-Sep-09	9:20:58	RS2 w1 mds	Cquart 001	5	0:40:37	Rel Autopilot Setpoint = 0 deg, RPS = 12.75 ignore this run??
						QUALISYS noisy, uncover portside forward marker and remove
25-Sep-09						marker aft of stack, height prior to removal 274 mm from mounting block to middle ball seam.
25-Sep-09	9:35:19	RS2_w1_mds	Cquart_002	5	0:41:42	Rel Autopilot Setpoint = -3 deg, RPS = 12.0 data from 145 to 272 Span @6:55, Rel @6:22 Rel Autopilot Setpoint = -5 deg, RPS =
25-Sep-09	9:46:46	RS2_w1_mds	Cquart_003	5	0:42:59	12.3 data from 246 to 368
25-Sep-09	9:56:23	RS2_w1_mds	Cquart_004	5	n/a	aborted test
						Span @6:25 , Rel @5:52 data from 345 to 483 prop contacted
25-Sep-09	10:05:22	RS2_w1_mds	Cquart_005	5	0:44:05	rubber launcher pads at release.
25-Sep-09	10:15:08	RS2_w1_mds	Cquart_006	5	0:45:19	Span @5:50, Rel @5:17 data from 460 to 575
25-Sep-09	10:25:58	RS2_w1_mds	Cquart_007	5	0:46:02	Span @5:22, Rel @4:49 data from 556 to 680
25-Sep-09		RS2_w1_mds	Cquart_008	5	0:47:03	Span @4:50 , Rel @4:17 data from 655 to 780
25-Sep-09	10:46:34	RS2_w1_mds	Cquart_009	5	0:48:09	Span @4:19, Rel @3:46 data from 764 to 890
25-Sep-09 25-Sep-09	10:57:07 11:12:11	RS2_w1_mds RS2 w1 mds	Cquart_010 Cquart 011	5	0:49:12 0:51:15	Span @3:45 , Rel @3:12 data from 865 to 983 Span @3:17 , Rel @2:44 data from 955 to 1078
25-Sep-09 25-Sep-09			Cquart_011 Cquart_012			Span @2:48, Rel @2:15 data from 1060 to 1182
25-Sep-09 25-Sep-09	11:25:19 11:36:45	RS2_w1_mds RS2_w1_mds	Cquart_012 Cquart_013	5	0:52:21 0:53:17	Span @2:16 , Rel @1:43 data from 1060 to 1182
25-Sep-09 25-Sep-09	12:00:12	RS2_w1_mds RS2 w1 mds	Cquart_013 Cquart_014	5	0:53:17	Span @2:16, Rel @1:43 data from 1160 to 1284 Span @1:45, Rel @1:12 data from 1260 to 1386
25-Sep-09	12:10:12	RS2_w1_mds	Cquart_014 Cquart_015	5	0:55:53	Span @1:14 , Rel @0:41 data from 1365 to 1470
25-Sep-09	12.10.10	1102_w1_1103	5quar_015	5	0.00.00	
25-Sep-09						autopilot settings changed for low speed
25-Sep-09	13:17:00	REG45 H1P65 T7P34 DRV2	Case5 1 001	5	0:56:59	Autopilot Settings changed to how speed Autopilot Setpoint = 0deg, RPS = 6.7
25-Sep-09	13:27:07	REG45 H1P65 T7P34 DRV2	Case5 1 002	5	0:58:42	Autopilot Setpoint = -3 deg, RPS = 7.0
25-Sep-09	13:37:49	REG45 H1P23 T6P29 DRV2	Case5_2_001	5	1:00:28	Autopilot Setpoint = -3 deg, RPS = 7.0
25-Sep-09	13:48:20	REG45 H1P23 T6P29 DRV2	Case5 2 002	5	1:02:05	Autopilot Setpoint = -3 deg, RPS = 7.0
25-Sep-09		REG45 H0P95 T5P51 DRV2	Case5 3 001	5	1:03:28	Autopilot Setpoint = -3 deg, RPS = 7.2
25-Sep-09	14:07:42	REG45 H0P95 T5P51 DRV2	Case5 3 002	5	1:05:23	Autopilot Setpoint = -3 deg, RPS = 7.2
25-Sep-09	14:17:57	REG45 H0P84 T5P18 DRV2	Case5 4 001	5	1:07:09	Autopilot Setpoint = -3 deg, RPS = 7.2
25-Sep-09	14:28:28	REG45 H0P84 T5P18 DRV2	Case5 4 002	5	1:09:11	Autopilot Setpoint = -3 deg, RPS = 7.4
25-Sep-09	14:39:05	REG45 H0P75 T4P90 DRV2	Case5 5 001	5	1:11:11	Autopilot Setpoint = -3 deg, RPS = 7.4
25-Sep-09	15:06:14	REG45_H0P75_T4P90_DRV2	Case5_5_002	5	1:13:06	Autopilot Setpoint = -3 deg, RPS = 7.4
25-Sep-09	15:17:46	REG45_H0P67_T4P64_DRV2	Case5_6_001	5	1:15:03	Autopilot Setpoint = -3 deg, RPS = 7.4
25-Sep-09	15:27:47	REG45_H0P67_T4P64_DRV2	Case5_6_002	5	1:16:54	Autopilot Setpoint = -3 deg, RPS = 7.4
25-Sep-09					1 10 15	remove model, shut down wavemaker hydraulics
					1:18:45	
00.0+* 00	9:00:00					Meneralise budgetis summer started
28-Sep-09 28-Sep-09	9:39:56					Wavemaker hydraulic pumps started
		DEC/15 U0D55 T/D20 DDV2	Caso5 7 001	6	0.00.00	Autopilot Sotpoint – 0 dog DDS – 7.4
		REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2	Case5_7_001	6	0:00:00	Autopilot Setpoint = 0 deg, RPS = 7.4
28-Sep-09	10:00:05	REG45_H0P55_T4P20_DRV2	Case5_7_002	6	0:01:57	Autopilot Setpoint = -3 deg, RPS = 7.4
28-Sep-09 28-Sep-09	10:00:05 10:15:24	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001	6 6	0:01:57 0:04:06	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed
28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002	6 6 6	0:01:57 0:04:06 0:05:27	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003	6 6 6	0:01:57 0:04:06 0:05:27 0:06:46	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004	6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005	6 6 6	0:01:57 0:04:06 0:05:27 0:06:46	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004	6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T6P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001	6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002	6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_004 Case7_2_001 Case7_2_002 Case7_2_003	6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P13_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_003 Case7_3_001 Case7_3_002 Case7_4_001	6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P94_T5P18_DRV2 REG45_H0P84_T5P18_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_004 Case7_1_004 Case7_1_004 Case7_2_001 Case7_2_002 Case7_2_003 Case7_2_003 Case7_3_001 Case7_3_002 Case7_4_002	6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T6P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P50_DRV2 REG45_H0P37_T4P30_DRV2	Case5_7_002 Case7_1_001 Case7_1_003 Case7_1_003 Case7_1_004 Case7_1_004 Case7_2_001 Case7_2_002 Case7_2_003 Case7_3_001 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_001	6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P34_T5P18_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_2_005 Case7_2_001 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:16:45 0:19:22 0:20:42	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P18 DRV2 REG45 H0P36 T5P18 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P76 T4P30 DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_003 Case7_2_003 Case7_3_001 Case7_3_002 Case7_4_002 Case7_4_002 Case7_5_001 Case7_6_001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:22:59	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P34_T5P18_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_2_005 Case7_2_001 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:16:45 0:19:22 0:20:42	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09 28-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P18 DRV2 REG45 H0P36 T5P18 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P76 T4P30 DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_003 Case7_2_003 Case7_3_001 Case7_3_002 Case7_4_002 Case7_4_002 Case7_5_001 Case7_6_001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:22:59	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:33:345 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:56:12	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P75_T4P30_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_002 Case7_2_003 Case7_3_002 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_002 Case7_6_001 Case7_6_002 Case7_7_001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:08:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:22:59 0:22:20 0:22:41	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot
28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09 28-Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P63 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P33 T6P29 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P34 T5P18 DRV2 REG45 H0P35 T4P30 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P67 T4P64 DRV2 REG45 H0P67 T4P64 DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_003 Case7_1_004 Case7_2_001 Case7_2_001 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_5_001 Case7_5_002 Case7_6_001 Case7_6_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:08:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:21:59 0:23:20	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28.Sep.09 28.Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:56:12 15:06:12	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T6P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P50_DRV2 REG45_H0P36_T4P90_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_004 Case7_1_004 Case7_1_004 Case7_2_001 Case7_2_002 Case7_2_003 Case7_2_003 Case7_2_003 Case7_3_001 Case7_4_002 Case7_4_002 Case7_5_001 Case7_6_002 Case7_6_002 Case7_7_001 Case7_7_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:18:45 0:18:06 0:19:22 0:20:42 0:20:24 0:23:20	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13. not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6
28-Sep.09 28-Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:56:12 15:06:12 15:16:02 15:26:08	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T6P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P50_DRV2 REG45_H0P36_T4P90_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_004 Case7_1_004 Case7_1_004 Case7_2_001 Case7_2_002 Case7_2_003 Case7_2_003 Case7_2_003 Case7_3_001 Case7_4_002 Case7_4_002 Case7_5_001 Case7_6_002 Case7_6_002 Case7_7_001 Case7_7_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:18:45 0:18:06 0:19:22 0:20:42 0:20:24 0:23:20	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilo
28-Sep.09 28-Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:36:15 14:46:08 14:36:12 15:16:02 15:26:08 8:30:00 8:30:00 8:40:00	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T4P90_DRV2 REG45_H0P75_T4P90_DRV2 REG45_H0P75_T4P90_DRV2 REG45_H0P75_T4P90_DRV2 REG45_H0P55_T4P20_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_003 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_002 Case7_6_001 Case7_6_002 Case7_7_001 Case7_7_003	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:18:45 0:18:06 0:19:22 0:20:42 0:20:24 0:23:20	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilo
28.Sep.09 29.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09 20.Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:46:12 15:06:12 15:26:08 8:30:00 8:40:00	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_003 Case7_1_004 Case7_2_005 Case7_2_002 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_6_001 Case7_7_002 Case7_7_003 Case7_7_003 Case7_7_003	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:09:03 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:18:06 0:19:22 0:20:42 0:21:59 0:23:20 0:24:41 0:22:44 0:27:44	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Mutopilot Setpoint = -3 deg, RPS = 13.6 Mutopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Mutopilot Setpoint = -3 deg, RPS = 7.0 no run
28-Sep.09 29-Sep.09 29-Sep.09 29-Sep.09 29-Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:56:12 15:16:02 15:26:08 8:30:00 8:40:00 9:09:41:13	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P3 T6P29 DRV2 REG45 H0P3 T6P29 DRV2 REG45 H0P3 T6P30 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P47 T4P40 DRV2 REG45 H0P57 T4P90 DRV2 REG45 H0P67 T4P64 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H0P55	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_2_001 Case7_2_001 Case7_2_002 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_5_001 Case7_5_002 Case7_5_001 Case7_7_001 Case7_7_002 Case7_7_003 Case6_1_001 Case6_1_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:08:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:21:59 0:22:20 0:24:41 0:26:34 0:27:44	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13. not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run
28-Sep.09 29-Sep.09 29-Sep.09 29-Sep.09	10:00:05 10:15:24 10:25:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:36:15 14:46:08 14:36:12 15:16:02 15:26:08 8:30:00 8:40:00 9:09:41 9:24:10	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P57_T4P30_DRV2 REG45_H0P57_T4P30_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_002 Case7_2_003 Case7_3_002 Case7_3_002 Case7_4_001 Case7_4_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_7_001 Case7_7_002 Case7_7_003 Case6_1_001 Case6_1_003	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:08:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:16:45 0:19:22 0:20:42 0:21:59 0:22:42 0:22:44 0:22:59 0:22:44 0:22:34 0:22:44 0:22:34 0:22:44	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot Setpoint = -3 deg, RPS = 7, 0 or un Autopilot Setpoint = -1 deg, RPS = 7, 0 Autopilot Setpoint = -1 deg, RPS = 7, 0
28. Sep.09 28. Sep.09 29. Sep.09 20. Sep.09 20. Sep.09 20. Sep.09 20. Sep.09 20. Sep.09 20. Sep.09 20. Sep.09 20. Se	10:00:05 10:15:24 10:25:24 10:25:24 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:36:15 14:26:09 14:36:12 14:46:11 14:46:12 15:16:02 15:26:08 8:30:00 8:30:00 9:09:41 9:24:10 9:34:12	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P84_T5P18_DRV2 REG45_H0P75_T4P90_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P63_TP34_DRV2 REG45_H1P63_TP34_DRV2 REG45_H1P63_TP34_DRV2 REG45_H1P63_TP34_DRV2 REG45_H1P63_TP34_DRV2	Case5_7_002 Case7_1_001 Case7_1_003 Case7_1_003 Case7_1_004 Case7_1_004 Case7_2_005 Case7_2_002 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_5_001 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_7_001 Case7_7_002 Case7_7_003 Case6_1_001 Case6_1_003 Case6_2_001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:06:27 0:06:27 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:16:45 0:18:06 0:19:22 0:20:42 0:21:59 0:22:20 0:22:44 0:27:44 0:27:44	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -1 deg, RPS = 7.4 Autopilot Setpoint = -1 deg, RPS = 7.4
28-Sep-09 29-Sep-09 29-Sep-09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:56:12 15:16:02 15:26:08 8:30:00 8:40:00 9:09:41 9:14:13 9:24:10 9:34:12 9:45:04	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P35 T5951 DRV2 REG45 H0P35 T5951 DRV2 REG45 H0P35 T5951 DRV2 REG45 H0P35 T5951 DRV2 REG45 H0P35 T5910 DRV2 REG45 H0P35 T4P30 DRV2 REG45 H0P67 T4P64 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H0P55 <	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_003 Case7_1_005 Case7_2_001 Case7_2_001 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_5_001 Case7_5_002 Case7_5_001 Case7_5_002 Case7_5_001 Case7_7_001 Case7_7_002 Case7_7_003 Case6_1_001 Case6_1_002 Case6_2_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:08:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:15 0:19:22 0:20:42 0:21:59 0:20:42 0:22:44 0:22:44 0:27:45 0:27:4	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Mavemaker hydraulic pumps off Water added to ART model Wavemaker hydraulic pumps started Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -1 deg, RPS = 7.2 Autopilot Setpoint = -1 deg, RPS = 7.2
28-Sep.09 29-Sep.09 29-Sep.09	10:00:05 10:15:24 10:25:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:35:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:36:12 15:16:02 15:26:08 8:30:00 8:40:00 9:09:41 9:24:10 9:34:12 9:45:04	REG45 H0P55 T4P20 DRV2 REG45 H1P65 T7P34 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H1P23 T6P29 DRV2 REG45 H0P37 T6P29 DRV2 REG45 H0P37 T6P30 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P35 T5P51 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P75 T4P30 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H0P55 T4P20 DRV2 REG45 H1P65 <	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_001 Case7_2_002 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_4_002 Case7_5_001 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_7_001 Case7_7_002 Case7_7_003 Case6_1_003 Case6_1_003 Case6_2_001 Case6_2_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:06:46 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:16:45 0:16:25 0:16:45 0:19:22 0:20:42 0:21:59 0:22:42 0:21:59 0:22:20 0:24:41 0:26:34 0:27:44	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, not analyzed Autopilot Setpoint = -3 deg, RPS = 13, 6 Autopilot Setpoint = -3 deg, RPS = 7, 0 Autopilot Setpoint = -3 deg, RPS = 7, 0 Autopilot Setpoint = -3 deg, RPS = 7, 0 Autopilot Setpoint = -1 deg, RPS = 7, 2 Autopilot Setpoint =
28.Sep.09 29.Sep.09 29.Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:36:15 14:46:08 14:36:15 14:46:08 14:36:12 15:16:02 15:26:08 8:30:00 8:30:00 9:09:41 9:14:13 9:24:10 9:34:12 9:35:07	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T4P90_DRV2 REG45_H0P57_T4P90_DRV2 REG45_H0P57_T4P90_DRV2 REG45_H0P57_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51	Case5_7_002 Case7_1_001 Case7_1_003 Case7_1_003 Case7_1_004 Case7_1_004 Case7_2_005 Case7_2_002 Case7_2_002 Case7_2_003 Case7_3_002 Case7_3_002 Case7_4_002 Case7_4_002 Case7_5_001 Case7_5_001 Case7_6_002 Case7_6_002 Case7_6_002 Case7_7_001 Case7_7_003 Case6_1_001 Case6_2_002 Case6_3_001 Case6_3_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:09:03 0:10:10 0:11:15 0:12:58 0:16:145 0:15:28 0:16:145 0:15:28 0:16:145 0:15:28 0:16:145 0:19:22 0:20:42 0:21:59 0:22:441 0:22:34 0:22:44 0:23:46 0:23:46 0	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -1 deg, RPS = 7.2 Autopilot Setpoint = 0 deg, RPS = 7.2
28. Sep.09 28. Sep.09 29. Se	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:23:30 13:33:45 13:55:57 14:06:03 14:16:11 14:26:09 14:36:15 14:46:08 14:46:11 14:26:09 14:36:12 15:26:08 8:30:00 8:30:00 8:30:00 8:30:00 8:40:00 9:34:12 13 13 13 13 13 13 13 13 13 13 13 13 13	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P35_T4P30_DRV2 REG45_H0P67_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P63_T6P39_DRV2 REG45_H1P63_T6P39_DRV2 REG45_H1P63_T6P39_DRV2 REG45_H1P63_T6P39_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P35_T5P51	Case5_7_002 Case7_1_001 Case7_1_002 Case7_1_003 Case7_1_004 Case7_1_005 Case7_2_005 Case7_2_002 Case7_2_002 Case7_2_002 Case7_3_002 Case7_3_002 Case7_3_002 Case7_4_001 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_5_002 Case7_6_002 Case7_7_003 Case7_7_003 Case7_7_003 Case7_7_003 Case6_1_001 Case6_2_001 Case6_2_002 Case6_4_001 Case6_4_001	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:09:03 0:07:51 0:09:03 0:10:10 0:11:15 0:12:58 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:15:28 0:14:14 0:12:59 0:20:42 0:21:59 0:22:44 0:22:4	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 13.6 Mavemaker hydraulic pumps off Water added to ART model Wavemaker hydraulic pumps started Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -3 deg, RPS = 7.0 Autopilot Setpoint = -1 deg, RPS = 7.2 Autopilot Setpoint = 0 deg, RPS = 7.2
28.Sep.09 29.Sep.09 29.Sep.09	10:00:05 10:15:24 10:25:24 10:38:09 10:54:46 11:06:09 11:16:07 13:13:07 13:23:30 13:33:45 13:55:57 14:06:03 14:36:15 14:46:08 14:36:15 14:46:08 14:36:12 15:16:02 15:26:08 8:30:00 8:30:00 9:09:41 9:14:13 9:24:10 9:34:12 9:35:07	REG45_H0P55_T4P20_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P35_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T5P51_DRV2 REG45_H0P36_T4P90_DRV2 REG45_H0P57_T4P90_DRV2 REG45_H0P57_T4P90_DRV2 REG45_H0P57_T4P64_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T4P20_DRV2 REG45_H0P55_T7P34_DRV2 REG45_H1P65_T7P34_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H1P23_T6P29_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51_DRV2 REG45_H0P95_T5P51	Case5_7_002 Case7_1_001 Case7_1_003 Case7_1_003 Case7_1_004 Case7_1_004 Case7_2_005 Case7_2_002 Case7_2_002 Case7_2_003 Case7_3_002 Case7_3_002 Case7_4_002 Case7_4_002 Case7_5_001 Case7_5_001 Case7_6_002 Case7_6_002 Case7_6_002 Case7_7_001 Case7_7_003 Case6_1_001 Case6_2_002 Case6_3_001 Case6_3_002	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0:01:57 0:04:06 0:05:27 0:09:03 0:10:10 0:11:15 0:12:58 0:16:145 0:15:28 0:16:145 0:15:28 0:16:145 0:15:28 0:16:145 0:19:22 0:20:42 0:21:59 0:22:441 0:22:34 0:22:44 0:23:46 0:23:46 0	Autopilot Setpoint = -3 deg, RPS = 7.4 Autopilot Setpoint = -3 deg, RPS = 12.3, not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 not analyzed Autopilot Setpoint = -3 deg, RPS = 13.6 Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -3 deg, RPS = 7.0 no run Autopilot Setpoint = -1 deg, RPS = 7.2 Autopilot Setpoint = 0 deg, RPS = 7.2

				Video	Video	
Date	Time	Wave Drive Signal	File Name	Tape #	Time	Comments
29-Sep-09	11:18:17	REG45_H0P67_T4P64_DRV2	Case6_6_001	6	0:47:17	Autopilot Setpoint = 0 deg, RPS = 7.2
29-Sep-09	11:28:21	REG45_H0P67_T4P64_DRV2	Case6_6_002	6	0:49:12	Autopilot Setpoint = 0 deg, RPS = 7.2
29-Sep-09	11:38:10	REG45_H0P55_T4P20_DRV2	Case6_7_001	6	0:49:39	Autopilot Setpoint = 0 deg, RPS = 7.2
29-Sep-09	11:48:19	REG45_H0P55_T4P20_DRV2	Case6_7_002	6	0:51:34	Autopilot Setpoint = 0 deg, RPS = 7.2
29-Sep-09	13:02:03	REG45_H1P65_T7P34_DRV2	Case8_1_001	6	0:53:29	Autopilot Setpoint = 0 deg, RPS = 13.6
29-Sep-09	13:12:07	REG45_H1P65_T7P34_DRV2	Case8_1_002	6	0:54:26	Autopilot Setpoint = 0 deg, RPS = 13.6
29-Sep-09	13:22:06	REG45 H1P65 T7P34 DRV2	Case8 1 003	6	0:55:23	Autopilot Setpoint = 0 deg, RPS = 13.6
29-Sep-09	13:32:27	REG45 H1P23 T6P29 DRV2	Case8 2 001	6	0:56:29	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	13:42:23	REG45 H1P23 T6P29 DRV2	Case8 2 002	6	0:57:46	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	13:52:13	REG45 H0P95 T5P51 DRV2	Case8 3 001	6	0:58:54	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:02:09	REG45 H0P95 T5P51 DRV2	Case8 3 002	6	1:00:16	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:12:10	REG45 H0P84 T5P18 DRV2	Case8 4 001	6	1:01:33	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:22:07	REG45 H0P84 T5P18 DRV2	Case8 4 002	6	1:02:45	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:32:10	REG45 H0P75 T4P90 DRV2	Case8 5 001	6	1:02:43	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:42:11	REG45 H0P75 T4P90 DRV2	Case8 5 002	6	1:05:06	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	14:52:05	REG45_H0P67_T4P64_DRV2	Case8 6 001	6	1:06:24	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	15:02:06	REG45_H0P67_T4P64_DRV2	Case8 6 002	6	1:07:41	Autopilot Setpoint = 0 deg, HPS = 13.8
29-Sep-09	15:12:07	REG45_H0P55_T4P20_DRV2	Case8_7_001	6	1:09:05	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	15:22:03	REG45_H0P55_T4P20_DRV2	Case8_7_002	6	1:10:23	Autopilot Setpoint = 0 deg, RPS = 13.8
29-Sep-09	15:30:00					Wavemaker hydraulic pumps off
30-Sep-09	8:45:00		Repeat Runs			Wavemaker hydraulic pumps started
30-Sep-09	9:30:09	REG45 H1P65 T7P34 DRV2	Case6 1r 001	6	1:11:44	Autopilot Setpoint = -1 deg, RPS = 7.4
30-Sep-09	9:40:05	REG45 H1P23 T6P29 DRV2	Case6 2r 001	6	1:13:20	Autopilot Setpoint = -1 deg, RPS = 7.2
30-Sep-09	9:50:06	REG45 H0P95 T5P51 DRV2	Case6 3r 001	6	1:14:57	Autopilot Setpoint = 0 deg, RPS = 7.2
30-Sep-09	10:00:08	REG45_H0P84_T5P18_DRV2	Case6 4r 001	6	1:14:37	Autopilot Setpoint = 0 deg, RPS = 7.2
30-Sep-09	10:10:08	REG45_H0P75_T4P90_DRV2	Case6 5r 001	6	1:18:36	Autopilot Setpoint = 0 deg, RPS = 7.2 Autopilot Setpoint = 0 deg, RPS = 7.2
30-Sep-09	10:20:13	REG45_H0P75_14P90_DRV2 REG45_H0P67_T4P64_DRV2	Case6_51_001	6	1:20:31	Autopilot Setpoint = 0 deg, RPS = 7.2 Autopilot Setpoint = 0 deg, RPS = 7.2
30-Sep-09 30-Sep-09	10:20:13	REG45_H0P67_14P64_DRV2 REG45_H0P55_T4P20_DRV2	Case6_6r_001 Case6_7r_001	6	1:20:31	Autopilot Setpoint = 0 deg, $RPS = 7.2$ Autopilot Setpoint = 0 deg, $RPS = 7.2$
30-Sep-09	10.30.04	REG45_H0F55_14F20_DRV2	Case6_/1_001	0	1.22.33	Autopilot Selpoint = 0 deg, HPS = 7.2
	10:54:04	DEG45 HADOS TODAL DDVA	0	-	0.00.00	A destitut O dest DDO - 7.0
30-Sep-09		REG45_H1P65_T7P34_DRV2	Case5_1r_001	7	0:00:00	Autopilot Setpoint = -3 deg, RPS = 7.0
30-Sep-09	11:04:08	REG45_H0P95_T5P51_DRV2	Case5_3r_001	7	0:01:41	Autopilot Setpoint = -3 deg, RPS = 7.0
30-Sep-09	11:14:08	REG45_H0P84_T5P18_DRV2	Case5_4r_001	7	0:03:35	Autopilot Setpoint = -3 deg, RPS = 7.4
30-Sep-09	11:24:05	REG45_H0P75_T4P90_DRV2	Case5_5r_001	7	0:05:25	Autopilot Setpoint = -3 deg, RPS = 7.4
30-Sep-09	11:34:04	REG45_H0P55_T4P20_DRV2	Case5_7r_001	7	0:07:19	Autopilot Setpoint = -3 deg, RPS = 7.4
						Wavemaker hydraulic pumps off
01-Oct-09						Wavemaker hydraulic pumps started
01-Oct-09						Heading target 146.47 deg
01-Oct-09	9:18:31	RS2 w1 mds	Tfol 001	7	0:09:13	Rel Autopilot Setpoint = 0 deg, RPS = 9.0, not analyzed
01-Oct-09	9:30:22	RS2 w1 mds	Tfol 002	7	0:10:51	Rel Autopilot Setpoint = -3.5 deg, RPS = 8.7
						Span @ 6:54 , Rel @ 6:24 data end 266 Autopilot Setpoint = -2.5
01-Oct-09	9:40:14	RS2 w1 mds	Tfol 003	7	0:12:12	deg data end 366
01-Oct-09	9:50:10	RS2_w1_mds	Tfol 004	7	0:12:12	Span @ 6:18 , Rel @ 5:48 data end 518
01-Oct-09	10:00:11	RS2_w1_mds	Tfol_005	7	0:14:40	Span @ 5:32 , Rel @ 5:02 data end 661
01-Oct-09	10:10:20	RS2_w1_mds	Tfol_006	7	0:16:02	Span @ 4:48, Rel @ 4:18 data end 808
01-Oct-09	10:20:19	RS2_w1_mds	Tfol_007	7	0:17:26	Span @ 4:03 , Rel @ 3:33 data end 943
01-Oct-09	10:30:14	RS2_w1_mds	Tfol_008	7	0:18:39	Span @ 3:21 , Rel @ 2:51 data end 1096
01-Oct-09	10:40:30	RS2_w1_mds	Tfol_009	7	0:20:00	Span @ 2:34 , Rel @ 2:04 data end 1242
01-Oct-09	10:50:07	RS2_w1_mds	Tfol_010	7	0:21:21	Span @ 1:52 , Rel @ 1:22 data end 1364
01-Oct-09	11:00:05	RS2_w1_mds	Tfol_011	7	0:22:42	Span @ 1:14 , Rel @ 0:44 data end 1468
01-Oct-09						Heading target 144.94 deg
01-Oct-09	11:21:13	RS2_w1_mds	Cfol_001	7	0:23:32	Rel Autopilot Setpoint = -4.0 deg, RPS = 12.8, not analyzed
01-Oct-09	11:30:30	RS2_w1_mds	Cfol_002	7	0:24:33	Rel Autopilot Setpoint = -4.0 deg, RPS = 13 data end 209
01-Oct-09	11:40:01	RS2_w1_mds	Cfol_003	7	0:25:29	Span @ 7:12 , Rel @ 6:40 data end 261
01-Oct-09	13:14:50	RS2 w1 mds	Cfol 004	7	0:26:25	Span @ 6:52 , Rel @ 6:20 data end 331
						Fire alarm, smoke in OEB pump room. Oil leak from failed O-ring in
01-Oct-09						wavemaker hydraulics. Repairs made, oil cleaned up.
	1			1		
00.011.00	0.00.11	DC0 with state	06-1 005	-	0.07.00	Wavemaker hydraulic pumps started
02-Oct-09	9:00:41	RS2_w1_mds	Cfol_005	7	0:27:22	Span @ 6:30 , Rel @ 5:58 data end 414
02-Oct-09	9:10:22	RS2_w1_mds	Cfol_006	7	0:28:12	Span @ 6:04 , Rel @ 5:32 data end 505
02-Oct-09	9:20:04	RS2_w1_mds	Cfol_007	7	0:29:15	Span @ 5:36, Rel @ 5:04 data end 598 speed slow repeat
						Rel Autopilot Setpoint = -6.0 deg Span @ 5:36 , Rel @ 5:04 data end
02-Oct-09	9:30:04	RS2_w1_mds	Cfol_008	7	0:30:23	595
						Rel Autopilot Setpoint = -7.0 deg, Span @ 5:09 , Rel @ 4:37 data
02-Oct-09	9:40:10	RS2_w1_mds	Cfol_009	7	0:31:32	end 668
02-Oct-09	9:50:07	RS2_w1_mds	Cfol_010	7	0:32:31	Span @ 4:46 , Rel @ 4:14 data end 754
02-Oct-09	10:00:08	RS2_w1_mds	Cfol_011	7	0:33:28	Span @ 4:20 , Rel @ 3:48 data end 833
02-Oct-09	10:10:09	RS2 w1 mds	Cfol 012	7	0:34:24	Span @ 3:57 , Rel @ 3:25 data end 908
02-Oct-09	10:20:09	RS2 w1 mds	Cfol 013	7	0:35:22	Span @ 3:34 , Rel @ 3:02 data end 987
02-Oct-09	10:30:48	RS2 w1 mds	Cfol 014	7	0:36:23	Span @ 3:10 , Rel @ 2:38 data end 1068
02-Oct-03	10:40:14	RS2 w1 mds	Cfol 015	7	0:37:29	Span @ 2:45 . Rel @ 2:13 data end 1000
02-Oct-09	10:50:12	RS2_w1_mds	Cfol_015	7	0:38:26	Span @ 2:23 , Rel @ 1:51 data end 1218
02-Oct-09	11:00:04	RS2_w1_mds	Cfol_017	7	0:39:31	Span @ 1:59 , Rel @ 1:27 data end 1295
02-Oct-09 02-Oct-09	11:10:04	RS2_w1_mds RS2_w1_mds	Cfol_017	7	0:39:31	Span @ 1:35 , Rel @ 1:03 data end 1295
	111.10.04	noz_wi_mus	0101_010	/	0.40.00	
02-Oct-09	11:20:04	RS2 w1 mds	Cfol 019	7	0:41:38	Span @ 1:11 , Rel @ 0:39 data end

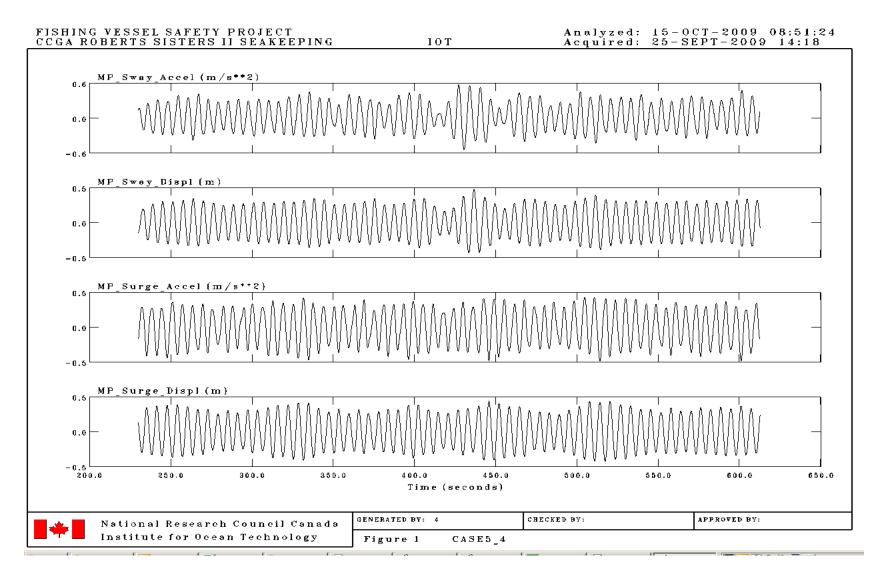

Date	Time	Wave Drive Signal	File Name	Video Tape #	Video Time	Comments
02-Oct-09	13:00:00					Add 2.88 Kg water to ART
02-Oct-09						Heading target 146.47 deg
02-Oct-09	13:15:54	RS2 w1 mds	ART_Tfol_001	7	0:42:36	Rel Autopilot Setpoint = -5 deg, RPS = 8.7 Data end 278
02-Oct-09	13:25:12	RS2 w1 mds	ART Tfol 002	7	0:43:55	Span @ 6:47 , Rel @ 6:17 data end 406, wrong rps ~ 6.40
02-Oct-09	13:35:08	RS2 w1 mds	ART Tfol 003	7	0:44:48	Span @ 6:10 , Rel @ 5:40 data end 541
02-Oct-09	13:45:12	RS2 w1 mds	ART Tfol 004	7	0:46:05	Span @ 5:28 , Rel @ 4:58 data end 670
02-Oct-09	13:55:10	RS2 w1 mds	ART Tfol 005	7	0:47:52	Span @ 4:49, Rel @ 4:19 data end 810
02-Oct-09	14:05:03	RS2_w1_mds	ART_Tfol_006	7	0:48:21	Span @ 4:06 , Rel @ 3:36 data end 935
)2-Oct-09	14:15:21	RS2 w1 mds	ART Tfol 007	7	0:49:38	Span @ 3:28 , Rel @ 2:58 data end 1064
02-Oct-09	14:25:32	RS2 w1 mds	ART Tfol 008	7	0:51:02	Span @ 2:48 , Rel @ 2:18 data end 1196
02-Oct-09	14:35:32	RS2 w1 mds	ART Tfol 009	7	0:52:21	Span @ 2:08 , Rel @ 1:38 data end 1320
)2-Oct-09	14:45:07	RS2_w1_mds	ART_Tfol_010	7	0:53:38	Span @ 1:30 , Rel @ 1:00 data end 1430
02-Oct-09	14:55:47	RS2 w1 mds	ART Tfol 011	7	0:54:54	Span @ 1:00, Rel @ 0:30 data end
2-Oct-09						Wavemaker hydraulic pumps off
05-Oct-09	8:45:00					Wavemaker hydraulic pumps started
)5-Oct-09	9:10:27	RS2 w1 mds	ART Tfol R1 001	7	0:56:38	Rel Autopilot Setpoint = -5 deg, RPS = 8.7
05-Oct-09	9:20:10	RS2 w1 mds	ART Tfol R1 002	7	0:57:59	Repeat of above run
05-Oct-09	9:30:13	RS2 w1 mds	ART Tfol R1 003	7	0:59:32	Repeat of above run
05-Oct-09	9:40:09	RS2 w1 mds	ART Tfol R2 001	7	1:01:02	Span @ 6:47 , Rel @ 6:17
05-Oct-09	9:50:05	RS2 w1 mds	ART Tfol R2 002	7	1:02:19	Repeat of above run
5-Oct-09	10:04:32	RS2 w1 mds	ART Tfol R2 003	7	1:03:37	Repeat of above run
5-Oct-09	10:14:04	RS2 w1 mds	ART Tfol R3 001	7	1:05:08	Span @ 6:10 , Rel @ 5:40
05-Oct-09	10:24:04	RS2 w1 mds	ART Tfol R3 002	7	1:06:31	Repeat of above run
05-Oct-09	10:34:08	RS2 w1 mds	ART Tfol R3 003	7	1:07:53	Repeat of above run
05-Oct-09			Repeat Runs			Remove water from ART
05-Oct-09	10:53:41	RS2 w1 mds	Tfol R1 001	7	1:09:14	Rel Autopilot Setpoint = -3.5 deg, RPS = 8.7
05-Oct-09	11:03:13	RS2 w1 mds	Tfol R1 002	7	1:11:15	Repeat of above run
05-Oct-09	11:13:12	RS2_w1_mds	Tfol_R1_003	7	1:12:45	Repeat of above run
05-Oct-09	11:23:07	RS2_w1_mds	Tfol_R2_001	7	1:14:18	Span @ 6:54, Rel @ 6:24 Autopilot Setpoint = -2.5 deg
)5-Oct-09	11:33:02	RS2_w1_mds	Tfol_R2_002	7	1:15:52	Repeat of above run
05-Oct-09	11:43:02	RS2_w1_mds	Tfol_R2_003	7	1:17:23	Repeat of above run
)5-Oct-09	11:53:02	RS2_w1_mds	Tfol_R3_001	7	1:18:59	Span @ 6:18 , Rel @ 5:48
)5-Oct-09	12:03:03	RS2_w1_mds	Tfol_R3_002	7	1:20:26	Repeat of above run
05-Oct-09	12:13:02	RS2_w1_mds	Tfol_R3_003	7	1:21:29	Repeat of above run
						Drift test model pointing North East Following sea run stopped
05-Oct-09	12:23:56	RS2_w1_mds	0drift_beam_R_001	7	1:22:56	heading for probe
05-Oct-09	12:31:19	RS2_w1_mds	0drift_beam_R_002	7	1:26:01	Drift test model pointing North East Following sea
						Wavemaker hydraulic pumps off
06-Oct-09	13:30:00		1			Wavemaker hydraulic pumps started
06-Oct-09						Add water to ART
06-Oct-09	13:47:41	RS2_w1_mds	ART_0drift_beam_001	8	0:00:00	Drift test model pointing North West to start
06-Oct-09	14:01:55	RS2_w1_mds	ART_0drift_beam_002	8	0:07:32	Drift test model pointing Sorth East to start
06-Oct-09						Wavemaker hydraulic pumps off
NOTE:	ART - anti-ro	II tank	ARTB - anti-roll tank wit	h baffles fi	tted	
-	MS - model s					
	FS - full scale					
		C(hdg) * = high speed at cruise	(~ 8 knots FS)	Irregular	waves	
		$T(hdg)^* = low speed at trawl ($		Irregular		
		CASE* = regular waves		-		

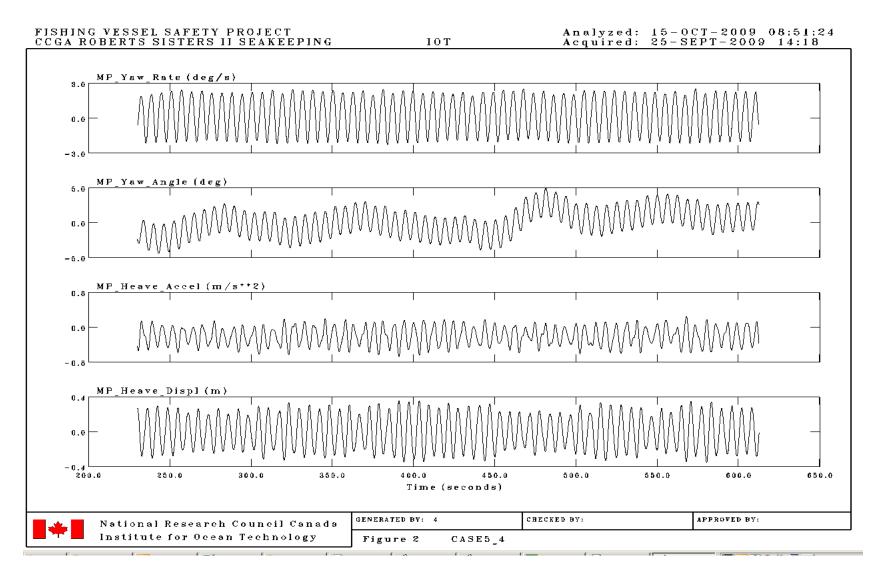

APPENDIX G

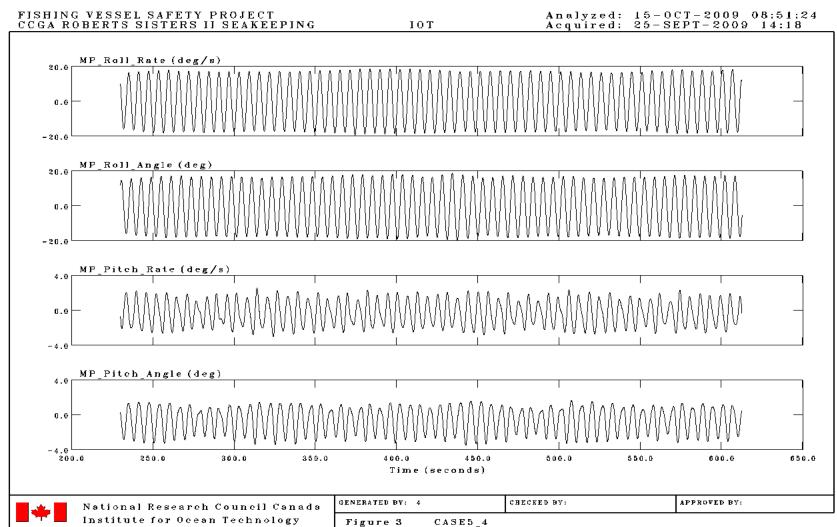

EXAMPLE ONLINE ANALYSIS DATA PRODUCT

					320.0	
MAN MANANA AN WANA ANA	- Www	MV/V/V/V/V/Privatestantines/MV/V/V/V/	Mrm M Mr	WWW	280.0	ΑΡΡRΟΥΕΏ ΒΥ:
A LAN A LANDAR AND	MM	the state of the s	www.www.www.www.www.	Mwwwwww.	200.0 240.0	СНЕСКЕД ВҮ:
-1.0 HAMMANNAMANNAMANNAMANNAMANNANNANNANNANNAN	www.www.www.www.www.www.www.www.www.ww	125 0.0 Holy Holy Holy Holy Holy Holy Holy Way Way Way Way Way Holy Holy Holy Holy Holy Holy Holy Hol	MM -	Pitch Rate (deg/s)	$ \frac{MP \text{ Roll Rate (deg/s)}}{0.0 $	GENERATED BY: CUMMINGD
נעילינאנין אין אין אין איניין יעיליעער אין		Arian Arthory Arthory Arthory Arthory	te (deg/s)	") 1 1 1 1 1 1 1 1 1 1 20.0	Council Canada de
MP HEAVE Accel. (g)	.25 MP Sway Accel. (g) 0.0 mm/hydrodowydoweddynouddiwyddiadadadadadadadadadadadadadadadadadad	MP Surge Accel. (g)	MP Yaw Rate (deg/s)	MP Pitch Rate (deg/s)	MP Roll Rate (deg/s)	National Research

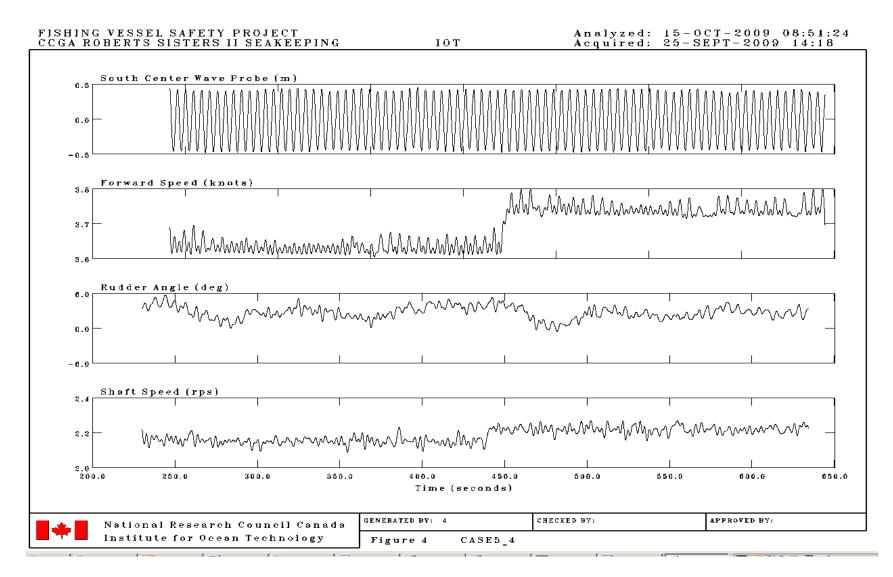
16:47:30 13:28:09							
-NOV-2009	MMMM	MM	MMM	Wm Www	MMM		APROVED BY:
Analyzed: 16 Acquired: 24	Mymm	MM	WWWWWWWWWW	MMM Mannan MMMM	MMMMMMMMMMMMM		CHECKED BY:
NRC-IOT	MM	www.www.www.www.www.www.www.www.www.ww	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Time RATED BY: CU
Seakeeping Phase 2 II Seakeeping Tests	eel (g)		ADIS SURGE ACCEI (g)	w Rate (deg/s)	Rate (deg/s)		Council Canada n Technology
Safer Fishing Vessel S CCGA Roberts Sisters	-0.75 ADIS Heave Accel (g) -1.0 -1.25 -1.25	0.3 ADIS Sway Accel (g)	0.0 0.0 0.0	ADIS Ya	ADIS Pitch	15.0 ADIS Roll Rate (deg/s) 0.0	National Research Institute for Ocean

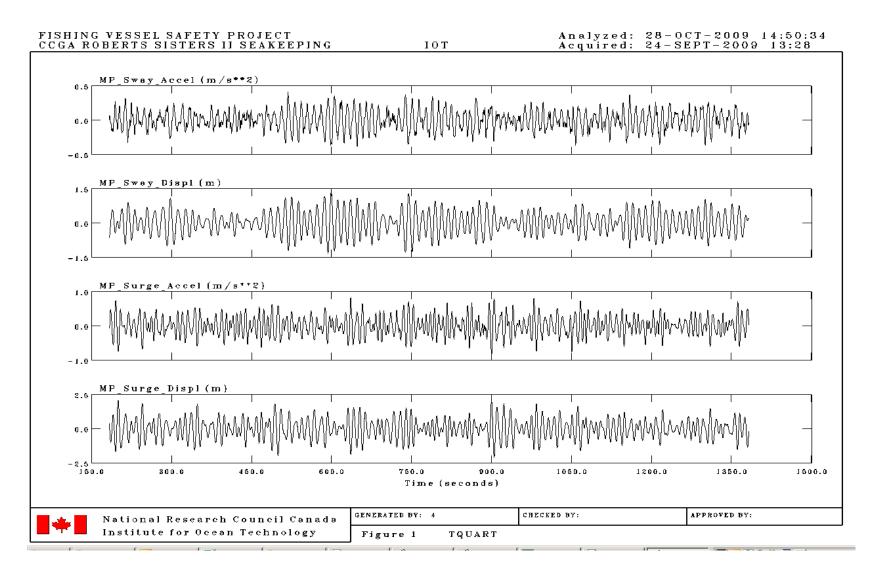

Arallysis Date/Time = 16-NOV-2009 Acquired Date/Time = 24-JUL-2009 Input File = 24-JUL-2009 Output File = TBEAM 003_ Number of Samples = 1602 Segment Start Time = 10.778 sec Segment End Time = 115.36 sec						
Description	Unit	Min	Max	Mean	S.D. C	Chan
South West Wave Probe	ш	œ	1.127	0.010	0.30663	н с
South Center Wave Probe	ш		.961	0.0074154 0.013268	3322	νm
South East Wave Probe	E	- 0	7 0	0.020233	.2969	4
North Center wave Flove MD Roll Rafe	un deg/s	-6.	4.691	-0.023574	.527	ы С
MP Pitch Rate	deg/s		8.0356	00	.393 8746	9
	deg/s		08864	0.0	.02769	8
	ט נ	1.0	• •	õ	3670	6
MP SWAY ACCEL. MD Heave Accel	ס ת	-1.1927	-0.80926	1	.04846	10
Bow Vert. Accel.	ים ו	5.	1.2347	00	.0644	
Bow Lat. Accel.	g	<u>ң</u> с	0.13214	-0.00/8938	.04378	13
Bow Long. Accel.	g	2.5	2.4346		0.1	14
Shart Speed buddor Andle	dea		37.389			15
kuuuei Auigie Y Displacement	E E	-568.87	-568.87	-568.87	0.0	16
Y Displacement	m	65			0.0	0L /.T
	ш	-0.039488	-0.039488	-0.039488 65 598		0T
Heading Angle	deg	10	80817 U-	-0.71808	0.0	20
Pitch Angle	deg Ang)	0.0	21
ROLL ANGLE	volts	49	50.005	49.995	(.)	22
	deg	-3.1470	2.5240		1.0635	23
	ш	50	-568.87	-568.87		4 す し の
Y_Disp_CG	E	280.20 880820 N-	COU.CO 039488	-0.039488	0.0	26
Z_Disp_CG	E F	-0.6)	٥.		27
MP_SUTGe_DISPI MD_SUTGe_DISPI	 m/s**2	-0.77378	0.92945	.0	0.17767	28
MP Surge_Acc	m/s	e. 0	0.40241	-0.000048049		2.9
MP Sway Displ	ш	0.55	0.55974	0.0		5 U 2 1
MP Sway Acc	m/s**2	-1.1	L.U389	-0 0038959		100
	m/s	-0.49839	0.02050			33
MP_Heave_Displ	ш	10.04 04	1 R070	-0.19514		34
MP_Heave_Acc	m/ S**2	#C00.1-	0.99471	-0.0041676		35
MP_Heave_Vel	ישטע קסע	-13.	12.800	-9.4295	Б	36
MP_Yaw_Angle	000 000/000**2	-6.4780	7.8290	0.018381	H	37
MP_Vaw_Acc	deq/sec	-1.7047	3.7162	0	0.88935	38
MP_Pitch Angle	deg	-6.5428	4.3467	-0.73958	1.554 1.12	5 C
Pitch	deg/sec**2	-31.964	31.417	• 0	9.11/4 0.11/4	41
MP_Pitch_Vel	deg/sec	-9.6838	C/70000		1 4220	42
MP_Roll_Angle	deg	-4.7326	78 601		13.680	43
MP_Roll_Acc	deg/sec**2	C60.CC-	4.6733	. 0	530	44
MP_ROLL_VEL	aeg/sec		0 00094891	000168	4	45

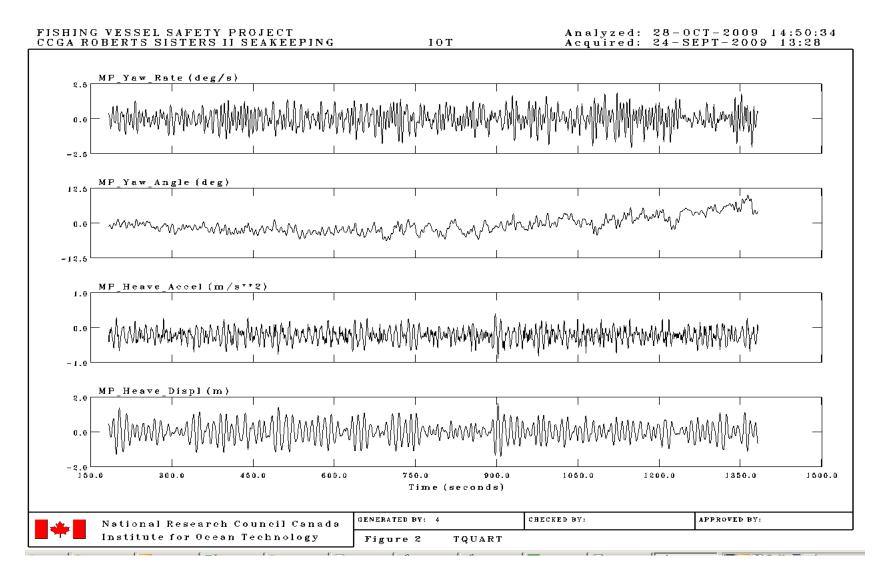

2.5827 47 1.4011 48 2.3605 49 2.85617 50 19395 51 30310 52 051708 53		s.D. Chan	50439 50826 50826 50826 50826 52156 53156 18311 031741 023741 023741 023741 023741 033063 13590 071590 071590 11 071590 11 071590 12 032063 13 3.3385 14 49.234 13 3.3385 15 1682 13 3.3385 15 1682 13 3.3385 15 1682 13 3.3385 15 1682 13 3.3385 15 1682 13 3.3385 15 1682 13 3.3385 15 1682 13 33 22 51682 13 33 22 51682 13 33 22 51682 23 51752 23 51682 23 51682 23 51752 23 51682 23 51682 23 51752 23 51882 23 51882 23 51882 23 51882 23 52 53 53 53 53 53 53 53 53 53 53 53 53 53
039630 222405 032654 .25550 0.0 014318 0.0 026046 0.0 1.0031 0.0		Mean	33514 33514 33514 6883377 91206 99611 00 09611 00 00 00 00 522068 00 00 52224 00 00 52224 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55202 00 00 55205 55205 00 00 55205 00 00 55205 55205 00 00 55205 55205 00 00 55205 55205 50 50 50 50 50 50 50 50 50 50 50 50 5
6.0687 -0.0 3.7660 -0.0 9.0936 -0.0 1.8524 -0.0 0.091000 -0.0		Max	$\begin{array}{c} 1.4816\\ 1.6306\\ 1.6306\\ 1.6306\\ 1.6403\\ 1.5375\\ 0.005\\ 1.3375\\ 0.005\\ 5.2936\\ 0.10667\\ 0.077311\\ 1.3332\\ 0.0025\\ 1.3332\\ 0.0025\\ 1.3332\\ 0.0025\\ 1.3332\\ 0.0025\\ 1.2465\\ 0.0025\\ 1.2465\\ 0.0025\\ 1.2465\\ 0.0025\\ 1.23174\\ 0.0055\\ 1.23174\\ 0.0055\\ 1.23132\\ 0.0025\\ 1.23132\\ 0.0005\\ 1.23132\\ 0.0005\\ 1.23132\\ 0.0005\\ 1.23174\\ 0.0015\\ 1.23174\\ 0.0015\\ 1.23132\\ 0.0005\\ 1.232\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.2332\\ 0.0005\\ 1.232\\ 0.0005\\ $
-5.9118 -5.0673 -7.8382 -7.8382 -0.057000 -0.11900 -1.1820		Min	-1. -1 . -2.8317 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -2.8719 . -1 . -1 . -1 . -2.8860 . -1 . -1 . -1 . -2.8860 . -1 . -1 . -2.8860 . -1 . -2.8888 . -2.84769 . -2.84769 . -2.8660 . -2.8660 . -2.8660 . -2.840 . -2.8460
deg deg/s deg/s deg/s g g g	7-2009 16:47:47 -2009 13:28:09 1003_STAT 1003_STAT	Unit	m m deg/s deg/s deg/s deg deg deg deg deg s s s m m s s s deg s s s deg s s s deg s s s s deg s s s s s s deg s s s s s s s s s s s s s s s s s s s
West Wave Brd. ADIS Roll Rate ADIS Pitch Rate ADIS Yaw Rate ADIS Surge Accel ADIS Sway Accel ADIS Heave Accel	Z Displ Tare Only Analysis Date/Time = 16-NOV-2009 Acquired Date/Time = 24-JUL-2009 Input File = 24-JUL-2009 Output File = 2394 Number of Samples = 2394 Segment Start Time = 137.83 secc Segment End Time = 294.14 secc	Description	South West Wave Probe South East Wave Probe South East Wave Probe North Center Wave Probe MP Roll Rate MP Pitch Rate MP Surge Accel. MP Surge Accel. MP Heave Accel. Bow Vert. Accel. Bow Vert. Accel. Bow Long. Accel. Bow Long. Accel. Bow Long. Accel. Bow Long. Accel. Bow Long. Accel. Bow Long. Accel. Shaft Speed Rudder Angle Nucler Angle Surge Accel. South Wave Brd. South Wave Displ MP Heave_Vel MP Heave_Vel MP Heave_Vel MP Heave Vel MP Yaw Angle


m	4	4	4	4	4	4	4	4	4	4	Ŋ	S	S	(U)
1.3350	6.1768	1.6577	5.3815	15.944	5.5003	0.28502	0.55402	2.1798	5.2306	1.8060	0.76123	0.014049	0.091375	0.062456
-0.72375	-0.0087781	-0.15077	-0.33142	-0.029797	0.016741	1.3179	2.5618	-0.058451	-0.14093	0.0051669	0.12357	0.017117	-0.026398	-0.99978
2.4146	29.557	5.2889	13.357	79.200	14.148	2.7595	5.3640	5.8628	13.059	5.3735	2.7403	0.064000	0.21400	-0.84500
-4.9704	-28.843	-5.3523	-12.205	-75.547	-14.226	0.14210	0.27621	-5.4098	-13.227	-5.2663	-2.5872	-0.031000	-0.26400	-1.1860
deg	deg/sec**2	deg/sec	deg	deg/sec**2	deg/sec	m/s	knots	deg	deg/s	deg/s	deg/s	g	D	g
MP_Pitch_Angle	MP_Pitch_Acc	MP_Pitch_Vel	MP_Roll_Angle	MP_Roll_Acc	MP_Roll_Vel	Speed	Speed	West Wave Brd.	ADIS Roll Rate	ADIS Pitch Rate	ADIS Yaw Rate	ADIS Surge Accel	ADIS Sway Accel	ADIS Heave Accel

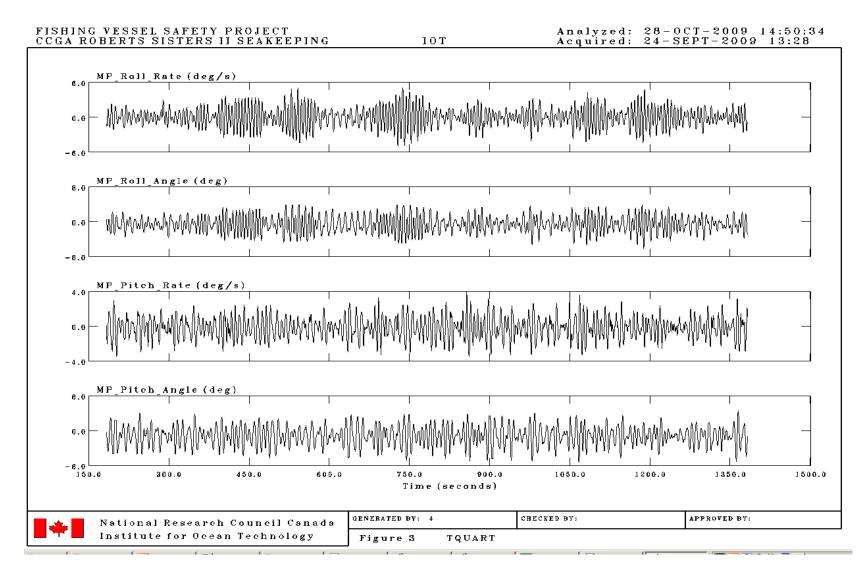
APPENDIX H

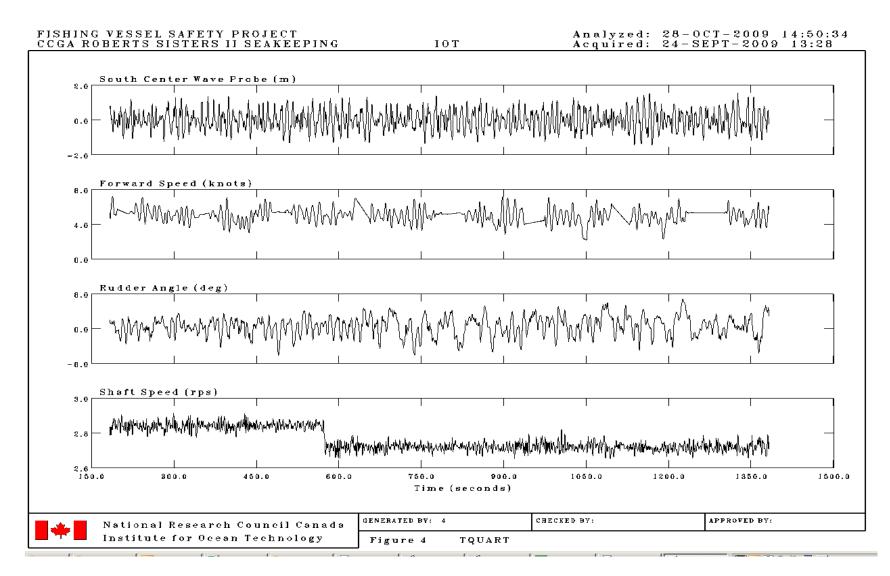

EXAMPLE TIME SERIES PLOTS



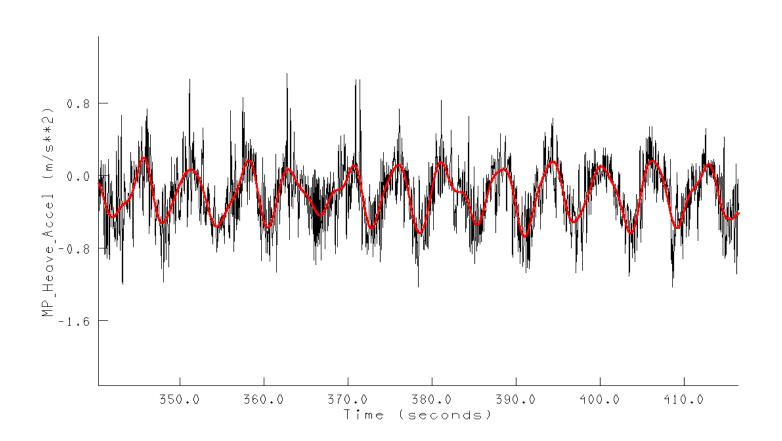


H-3

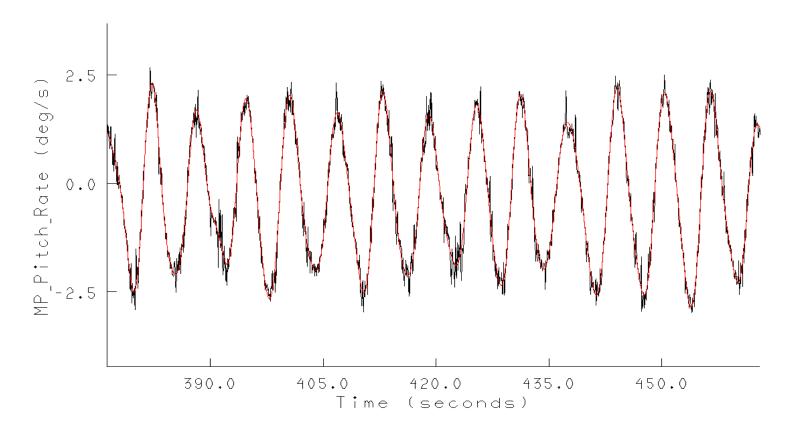


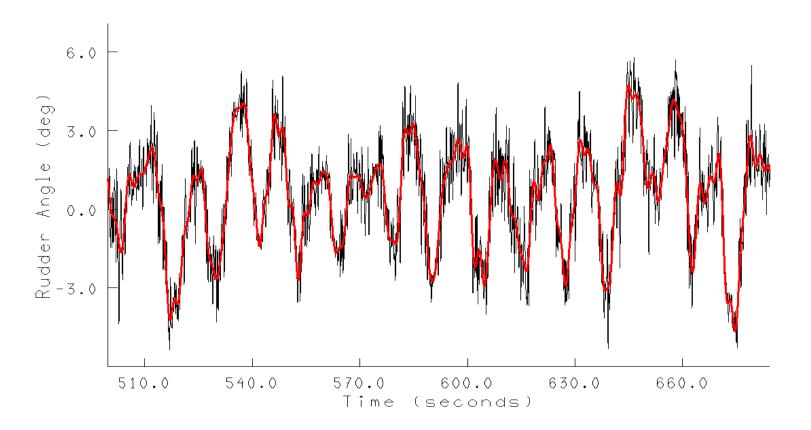

Typical Time Series Plots – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty

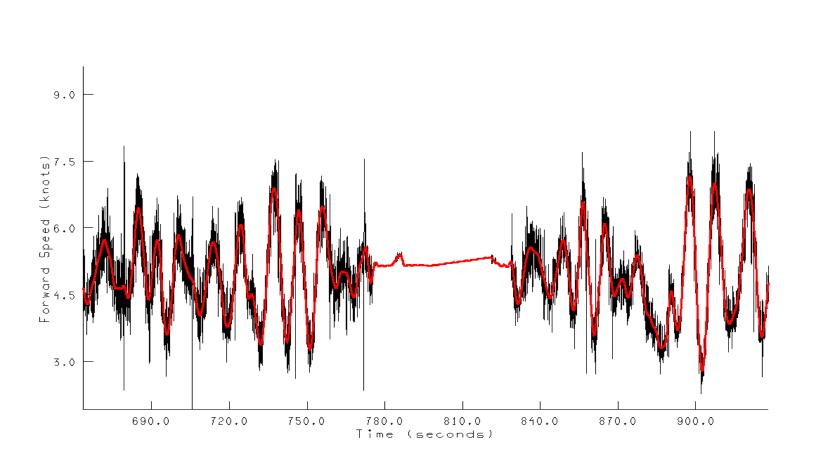
Typical Time Series Plots – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty



Typical Time Series Plots – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty


Typical Time Series Plots – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty

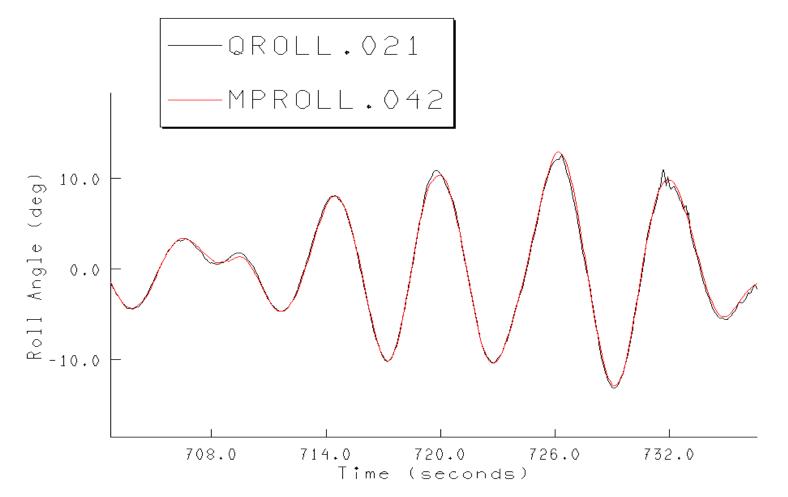

Typical Time Series Comparison of Filtered/Unfiltered Heave Acceleration Data – for Regular Wave Run CASE5_4, Quartering Seas, 4 knots, ART Empty



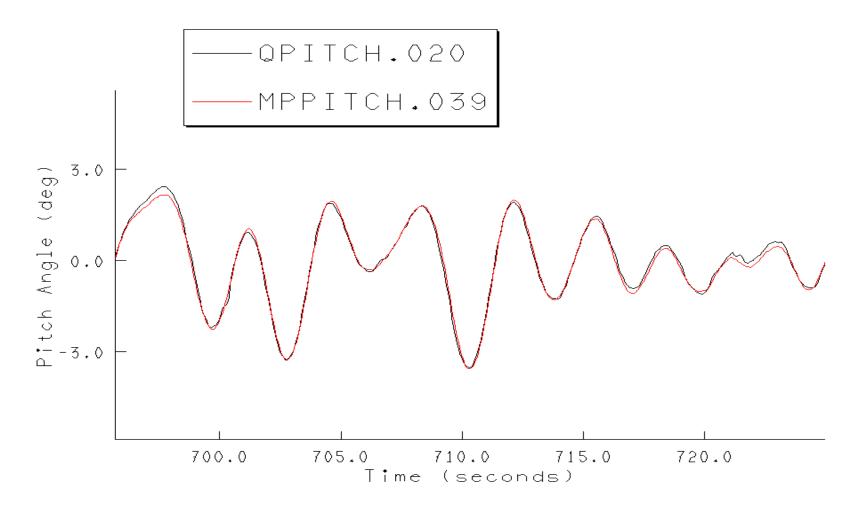
Typical Time Series Comparison of Filtered/Unfiltered Pitch Rate Data – for Regular Wave Run CASE5_4, Quartering Seas, 4 knots, ART Empty

[PJ2374.0FFL]NE.TQUART] Test No. Tquart_011 29-0CT-2009 10:47

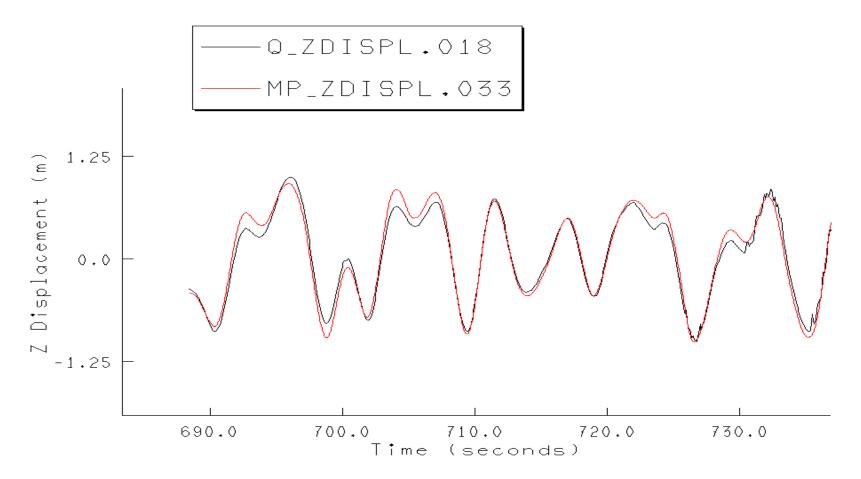
Typical Time Series Comparison of Filtered/Unfiltered Rudder Angle Data – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty

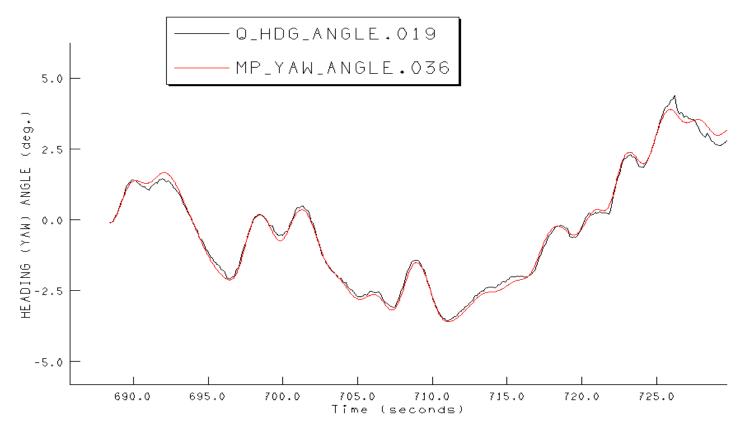

[PJ2374.0FFLINE.TQUART] Test No. Tquart_011 29-0CT-2009 10:54

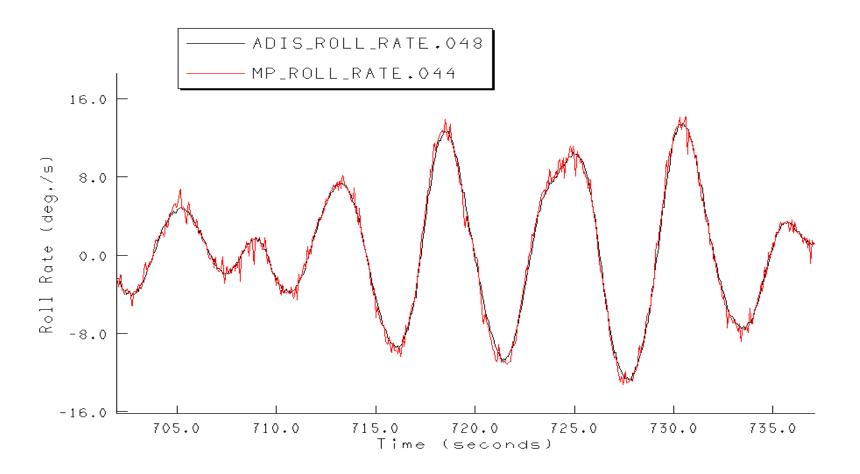
Typical Time Series Comparison of Filtered/Unfiltered Forward Speed Data – for Irregular Wave Run TQUART, Quartering Seas, Trawl Speed, ART Empty

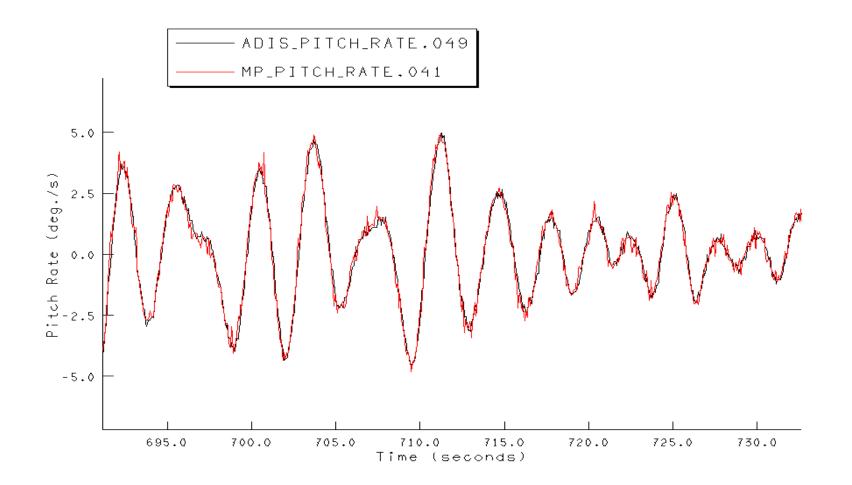

APPENDIX I

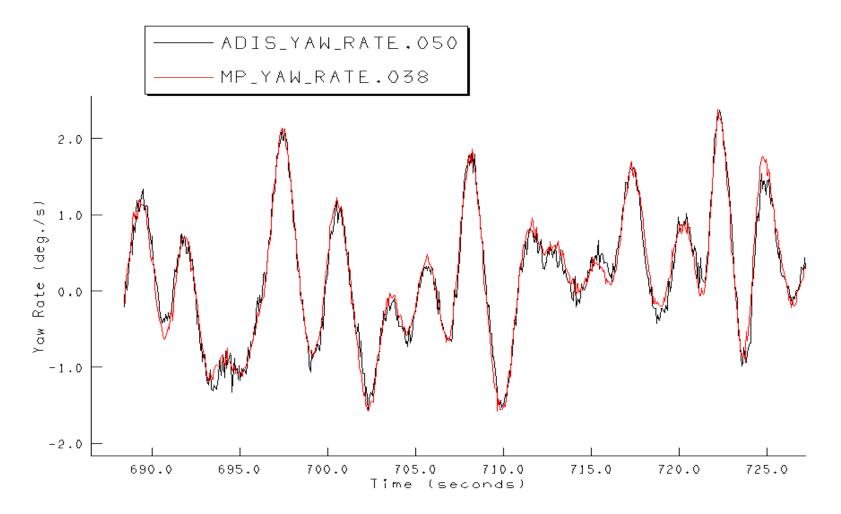
EXAMPLE TIME SERIES PLOTS COMPARING MOTIONS FROM DIFFERENT SENSORS


[PJ2374.0FFLINE.COMP1] Test No. CBow_008 30-JUL-2008


Comparison of QUALISYS Roll Angle and MotionPak II Roll Angle for Run CBOW_008

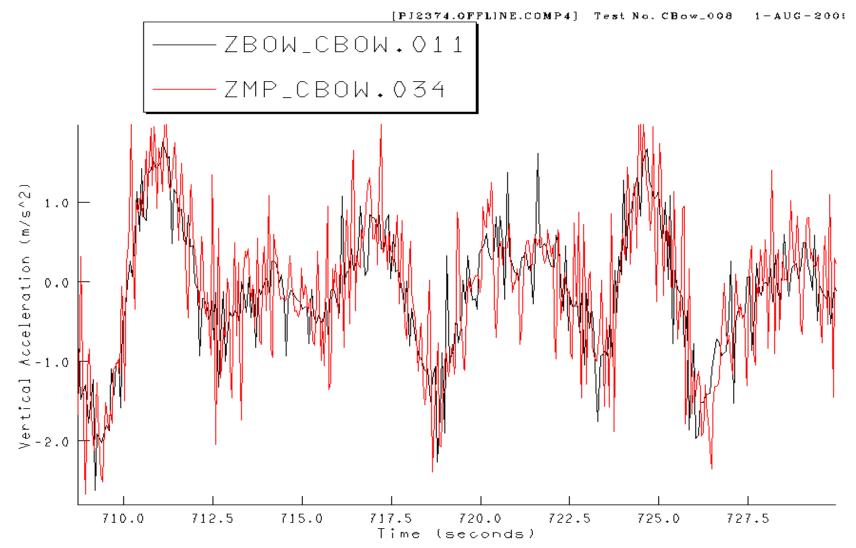

Comparison of QUALISYS Pitch Angle and MotionPak II Pitch Angle for Run CBOW_008


Comparison of QUALISYS Z (Heave) Displacement and MotionPak II Z (Heave) Displacement for Run CBOW_008


Comparison of QUALISYS Heading Angle and MotionPak II Yaw Angle for Run CBOW_008

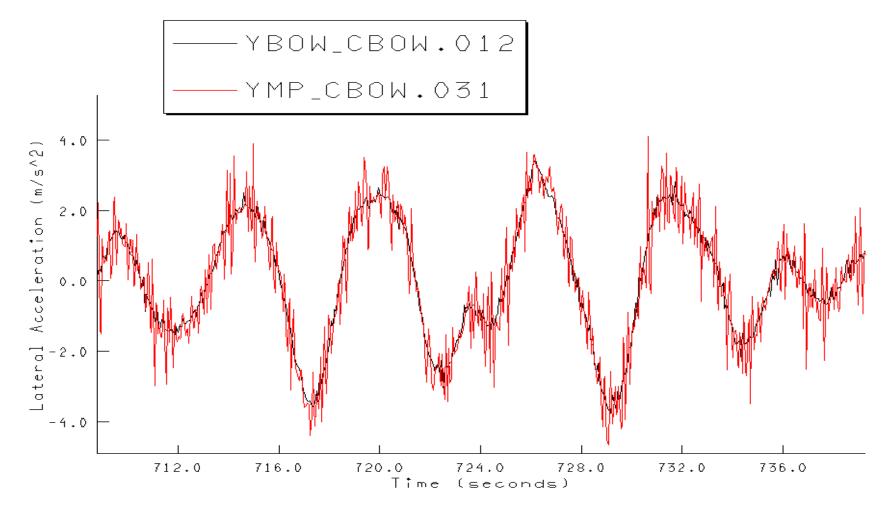
Comparison of ADIS Roll Rate and MotionPak II Roll Rate for Run CBOW_008

Comparison of ADIS Pitch Rate and MotionPak II Pitch Rate for Run CBOW_008

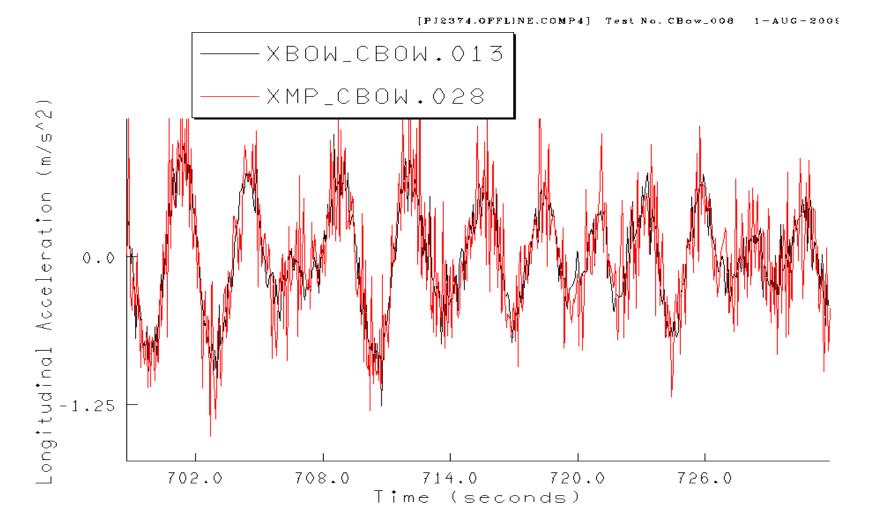


Comparison of ADIS Yaw Rate and MotionPak II Yaw Rate for Run CBOW_008

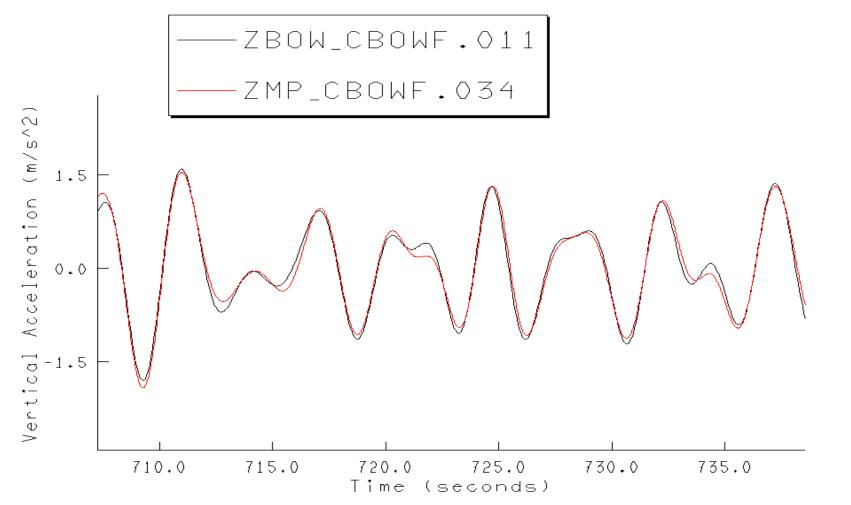
TR-2009-24


APPENDIX J

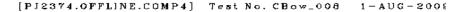
EXAMPLE TIME SERIES PLOTS COMPARING FILTERED/UNFILTERED DATA

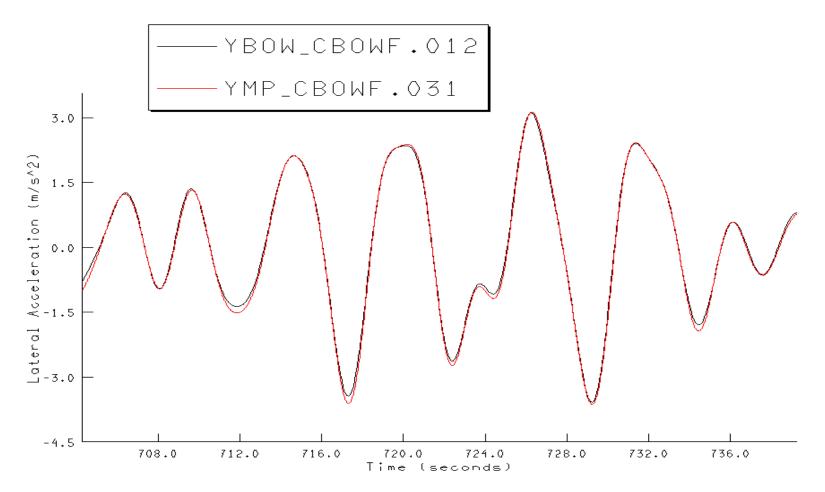


Comparison Between Bow Vertical Acceleration and MotionPak II Vertical Acceleration for Run CBOW_008 (no filtering)

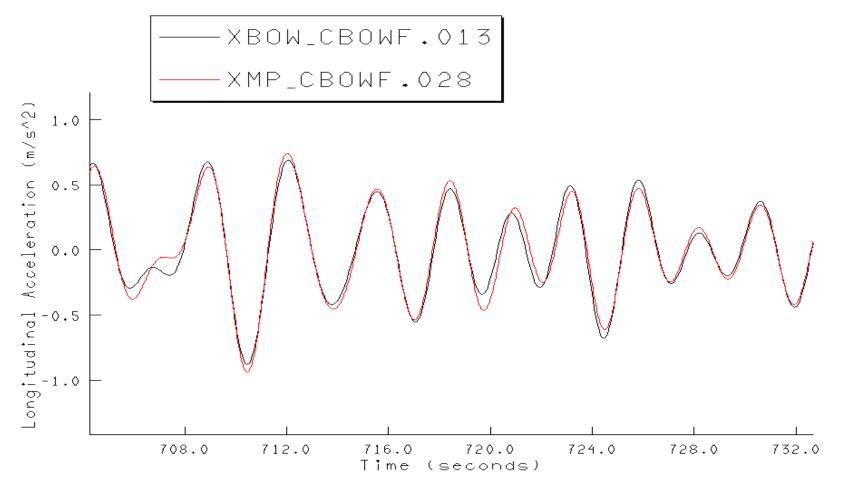

[PJ2374.OFFLINE.COMP4] Test No. CBow_008 1-AUG-2008

Comparison Between Bow Lateral Acceleration and MotionPak II Lateral Acceleration for Run CBOW_008 (no filtering)




Comparison Between Bow Longitudinal Acceleration and MotionPak II Longitudinal Acceleration for Run CBOW_008 (no filtering)

[PJ2374.0FFLINE.COMP4] Test No. CBow_008 1-AUG-2009 16:4


Comparison Between Bow Vertical Acceleration and MotionPak II Vertical Acceleration for Run CBOW_008 (after filtering)

Comparison Between Bow Lateral Acceleration and MotionPak II Lateral Acceleration for Run CBOW_008 (after filtering)

[PJ2374.0FFL]NE.COMP4] Test No. CBow_008 1-AUG-2009 18:5

Comparison Between Bow Longitudinal Acceleration and MotionPak II Longitudinal Acceleration for Run CBOW_008 (after filtering)