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Abstract. Exact calculation of electronic properties of molecules is a funda-

mental step for intelligent and rational compounds and materials design. The

intrinsically graph-like and non-vectorial nature of molecular data generates a

unique and challenging machine learning problem. In this paper we embrace a

learning from scratch approach where the quantum mechanical electronic

properties of molecules are predicted directly from the raw molecular geometry,

similar to some recent works. But, unlike these previous endeavors, our study

suggests a benefit from combining molecular geometry embedded in the Cou-

lomb matrix with the atomic composition of molecules. Using the new com-

bined features in a Bayesian regularized neural networks, our results improve

well-known results from the literature on the QM7 dataset from a mean absolute

error of 3.51 kcal/mol down to 3.0 kcal/mol.

Keywords: Atomization energy � Atomic composition �
Bayesian regularization � Coulomb matrix � Electronic properties � Molecules �
Neural networks

1 Introduction

Finding new molecules, compounds or materials with desired properties is strategic to

the innovation and progress of many chemical, agrochemical and pharmaceutical

industries. One of the major challenges consists of making quantitative estimates in the

chemical compound space at moderate computational cost (milliseconds per compound

or faster). Currently only high level quantum-chemistry calculations, which can take

days per molecule depending on property and system, yield the desired chemical

accuracy of 1 kcal/mol required for computational molecular and material design [1].

Recent technological advances have shown that data-to-knowledge approaches are

beginning to show enormous promise within materials science. Intelligent exploration

and exploitation of the vast materials property space has the potential to alleviate the

cost, risks, and time involved in trial-by-error approach experiment cycles used by

current techniques to identify useful compounds [2]. For example, obtaining

atomization energies from the Schrödinger equation solver is computationally
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expensive and, as a consequence, only a fraction of the molecules in the chemical

compound space can be labeled. By training a machine learning algorithm on the few

label ones, the trained quantum mechanics machine learning (QM/ML) model can be

used to generalize from these few data points to unseen molecules [3]. One of the

central questions in QM/ML is how to represent molecules in a way that makes

prediction of molecular properties feasible and accurate [4]. This question has already

been extensively discussed in the cheminformatics literature, and many so-called

molecular descriptors exist [5]. Unfortunately, they often require a substantial amount

of domain knowledge and engineering. Furthermore, they are not necessarily trans-

ferable across the whole chemical compound space [1].

In this paper, we follow a more direct approach introduced in [6], and adopted by

several other authors. We learn the mapping between the molecule and its atomization

energy from scratch using the Coulomb matrix as a low-level molecular descriptor [6,

7]. Coulomb matrix is invariant to translation and rotation but not to permutations or re-

indexing of the atoms. Methods to tackle this issue have been proposed. Examples

include Coulomb sorted eigenspectrum [1], Coulomb sorted L2 norm of the matrix’s

columns [7], Coulomb bag of bonds [8], and random Coulomb matrices [1, 3]. Our

study extends the work of [1, 3, 6, 7]. Unlike these previous authors, we show that by

combining the molecular geometry embedded in the Coulomb matrix with atomicity or

atomic composition of molecules (i.e. atom counts of each type in a molecule), the

outcome of the QM/ML models can be significantly improved.

To test this new hypothesis, five representations are constructed: (1) sorted Cou-

lomb matrix, (2) atomic composition of molecules, (3) Coulomb eigenspectrum, (4) the

combination of the Coulomb eigenspectrum and the atomic composition of molecules,

and (5) the combination of the sorted Coulomb matrix and the atomic composition of

molecules. Each one is used as input to a well-defined multilayer Bayesian regularized

neural networks [9–13]. Results obtained using the combination of either the sorted

Coulomb matrix or the Coulomb eigenspectrum with the atomic composition showed

better predictions by a difference of more than 1.5 kcal/mol compared to when the

sorted Coulomb matrix or the Coulomb eigenspectrum is used solely. More interest-

ingly, the mean absolute error (MAE) = 3.0 kcal/mol obtained in this study is lower

than the 3.51 kcal/mol well-known results obtained in [1, 3]. These results confirm the

efficacy of using the atomic composition of molecules in a QM/ML model for their

electronic properties predictions. Furthermore, the Bayesian regularized neural network

is shown to be a suitable candidate for the modeling of molecular data.

The rest of this paper is organized as follows. In Sect. 2, the dataset used in this

study is described. Section 3 provides a detailed description of the proposed method.

Section 4 presents the results and Sect. 5 the conclusions.

2 Materials

The QM7 dataset used in this study is a subset of the GDB-13 dataset [14]. The version

used here is the one published in [7] consisting of 7102 small organic molecules and

their associated atomization energy. These molecules are composed of a maximum of

23 atoms. Molecules are converted to a suitable Cartesian coordinates representation
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using universal forcefield method [15] as implemented in the software OpenBabel [16].

Atomization energies are calculated for each molecule and ranging from −800 to

−2000 kcal/mol. Note that all the 7102 molecules are unique and there are no isomers

in the set.

3 Methods

Sorted Coulomb matrix, Coulomb eigenspectrum and atomic composition of each

molecule are computed using the atomic coordinates and the chemical formulae of each

molecule respectively as described in the QM7 dataset. Next, atomic composition,

Coulomb eigenspectrum and sorted Coulomb matrix are either combined or used

separately as input to a regularized Bayesian neural network for the prediction of the

atomization energy.

3.1 Atomicity, Atom Counts or Atomic Composition

Let’s define X ¼ X1;X2; . . .;Xm; . . .;XMf g, the set of possible molecules in the

chemical compound space (CCS). By construction, this space is very large. In this

study, we will assume that it is bounded by M. Let’s define A the set of unique atoms

that make X. A is bounded by K and it is defined as: A = {A1, A2, …, Ak, …, AK}.

Let’s define a chemical operator “.” that combines atoms among them in a specific

numbers amk and according to the laws of chemistry to form a stable molecule Xm. The

chemical formulae of Xm can be written as: Xm ¼ a
m
1 A

1
:a

m
2 A

2
. . .:a

m
k A

k
. . .:a

m
KA

K , or as

in chemical textbook.

Xm � A1
am
1
A2
am
2
. . .Ak

am
k
. . .AK

am
K

ð1Þ

The atomic composition (AC) of molecule Xm in the atomic space [A1 A2
… Ak

…

AK] is defined as a
m
1 a

m
2 . . .a

m
k . . .a

m
K

� �

, where amk is a positive integer that represents the

number of atom Ak in molecule Xm. The AC of the M molecules in the atomic space

[A1 A2
… Ak

… AK] can be viewed as an M � K matrix a, Eq. (2).
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Row a(m,:) of a corresponds to the AC of the mth molecule (Xm). Column a(:,k)

corresponds to the number of atom Ak in each molecule of X. K is an integer and

correspond to the number of unique atoms that makes X. For example, given a set of
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seven molecules: X = {CH4, C2H2, C3H6, C2NH3, OC2H2, ONC3H3, SC3NH3}. The

set of unique atoms that makes X is A = {C, H, N, O, S}. The matrix a is then:

a ¼

CH4

C2H2

C3H6

C2NH3

OC2H2

ONC3H3

SC3NH3

2
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7
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7
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¼

1 4 0 0 0

2 2 0 0 0

3 6 0 0 0
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3 3 1 0 1
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ð3Þ

It is obvious that this representation is not unique. That is two molecules with

identical atomic composition may have different electronic properties. Isomers are great

examples in this case. They are compound with the same molecular formulas but that

are structurally different in some way, and they can have different chemical, physical

and biological properties [17]. It is also worth to note that such molecular represen-

tation had been explored in the past in quantitative structure activity relationship and

correspond to a different form of the Atomistic index developed by Burden [13].

3.2 Coulomb Matrix

The Coulomb matrix (CM) has recently been widely used as molecular descriptors in

the QM/ML models [1, 3, 6, 7]. Given a molecule its Coulomb matrix CM = [cij] is

defined by Eq. (4).

cij ¼
0:5Z2:4

i for i ¼ j
ZiZj

jjRi�Rjjj
for i 6¼ j

(

ð4Þ

Zi is the atomic number of atom i, and Ri is its position in atomic units [7]. CM is of

size I � I, where I corresponds to the number of atoms in the molecule. It is symmetric

and has as many rows and columns as there are atoms in the molecule. As we men-

tioned earlier, the Coulomb matrix is invariant to rotation, translation but not to per-

mutation of its atoms. Several techniques to tackle this issue have been explored in the

literature. Examples include sorted Coulomb matrix and Coulomb eigenspectrum.

Sorted Coulomb Matrix (SCM). This approach sorts the CMs by descending order

with respect to the norm-2 of their columns and simultaneously permuting their rows

and columns accordingly. After the ordering step and given the symmetry of these

matrices, it is customary to only consider their lower triangular part [6, 7], and to

unfold them row-wise in a 1-dimensional (1D) vector of length L ¼
PI

i¼o I � ið Þ,
where I here corresponds to the number of atoms of the largest molecule. In this study,

the 1D vector is called the SCM signal x(m,:) = xm[l], with l = 1 to L and m
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corresponds to molecule Xm. For a set of M molecules, their 1D SCM signals can be

organized in an M � L matrix x:

x ¼

x11 x12 . . . x1l . . . x1L
x21 x22 . . . x2l . . . x2L

.

.

.
.
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.
.
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. . .
.
.

.
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The mth row of x represents the 1D SCM signal of the mth molecule. Given that

molecules have different number of atoms, the short ones are padded with zeros so that

all the 1D SCM signals have the same length L.

Coulomb Eigenspectrum (CES). The Coulomb eigenspectrum [6, 7] is obtained by

solving the eigen value problem Cv = kv, under constraint ki � ki+1 where ki > 0.

The spectrum (k1,. .., kI) is used as the representation and it corresponds to a 1D signal:

z(m,:) = zm[n], with n = 1 to N and m corresponds to molecule Xm. For a set of M

molecules, their 1D CES signals can be organized in an M � N matrix z:

z ¼

z11 z12 . . . z1n . . . z1N
z21 z22 . . . z2n . . . z2N

.

.

.
.
.

.

. . .
.
.

.

. . .
.
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.
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ð6Þ

The mth row of z represents the 1D CES signal of the mth molecule. Given that

molecules have different number of atoms, the short ones are padded with zeros so that

all the 1D CES signals have the same length N.

3.3 Input of the QM/ML Model

Let’s define X as the input to the neural network defined below. In order to test the

usefulness of the AC in the prediction of the electronic properties of molecules, we

have considered five different inputs and compared them against each other. The five

inputs are: X = a (only the AC is used), X = z (only the CES is used), X = x (only the

SCM is used), X = [a z] (AC and CES are combined and used as inputs), and finally

X = [a x] (AC and SCM are combined and used as inputs). By combining AC, CES

and SCM, taking the Z-scores of X prior to its utilization as input to the ML model

becomes an obvious choice. The Z-score of X will return a matrix of same size X’,

where each column of X’ has mean 0 and a standard deviation of 1 [18].
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3.4 Output – Atomization Energy of Molecules

The output to the QM/ML is the atomization energy E. It quantifies the potential energy

stored in all chemical bonds. As such, it is defined as the difference between the

potential energy of a molecule and the sum of potential energies of its composing

isolated atoms. The potential energy of a molecule is the solution to the electronic

Schrödinger equation HU = EU, where H is the Hamiltonian of the molecule and U is

the state of the system. The atomization energy of molecules are organized in an

M � 1 column vector y = [y1 y2 … ym … yM]
T. The superscript T indicates the

transpose operator. The entry ym is a real number that corresponds to the atomization

energy of the mth molecule.

3.5 Bayesian Regularized Neural Networks

Neural networks (NN) are universal function approximators that can be applied to a

wide range of problems such as classification and model building. It is already a mature

field within machine learning and there are many different NN paradigms. Multilayer

feed-forward networks are the most popular and a large number of training algorithms

have been proposed. Compared to other non-linear techniques, in multilayer NNs, the

measure of similarity is learned essentially from data and implicitly given by the

mapping onto increasingly many layers. In general, NNs are more flexible and make

fewer assumptions about the data. However, it comes at the cost of being more difficult

to train and regularize [3]. In this paper, we used the Bayesian regularization method to

train our NNs [9–12].

Bayesian methods are optimal methods for solving learning problems. Any other

method not approximating them should not perform as well on average. They are very

useful for comparison of data models as they automatically and quantitatively embody

“Occam’s Razor” [19]. Complex models are automatically self-penalizing under

Bayes’ Rule. Bayesian methods are complementary to NNs as they overcome the

tendency of an over flexible network to discover nonexistent, or overly complex, data

models.

Unlike a standard back-propagation NN training method where a single set of

parameters (weights, biases, etc.) are used, the Bayesian approach to NN modeling

considers all possible values of network parameters weighted by the probability of each

set of weights. Bayesian inference is used to determine the posterior probability dis-

tribution of weights and related properties from a prior probability distribution

according to updates provided by the training set D using the Bayesian regularized NN

model, Hi. Where orthodox statistics provide several models with several different

criteria for deciding which model is best, Bayesian statistics only offer one answer to a

well-posed problem.

PðwjD;HiÞ ¼
PðDjw;HiÞPðwjHiÞ

PðDjHiÞ
ð7Þ

Bayesian methods can simultaneously optimize the regularization constants in NNs,

a process which is very laborious using cross-validation [9].
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4 Results and Discussions

As we mentioned earlier, the version of the QM7 dataset used in this study is the one

published in [7] and it is composed of M = 7102 molecules and contains up to five

types of atoms: Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N), and Sulfur (S).

Therefore the set of unique atoms is A = {C, H, N, O, S}. The matrix a is of size

M � K = 7102 � 5. The largest molecule is made of I = 23 atoms. Thus the CES

matrix z is of size M � N = 7102 � 23, and the SCM matrix x is of size M � L =

7102 � 276, because L =
P23

i¼0 23� ið Þ ¼ 276: The column vector of atomization

energy y is of size 7102 � 1. The QM7 dataset is randomly divided into 80% training

and 20% testing sets. Performance is measured using the root mean square error

(RMSE), Eq. (8), the mean absolute error (MAE), Eq. (9), and the Pearson correlation

coefficient rppe, Eq. (10).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

X

M

m¼1

ðym � yemÞ
2

v

u

u

t ð8Þ

MAE ¼
1

M

X

M

m¼1

ym � yem

�

�

�

� ð9Þ

rPPe ¼

P

M

m¼1

ym � �yð Þ yem � �ye
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

M

m¼1

ym � �yð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

M

m¼1

yem � �ye
� �2

s ð10Þ

4.1 Results

We used the Matlab implementation of the regularized Bayesian network to model the

relationship between the inputs (X) and the output (y). Figure 1 for example shows the

Matlab architecture of one of the networks used.

Fig. 1. Matlab representation of one hidden layer neural networks with 17 neurons when the

SCM is used as input (276 inputs and 1 output).
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In the literature, there is no clear and rational approach on how to select the number

of neurons and the number of hidden layers of a NN. The middle ground is usually to

select an architecture that will neither under-fit nor over-fit the model. In this study we

tested several architecture based on some empirical observations also coming from the

literature with the goal for avoiding under-fitting and overfitting of the model. Table 1

shows the results obtained using different NN architectures with the data partitioned

into 90% training and 10% for validation and testing.

The results obtained show that the association of the AC with either CES or SCM

significantly improved the prediction accuracy. For example, with the three hidden

layer network [18 � 9 � 3], the MAE goes from 13.80 kcal/mol when only the AC is

used, to 4.40 kcal/mol when only the SCM is used down to 3.0 kcal/mol when the AC

is combined with SCM. Similar observation is made when CES is combined with the

AC (see Table 1). These results suggest that AC represents an interesting feature for the

predictions of the electronic properties of molecules. Furthermore, the MAE = 3.0

kcal/mol obtained is lower than the MAE of 9.9 kcal/mol [6, 7] using kernel ridge

regression and MAE of 3.51 kcal/mol obtained in [1, 3] using a multilayer NN asso-

ciated with random coulomb matrices and a binarization scheme to augment the data in

order to use a more complex multilayer neural network than the one used in this study.

Clearly, the QM7 dataset result of [1, 3] is improved by a factor difference of

0.5 kcal/mol in this study. Our result is close to the acceptable 1 kcal/mol chemical

accuracy.

Table 1. Statistics of the results using three different network architectures, each trained using

Bayesian regularization. MAE and RMSE are in kcal/mol.

Statistics

Network architecture Input* MAE RMSE rppe

[17] a 13.82 18.05 0.9967

z 9.40 12.29 0.9985

x 5.02 6.72 0.9995

[a z] 8.38 11.09 0.9988

[a x] 3.70 5.0 0.9997

[16 � 8 � 4] a 13.82 18.05 0.9967

z 8.70 11.35 0.9987

x 4.83 6.58 0.9996

[a z] 7.59 10.06 0.9990

[a x] 3.42 4.73 0.9998

[18 � 9 � 3] a 13.80 18.04 0.9967

z 8.57 11.16 0.9987

x 4.40 5.95 0.9996

[a z] 7.38 9.80 0.9990

[a x] 3.0 4.22 0.9998

*a = Atomic Composition (AC), z = Coulomb Eigen

Spectrum (CES), x = Sorted Coulomb Matrix (SCM)
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4.2 Discussions

Predicting molecular energies quickly and accurately across the CCS is an important

problem as the QM calculations take days and do not scale well to more complex

molecules. ML is a good candidate for solving this problem as it encourages the

framework to focus on solving the problem of interest rather than solving the more

general Schrödinger equations. In this paper, we have developed further the learning-

from-scratch approach initiated in [6] and provided a new ingredient for learning a

successful mapping between raw molecular geometries and atomization energies. Our

results suggest important discoveries and open new venues for future research.

Atomicity, Atom Counts or Atomic Composition Represents an Interesting Fea-

ture for QM/ML Models. Atomic composition (AC), i.e. atom counts of each type in

a molecule is a representation that does not contain any molecular structural infor-

mation. But our analysis suggests a correlation between the AC representation and the

atomization energy. The combination of AC with CES or SCM yields a new molecular

representation which inherits all the properties of either CES or SCM representation

respectively. Even though the AC representation is not unique (case of isomers as we

mentioned earlier), by combining it with the SCM for example, the pair [AC SCM]

inherit all the properties of SCM and becomes a representation that is uniquely defined,

invariant to rotation, translation and re-indexing of the atoms, given that the SCM had

already been sorted in decreasing order to tackle the non-invariance to atom re-

indexing. Similar observation can be made with the CES.

Bayesian Regularized Neural Networks are Suited for Molecular Data. The

Bayesian regularization approach used in this study seems to fit molecular data very

well. Similar observation was made in [12] when developing quantitative structure

activity relationship (QSAR) model of compounds active at the benzodiazepine and

muscarinic receptors. The results obtained here further prove the point that Bayesian

regularized neural networks possess several properties useful for the analysis of

molecular data. One advantage of the Bayesian regularized neural networks is that the

number of effective parameters used in the model is less than the number of weights, as

some weights do not contribute to the models. This minimizes the likelihood of

overfitting. The concerns about overfitting and overtraining are also removed by this

method so that the production of a definitive and reproducible model is attained [9–12].

5 Conclusions

In this study, we show that by combining the atomic composition of molecules with

their Coulomb matrix representation, the output of the quantum mechanics machine

learning model can be significantly improved. Using the QM7 dataset as a test case, our

results show a decrease by a difference of 1.5 kcal/mol when the sorted Coulomb

matrix representation is combined with the atomic composition compared to when the

sorted Coulomb matrix is used alone. Furthermore, our results improve well-known

results from the literature on the QM7 dataset from a mean absolute error of

3.51 kcal/mol down to 3.0 kcal/mol. These results suggest that the atomic composition
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of molecules contain interesting information useful for quantum mechanics machine

learning model and should not be neglected.
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