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Macromolecular structures, such as neuraminidases, hemagglutinins, and monoclonal antibodies, are not rigid entities. Rather,
they are characterised by their lexibility, which is the result of the interaction and collective motion of their constituent atoms.
his conformational diversity has a signiicant impact on their physicochemical and biological properties. Among these are their
structural stability, the transport of ions through the M2 channel, drug resistance, macromolecular docking, binding energy, and
rational epitope design. To assess these properties and to calculate the associated thermodynamical observables, the conformational
space must be eiciently sampled and the dynamic of the constituent atoms must be simulated.his paper presents algorithms and
techniques that address the abovementioned issues. To this end, a computational review of molecular dynamics, Monte Carlo
simulations, Langevin dynamics, and free energy calculation is presented. he exposition is made from irst principles to promote
a better understanding of the potentialities, limitations, applications, and interrelations of these computational methods.

1. Introduction

he ability to properly sample conigurational and confor-
mational properties and to subsequently describe at the
atomic level the dynamical evolution of complex macro-
molecular systems has wide application. his research is
of paramount importance in the study of macromolecu-
lar stability of mutant proteins [1], molecular recognition,
ions, and small molecule transportation of the inluenza
M2 channel [2, 3], protein association, the role of protein
lexibility for inluenza A RNA binding [4, 5], folding and
hydration, inluenza neuraminidase inhibitor [6–9], drug
resistance [10], enzymatic reactions, folding transitions [11,
12], screening [13], accessibility assessment (see Figure 1),
and hemagglutinin fusion peptide [14]. One should also
mention multivalent binding mode [15], docking [16], drug
(e.g., Oseltamivir and Zanamivir) eiciency against mutants
[17, 18], structural biochemistry [19], biophysics, molecu-
lar biology, inluenza multiple dynamics interactions [20],
enzymology, pharmaceutical chemistry [21], biotechnology,
rational epitope design [22], computation vaccinology [23],

binding [24], and free energy [25, 26]. For instance, one may
wish to calculate the free energy to assess the strength and
the stability of the bond in between a monoclonal antibody
(mAb) and an antigen, such as the viral hemagglutinin, to
quantify the eiciency of the neutralisation process.

his paper presents an algorithmic review from the irst
principles of Monte Carlo simulation, molecular dynamics,
and Langevin dynamics (i.e., techniques that have been
shown to address the abovementioned scenario). We focus
our attention on the algorithmic aspect, which, within the
context of a review, has not received suicient attention.
Our objective is not only to explain the algorithms but
also to highlight their potential, limitations, applicability,
interrelations, and generalisation in the context of molecular
dynamics. To this end, a number of algorithmic approaches
are presented in detail, and the pros and cons of each are
highlighted. he algorithms are illustrated with examples
related to the inluenza virus.

his paper is organised as follows. Monte Carlo simula-
tions are reviewed in Section 2. Section 3 is concerned with
molecular dynamics in the microcanonical ensemble, that is,
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Figure 1: Accessibility assessment of a region of the inluenza A
virus (A/swine/Iowa/15/1930 (H1N1)).

at constant energy. Section 4 extends molecular dynamics to
the canonical and the isobaric-isothermal ensemble. Con-
strained molecular dynamics, hybrid molecular dynamics,
and steered molecular dynamics are also presented. Section 5
introduces Langevin and self-guided Langevin dynamics, and
Section 6 is concerned with the calculation of the free energy.
he application of molecular dynamics to macromolecular
docking is addressed in Section 7. Finally, the connection in
between molecular dynamics and quantum mechanics (ab
initio simulations) is outlined in Section 8. his is followed
by a short conclusion.

2. Monte Carlo Simulations

heobjective of aMonteCarlo (MC) simulation is to generate
an ensemble of representative conigurations under speciic
thermodynamics conditions for a complex macromolecular
system [27]. Applying random perturbations to the sys-
tem generates these conigurations. To properly sample the
representative space, the perturbations must be suiciently
large, energetically feasible and highly probable. Monte Carlo
simulations do not provide information about time evolution.
Rather, they provide an ensemble of representative conigu-
rations, and, consequently, conformations from which prob-
abilities and relevant thermodynamic observables, such as
the free energy, may be calculated. Monte Carlo simulations
are not only important on their own right, but they also
play a fundamental role when designing complex and hybrid
molecular dynamic (MD) algorithms [28].

his section is dedicated to Monte Carlo simulations.
In Section 2.1 we review some important notions about
Lagrangian and Hamiltonian dynamics, which are pervasive
for both Monte Carlo simulations and molecular dynamics.
In Section 2.2 we introduce the partition function and the
probability density function, as well as the calculation of ther-
modynamics observable associated with a macromolecule
such as the hemagglutinin or the neuraminidase. he parti-
tion function is instrumental in computing such observables.
In Section 2.3 we explain how to eiciently sample the repre-
sentative space. For that, we introduce the notions of emission
probability, transition probability, acceptance probability, and
detailed balance.

Sampling is useful only when performed in realistic
experimental conditions. For this reason we explain how to

sample in the canonical ensemble (with a constant number
of particles, volume, and temperature) and also in the
isothermal-isobaric ensemble (with a constant number of
particles, pressure, and volume) in Sections 2.4 and 2.5,
respectively. Finally, in Section 2.6 we address the problem
of sampling in the presence of numerous minima. his
is a problem particularly acute when studying inluenza
macromolecular structures such as the hemagglutinin and
the neuraminidase.

2.1. Lagrangian and Hamiltonian Dynamics or How to For-
mulate Our Problem. his section presents some important
notions about Lagrangian and Hamiltonian dynamics, which
are pervasive and recurrent for bothMCandMD. Lagrangian
and Hamiltonian dynamics provide an ideal framework for
the description of complex macromolecular systems, both in
Cartesian and generalised coordinates [29]. he Lagrangian
is deined as the diference in between the kinetic and the
potential energy:

L (�3�, ̇�3�) =K ( ̇�3�) −U (�3�) , (1)

where the kinetic energy is given by

K = 3�∑
�=1

12�� ̇�2�, (2)

and potential energy U(�3�) is a function of the posi-

tions of the constituent atoms. he �3� are the generalised

coordinates, and the ̇�3� are the generalised velocities. For
instance, a generalised coordinate may be a bound length, a
bound angle, or a dihedral angle. he space of all generalised
coordinates and velocities is called the coniguration space. If
one introduces the generalised momentum:

�� ≡ �L� ̇�� , (3)

one may deine the Hamiltonian, which is the Legendre
transformation of the Lagrangian:

H (�3�, �3�) = 3�∑
�=1
���� −L (�3�, ̇�3� (�3�, �3�)) . (4)

he Hamiltonian obeys the so-called Hamilton’s equations,
which is just another formulation of Newton’s equations:

�H�� = 0; ̇�� = �H��� ; �̇� = −�H��� . (5)

hroughout the text, we will use both generalised and
Cartesian coordinates: the Cartesian coordinates of the �
constituent atom are noted r� ≡ [��, ��, ��]�. he set of all
Cartesian coordinates is noted as

r
� ≡ r1, . . . , r�, (6)

and the associated diferential volume element is expressed as

�r� ≡ �r1 . . . �r�. (7)

In the next section, we introduce the notions of partition
function and probability density function.
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2.2. Partition Functions, Probability Density Functions, and
Expectation or How to Compute Observables. Partition func-
tions are pervasive to all Monte Carlo simulations. hey are
required to determine the number of microstates associated
with amacromolecule, the probability of occurrence of a spe-
ciic conformation, and the ensemble averages of observables,
such as the enthalpy or thermodynamical quantities like the
free energy from which the strength of a bound between a
drug, such as Oseltamivir [30], and a viral neuraminidase
may be asserted.

he number of microstates may be obtained by

Ω (�,�, �) ≡ �0�{�} ∫�p��r�� (H (r�, p�) − �) , (8)

where

�{�} = 1ℎ3� (��!��! ⋅ ⋅ ⋅ ) (9)

is a quantum factor, which accounts for the indiscernibility of
the various atomic species �, �, and so forth, ℎ is the Planck
constant, and �(�) is Dirac delta function. he functionΩ(�,�, �) counts the number of states of constant energy �
in a system. It is directly related to the entropy

� (�,�, �) = �� lnΩ (�,�, �) , (10)

where �� is the Boltzmann constant. he canonical partition
function is deined as

� (�,�, �) ≡ ∫�p��r� exp [−�H (r�, p�)] , (11)

where

� ≡ 1��� (12)

and � is the temperature. he canonical partition func-
tion is a functional, which is uniquely determined by the
Hamiltonian of the corresponding macromolecular system.
If the indiscernibility factor is included in the deinition, the
microcanonical partition function is noted as

� (�,�, �) ≡ �{�}� (�,�, �) . (13)

he probability that the macromolecule is in a state charac-

terised by atomic positions r�, and atomic momenta p� is
given by

Pr (r�, p�) �p��r� = exp [−�H (r�, p�)] �p��r�
� (�,�, �) .

(14)

Consequently, the ensemble average of an observable� (such
as the enthalpy) is obtained by weighting the various realisa-
tions of the observable by their corresponding probability:

⟨�⟩ = ∫�p��r��(r�, p�)Pr (r�, p�) . (15)

he uncertainty (standard deviation) associated with the
observable is given by

� (�) = √⟨�2⟩ − ⟨�⟩2. (16)

Unfortunately, it is not possible to integrate the partition
function or to compute the probability directly. his is due
to the large number of degrees of freedom. For instance,
the Homo sapiens inluenza hemagglutinin is formed of
approximately 23.000 atoms, which means that the partition
function must be integrated in a 138.000-dimensional space.

In the next section, we explain how to perform such
integration eiciently.

2.3. Stochastic Sampling or How to Sample Eicientlyhermo-
dynamical Quantities. he multidimensional integrals asso-
ciated with the probability and the partition function may
be eiciently calculated with a procedure called Monte
Carlo integration. In this approach the integration space is
sampled according to a Markovian process and the integral
is approximated by the average of the corresponding sampled
states. Such an approach is eicient if the sampled states have
a high probability of occurrence.

A suicient, but not necessary, condition for such an
eicient sampling to hold is called detailed balance:

Pr (I) � (I �→ J) � (I �→ J)
= Pr (J) � (J �→ I) � (J �→ I) , (17)

where Pr(I) is the probability (emission probability) that the

system is in the state I ≡ {r�, p�}, �(I → J) is the
transition probability from state I to state J, and �(I →
J) is the acceptance probability of such a transition. If we
assume that the transition probability is symmetrical

� (I �→ J) = � (J �→ I) , (18)

then the detailed balance equation reduces to

� (I �→ J)� (J �→ I) = Pr (J)
Pr (I) = exp [−� (U (J) −U (I))] .

(19)

A possible solution for this equation is

� (I �→ J) = min {1, exp [−� (U (J) −U (I))]} . (20)

his equation is the celebrated Metropolis algorithm [31].
Consequently, each state is deined from the previous one
(Markovian process). A transition to a lower energy is always
accepted, while a transition to a higher energy is accepted
with probability exp[−�(U(J) −U(I))].

Numerous variations have been designed based on this
algorithm [32, 33]. For instance, the local elevation method
enhances sampling by adding penalty potential to any state
previously sampled (also known as a taboo search algorithm).
Although useful, themicrocanonical partition function is not
realistic from an experimental point of view. Indeed, most
observations are performed either at constant volume and
temperature (canonical ensemble) or at constant pressure and
temperature (isobaric-isothermal ensemble). hese distribu-
tions are introduced in the next two sections.
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2.4. Canonical Ensemble (NVT) Sampling or How to Sample in
Realistic Experimental Conditions. he canonical ensemble
is the ensemble associated with the observations made at
constant volume and constant temperature. he conigura-
tional canonical partition function associated with such an
ensemble is obtained by marginalising the momenta in (11):

� (�,�, �) ≡ ∫�r� exp [−�U (r�)] . (21)

It may also be deined as

� (�,�, �) ≡ �{�}� (�,�, �) , (22)

where the constant

�{�} = 1
(√ℎ2�/2���)3�� ��! (√ℎ2�/2���)3�� ��! ⋅ ⋅ ⋅

(23)

takes into account the indiscernibility of the constituent
atoms. Like in the microcanonical ensemble, the probability

of occurrence of a given state {r�} is equal to
Pr��� (r�) �r� = exp [−�U (r�)] �r�

� (�,�, �) . (24)

Consequently, the average value of an observable is given by

⟨�⟩ = 1� (�,�, �) ∫ �r� exp [−�U (r�)]� (r�) . (25)

In the case of the canonical partition function, the acceptance
probability associated with Monte Carlo method reduces to

���� (r� �→ r
��)

= min {1, exp [−� (U (r��) −U (r�))]} . (26)

From the canonical partition function, it is possible to obtain
various thermodynamical quantities such as the Helmholtz
free energy:

� (�,�, �) = −��� ln� (�,�, �) . (27)

Still, most observations are performed at constant pressure
and temperature. To address this limitation, the isobaric-
isothermal ensemble, as presented in the next section, is
introduced.

2.5. Isobaric-Isothermal Ensemble (NPT) Sampling or How
to Sample in Even More Realistic Experimental Conditions.
he isobaric-isothermal ensemble is representative of many
experimental conditions. From the microcanonical formal-
ism, it is possible to demonstrate that the isobaric-isothermal
conigurational partition function is equal to

� (�, �, �) ≡ ∫�� exp [−���]∫�r� exp [−�U (r�)] .
(28)

As usual, if the indiscernibility of the constituent atoms is
taken into account, the partition function becomes

� (�, �, �) = �{�}�0 � (�, �, �) . (29)

Such a partition function assumes that the deformations
of the macromolecular structure are isotropic (the same in
all directions). hese deformations occur to maintain the
pressure constant. If the deformations are anisotropic, the
partition function must be modiied as follows:

� (�, �, �) = ∫�H�� (�, �, �,H) � (detH − �) , (30)

where H is the tensor associated with an elementary paral-
lelepiped volume, which must be integrated (marginalised)
over all possible variations of the elementary shape. he

probability that a macromolecular system is in a state r� is
given by

Pr��� (r�) �r� = exp [−���] exp [−�U (r�)] �r�
� (�, �, �) . (31)

Again, various thermodynamical quantities may be deined
from the partition function such as the Gibbs free energy:

� (�, �, �) = −��� ln� (�, �, �) . (32)

he isobaric-isothermal acceptance probability associated
with the Monte Carlo method is

���� (r�, � �→ r
��, ��)

= min{1, exp [−� (U (r��, ��) −U (r�, �))]
× exp[−�� (�� − �) + � ln

��� ]} .
(33)

Irrelevant of the ensemble in which the calculations are per-
formed, the Metropolis algorithm may be impaired by local
minima [27]. Indeed, the acceptance probability may become
trapped in a local minimum of the potential energy, which
may result in an inadequate sampling of the macromolecular
states, as seen in the conformational states [32, 33]. his issue
is addressed in the following section.

2.6. Sampling and Local Minima or When Temperature May
Help to Escape Local Minima. Many biomolecular processes
associatedwith inluenza involve activated processes inwhich
a high-energy barrier exists in between the initial and the inal
state [34]. In order to eiciently sample the macromolecular
states, this type of barrier must be overcome.

An eicient, although computationally expensive,
approach to overcome such a barrier is called replica
exchange (refer to [34] and, in the same spirit, [35]).
hese methods involve a certain number of noninteracting
simulations, called replicas, which are performed in parallel.
Each simulation is characterised by its own temperature:
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low temperature simulations tend to explore local minima,
while high temperature simulations may overcome energy
barriers and consequently move in between local minima.
To favour a better exploration of the macromolecular states,
the replicas are periodically exchanged (swapped) according
to the following acceptance probability:

�� (I �→ J)
= min {I, exp [− (�J − �I)

× (U (J)|�J − U (I)|�I)]} ,
(34)

where

�I ≡ 1���I . (35)

his acceptance probability is similar to the ones introduced
before, except for the fact that each state is characterised
by its own temperature. Once the exchange is completed,
the simulations resume normally until another exchange is
performed.he whole procedure allows for a better sampling
of the macromolecular states. For instance, this approach
has been utilised recently, in conjunction with simulated
annealing, for creating the infectious disease model of the
H1N1 inluenza pandemic [36].

Until now, we have restricted ourselves to symmetri-
cal transition functions. Oten, a better sampling may be
obtained if a nonsymmetrical sampling function is employed.
Let us consider the particular case in which the nonsymmet-
rical function depends uniquely on the inal conformation:

� (I �→ J) = � (U (J)) . (36)

hen, the acceptance probability becomes

� (I �→ J)
= min{1, � (U (I))� (U (J)) exp [−� (U (J) −U (I))]} . (37)

his is the so-called bias sampling algorithm [37], which con-
siderably increases the conformational sampling eiciency of
large macromolecular chains [38].

Although MC simulations allow us to sample the most
probable macromolecular states, they do not provide us with
their temporal evolution.he study of the temporal evolution
of a macromolecular state is called molecular dynamics and
is the subject of the next section.

3. Molecular Dynamics or When Time Matters

Molecular dynamics studies the temporal evolution of the
coordinates and the momenta (the state) of a given macro-
molecular structure. Such an evolution is called a trajectory.
A typical trajectory is obtained by solvingNewton’s equations.
he trajectory is important in assessing numerous time-
dependent observables [39] such as the accessibility of a
given molecular surface [40], the interaction in between

a small molecule (e.g., a drug) and the hemagglutinin or the
neuraminidase of a given inluenza strain, the interaction
epitope-paratope in between an antigen (e.g., hemagglutinin)
and an antibody (e.g., CR8020), the appearance and disap-
pearance of a particular channel or cavity, and the fusion of
the hemagglutinin with a cell membrane (fusion peptide),
amongst others.

From an MD trajectory, it is possible to compute a tem-
poral average of an observable by averaging this observable
over time along the trajectory:

� = lim
�→∞

1� ∫
�

0
��� (� (�) , ̇� (�)) . (38)

Although it has never been formally proven (and that it is not
always applicable: for instance, when the trajectory is periodic
or when the phase space is constituted of disconnected
regions), the ergodicity principle is oten invoked [41]. he
ergodicity principle states that the average over periods of
time along a given trajectory of an observable is, at the
limit, identical to the ensemble average of this observable as
obtained, for instance, fromMonte Carlo simulations:

� ≈ ⟨�⟩ . (39)

As we will see later, ergodicity is instrumental in performing
MD simulations in the canonical and isobaric-isothermal
ensemble.he next section is devoted to the potential or force
ield.

3.1. Potential or How to Approximate the Force Field. he
choice of a proper potential is of the utmost importance in
obtaining accuratemolecular dynamics simulations [42].he
potential must be physically sound as well as computation-
ally tractable. An approximate potential may be calculated
from quantum mechanics and from the Born-Oppenheimer
approximation in which only the positions of the atomic
nucleus bonding are considered [42]. he potentials may be
divided into bonding potentials and long-range potentials.
he bonding potentials involve interaction with two atoms
(bound lengths), three atoms (bound angles), and four atoms
(dihedral angles). Long-range interactions are associated
with the Lennard-Jones potential (van der Waal) and the
Columbic potential. he harmonic approximation is utilised
for the bonding potentials, which means that solely small
displacements are accurately represented. he general form
of the potential is

U (r�) = ∑
�
�� (� − �0)2 +∑

�
�� (� − �0)2

+∑
�
�� (� − �0)2

+∑
�
�� (1 + cos (�� − �))
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+∑
�
�� (� − �0)2

+∑
�,�
���((�

0
�����)

12 − (�0�����)
6 + ���������) ,

(40)

where � is the bound length, � is the Urey-Bradley bound
length, � is the bound angle, � is the dihedral angle, � is the
improper dihedral angle, ��� is the distance in between atom �
and �, ��, ��, ��, ��, and �� are constants, �0, �0, �0, �0, and �0��
are equilibrium positions, ��� is related to the Lennard-Jones
well depth, and �� is the efective dielectric constant. Finally,�� is the partial atomic charge associated with atom �: the
partial charge comes from the asymmetrical distribution of
the electrons in the chemical bounds. he irst term on the
last line is the van der Waal interaction (or Lennard-Jones
potential), and the last term on the last line is the Columbic
interaction. he parameters of the model are determined
experimentally and from quantum mechanics. Among the
most popular potentials are CHARMMandAMBER [42, 43].
he two difer mostly in the manner in which the parameters
are estimated. hese potentials may model proteins, lipids,
ethers, and carbohydrates, as well as small molecules (e.g.,
drugs).

he number of interactions involved in long-range inter-
actions rapidly becomes prohibitive. For instance, for the
Columbic potential, there are potentially �!/2!(� − 2)!
interactions, which correspond to approximately a quarter of
billon interactions for an inluenza hemagglutinin. To reduce
the computational burden, their action range is truncated.
he truncation should be performed in such a way as not
to introduce artiicial discontinuities, which may result in
computational artefacts.

he next section is concerned with the reinement of
experimentally determined macrostructures.

3.2. How to Minimize the Energy of the Conformation or How
to Reine Experimentally Determined Structures. heposition
of the constituent atoms of a macromolecular structure is
usually determined either through X-ray crystallography for
the larger structure or through nuclear magnetic resonance
(NMR) for the smaller molecules. If only the amino acid
sequence is available, the three-dimensional structure may
be inferred either from methods based on homology, such
as threading, or from ab initio methods, which predict
the structure from the sequence alone [44]. Among the
larger structures associated with inluenza are the hemag-
glutinin and the neuraminidase. Because a protein has to
be crystallised to apply X-ray crystallography, the position
of its constituent atoms may be distorted from their natural
positions by the crystallisation process. Consequently, bond
lengths and bond angles may be distorted and steric clashes
in between atoms may occur. herefore, it is recommended
to minimise the potential energy of the macromolecular
structure to remediate this deiciency and to create a more
realistic structure [45].

he global optimisation of nonlinear functions, such as
the potential, is a notoriously diicult problem because of
the complexity of the energy landscape and the profusion
of local minima [46]. Usually, only local optimisation is
performed. Such a minimisation may be achieved through
various algorithms [46] such as the steepest descent algo-
rithm, the conjugate gradient algorithm, and the Newton-
Raphson method. he irst two are based on the gradient,
while the latter is based on the Hessian. In most cases a local
optimisation is suicient to reine the structure.

If a global optimisation is suited or required, an approach
such as simulated annealing must be utilised [47]. Simulated
annealing is an MC method. he position of the atoms is
subjected to small random displacements. he acceptance
probability of such a displacement is given by

� (I �→ J)
= min {1, exp [−�� (U (J)|�� − U (I)|��)]} , (41)

where

�� ∈ {�1, . . . , ��} | ��+1 < ��. (42)

his means that the temperature acts as a control parameter.
Initially, the temperature is high, which implies that tran-
sitions from lower to higher energy are allowed with non-
negligible probability in being able to escape local minima.
Subsequently, the temperature is gradually reduced (cooling)
to decrease the occurrence of such a transition. Transitions
to lower energy are always accepted. With a proper choice
of temperatures, a global optimisation may be achieved. he
position of the global minimum associated with the energy
landscape may be further reined with local optimisation.

he next section is devoted to the solvation of macro-
molecules.

3.3. Implicit and Explicit Solvation, Ions, and Poisson-
Boltzmann Equation or How to Obtain Realistic Experimental
Conditions. Macromolecules do not exist in isolation. Water
molecules and ions surround them. Oten, to obtain a
realistic simulation, the structure of interest must be solvated.
Solvation is a vast and complex subject and we refer the
reader to the literature for technical details [4, 44, 45, 48].
his section is devoted to some aspects of solvation, which
are particularly relevant to MD.

he solvationmay be either implicit or explicit. In the case
of an implicit solvation [11], the water molecules are replaced
by a potential, which describe their average action while,
in the case of an explicit solvation, the macromolecule is
surroundedby a solvation box constituted ofwatermolecules.
It follows that computers have a limited amount of memory,
and thus, the size of this box cannot be ininite. To reduce the
number of water molecules, various shapes may be utilised
such as cubic, rhombic, dodecahedron truncated octahedron,
and sphere. he shape of the solvation box is chosen to
minimise the number of molecules required for solvation
while maintaining at all times a minimum bufer of solvent.
Because of its inite dimensions, the solvation box presents
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unnatural boundary efects, which should beminimised.his
may be partially achieved with a larger solvation box or
with periodic boundary conditions (PBC). For a rectangular
solvation box, periodic boundary conditions are deined as

� (��) = � (�� + ��)�����=1,...,� ,
� (��) = � (�� + ��)������=1,...,� ,
� (��) = � (�� + ��)�����=1,...,� .

(43)

Much care must be taken when using periodic boundary
conditions to avoid unphysical artefacts. For instance, if the
boundary box is too small, the head of a macromolecule,
such as the hemagglutinin, may interact with its own tail,
which is extremely unrealistic. Also, if Columbic interactions
are involved, the system must be electrostatically neutral;
otherwise, the total charge becomes ininite due to the endless
replication of the system associated with the PBC. Ions could
be added to the solvation box to neutralise the system. Even if
the latter is neutral, ions, such as sodium and chloride,may be
added to reproduce the ionic strength of the solvent in which
the macromolecule evolves. Due to the periodic nature of the
boundary conditions, duplicate interactions may appear. It is
customary to apply theminimum image convention in which
such duplicate interactions are not allowed. If the structure
is too large, the solvation may be limited to a speciic region
of interest: for example, a binding site or a channel while
implicit solvation may be utilised for the remaining part of
the macromolecule. here are various solvation models [49–
52]. Generally, their parameters are adjusted to reproduce the
enthalpy of vaporisation and density of water.

he solvation box increases the complexity of the
simulation. Indeed, most of the computational efort is
directed toward simulating the solvent. Nevertheless, dielec-
tric screening, electrostatic efects, and free energy, among
others, may only be simulated through explicit solvation,
which, consequently, is amply justiied [53] though one
should notice that explicit solvation does not allow for the
simulation of the solvent viscosity.

If the macromolecule is solvated in an ionic solution,
the electrostatic potential � may be obtained with a greater
accuracy by solving the Poisson-Boltzmann equation:

��r ⋅ (� (r) �� (r)�r )
= −� (r) − �∑

�=1
���∞� � (r) exp (−���� (r)) ,

(44)

where �(r) represents the charge density of the solute (the
macromolecule), �� is the ionic charge, �∞� is the ionic con-
centration far from the solute, �(r) is the dielectric permittiv-
ity, and �(r) is an accessibility factor.he Poisson-Boltzmann
equation is oten used in modelling implicit solvation. It may
be solved eiciently with inite element methods (FEM) [54].

In the next section, we show how to solve Newton’s
equation to obtain the trajectory of a macromolecule.

3.4. Integration of Newton’s Equations:When Technical Details
Matter. To obtain the trajectory associated with a given
macromolecule, one should solve the corresponding New-
ton’s equations. his is appropriate, since the trajectories are
assumed to follow the laws of classical mechanics [55]. In this
sectionwe present a completely general approach fromwhich
most inite diference algorithms may be derived.

Newton’s equation and their generalisation, Hamilton’s
equations, present two important characteristic: they are
time-reversible and any ininitesimal volume in phase space
(space of all coordinates and momenta) is conserved with
time. he latter property is known as the Liouville theorem
[56]:

�3�� (0) �3�� (0) = �3�� (�) �3�� (�) . (45)

his is another formulation of the conservation of the total
energy of the system. Any numerical algorithmmust enforce
these two properties at all times to be physically realistic
and consequently relevant. When aiming to derive a inite
diferent algorithm that complies with these requirements, we
start with the Liouville operator deined as

�� ≡ 3�∑
�=1
[�H��� ���� −

�H���
���� ] , (46)

where � = √−1. his operator allows recasting Hamilton’s
equations in the form:

�3� (�) = exp [���] �3� (0) , (47)

which is known as the Liouville equation. In Cartesian
coordinates the Liouville operator becomes

�� = ��1 + ��2,
��1 ≡ �∑

�=1

p��� ⋅
��r� ; ��2 ≡ �∑

�=1
(−�U (r�)

�r� ) ⋅ ��p� .
(48)

Because the two parts of the Liouville operator do not
commute �1�2 ̸= �2�1, onemust rely on the Trotter theorem
[5] to develop the argument of the exponential:

exp [��Δ�]
= exp [� (�1 + �2) Δ�]
≈ exp [��2Δ�2 ] exp [��1Δ�] exp [��2Δ�2 ]
+ O (Δ�3) .

(49)

hen, if each exponential is approximated in terms of a
truncated Taylor expansion, the Liouville equation becomes

r� (� + Δ�)
= 2r� (�) − r� (� − Δ�)
− 1��

�U (r� (�))
�r� Δ�2 + O (Δ�4)������������=1,...,�,

(50)
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which is the well-known Verlet algorithm [1]. Note that other
common algorithms, such as the Leap Frog algorithm and
the reference system propagator algorithm (RESPA), may be
derived following a similar approach [6, 7]. he Liouville
operator may be partitioned in more than one way. For
instance, the potential may be divided into short- and long-
range potentials (e.g., Coulombs and van der Waal). Since
long-range potentials tend to change more slowly than short-
range potentials, a larger time increment may be used for
the former. If this procedure is repeated, a multiple time-
step algorithm may be designed. Once the trajectory has
been calculated, the functional important motions may be
separated from the random thermal motion by performing
a principal component analysis (PCA), which expresses the
dominant modes as linear combinations of the underlying
motion [57].

he algorithms described in this section are only valid
when the total energy is conserved, that is, in the micro-
canonical ensemble. In next section we show how to extend
this approach to the experimentally more realistic canonical
and isobaric-isothermal ensembles.

4. Non-Hamiltonian Molecular
Dynamics or How to Reproduce Realistic
Experimental Conditions during Molecular
Dynamics Simulations

To simulate realistic experimental conditions, the MD sim-
ulations must be performed either at constant volume and
temperature or at constant pressure and temperature. Unfor-
tunately, the canonical and the isobaric-isothermal ensembles
do not conserve the total energy. he conservation of a
quantity, such as the volume or the pressure, requires a
constant exchange of energy in between the macromolecular
system and the surrounding heat bath. Such a process, in
which the Liouville theorem is not valid, may be described in
terms of non-Hamiltonian molecular dynamics [58], as will
be detailed here. Firstly, we describe the general approach,
which is subsequently applied to the canonical ensemble.

4.1. General Approach. To apply the abovementioned general
method, we must complement the � Cartesian positions
and momenta associated with the constituent atoms with�
additional generalised coordinates and momenta. he set of
all coordinates is collectively denoted by

� = [r� | p� | �� | ��� ]� . (51)

It follows that the original Hamiltonian must be modiied to
include the generalised coordinates as well as an adjustable
parameter ℓ:

H (r�, p�) �→H
� (r�, p�, ��, ��� ; ℓ) . (52)

Unfortunately, the theory does not specify a particular
form for the modiied Hamiltonian. Because of the non-
Hamiltonian nature of the dynamics, the Liouville theorem
does not apply, which means that elementary volume ele-
ments are not conserved in phase space. he reason for this

is that the modiied dynamics have altered the geometry
of the phase space from an Euclidean (lat) geometry to a
Riemannian (curved) geometry. In Riemannian geometry,
the Liouville theorem becomes [59]

√����detG (� (�))������ (�) = √����detG (� (0))������ (0) , (53)

where G(�) is the metric associated with the Riemannian
space, and det is the determinant of the matrix. We are only
interested in the determinant of this matrix since only the
latter is involved in the microcanonical partition function
associated with the non-Hamiltonian system. he latter may
be obtained directly from

√����detG (� (�))���� = exp [−∫�
0

��� (�) ⋅ �̇ (�) ��] . (54)

he number of microstates associated with the non-
Hamiltonian system may be written as

Ω(r�, p�, ��, ��� ; ℓ)
= Ω0 ∫��√����detG (�)���� �∏

�=1
� (Λ � (�) − ��) , (55)

where ��√| detG(�)| is the invariant volume element in
extended phase space andΛ �(�)−�� is a function associated
with a conservation law (for instance, the total energy, or the
momentum associated with the barycentre of the system). If
we integrate or marginalise the additional coordinates and
momenta, we obtain a function that depends solely on the
coordinates and momenta of the constituent atoms

Ω(r�, p�, ��, ��� ; ℓ) �������→∫�������
Ω� (r�, p�; ℓ) . (56)

he adjustable parameter is chosen in such a way that the
marginalised microcanonical partition function is equal to
the partition function of interest (for instance, the canonical
(constant volume) partition function)

Ω(r�, p�, ��, ��� ; ℓ) �������→∫�������
Ω� (r�, p�; ℓ) . (57)

In the next section, we further clarify these notions by
applying the general approach to the canonical ensemble.

4.2. Molecular Dynamics at NVT. In this section we outline
the method to obtain the Hamiltonian that describes the
canonical ensemble. his Hamiltonian may be substituted in
the Liouville operator to obtain a inite diference equation.
he modiied Hamiltonian, called the Nosé-Hoover chain
Hamiltonian [29, 60–62], is deined as

HNHC =H (r�, p�) + �∑
�=1

�2��2��� + ℓ
�1� + �∑

�=2

��� , (58)

where

H (r�, p�) = �−1∑
�=1

��2�2��� +
�2⊙2�⊙ +U (r��) (59)
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is theHamiltonian of themacromolecule in barycentric coor-
dinates, the primed variables are the barycentric coordinates
(relative to the centre of mass), and ⊙ refers to the barycentre.
If we assume that the energy of themodiiedHamiltonian and
the barycentre momentum are conserved (isolated system),
we have, for the microcanonical partition function,

ΩNHC

= Ω0 ∫���� ����p��−1��⊙�r��−1
× exp[(3� − 2) �1 + �∑

�=2
��]� (HNHC − �1)

× � (��1�Ω − �2) .

(60)

If wemarginalise the additional coordinate andmomenta and
choose ℓ = 3�, the marginalised microcanonical partition
function becomes equal to the canonical partition function,
which means that the modiied Hamiltonian describes the
dynamics of the canonical ensemble

Ω� (r�, p�)
NHC

�����ℓ=3� ≡ � (�,�, �) . (61)

In the next section we focus on the constrainedmolecular
dynamics.

4.3. Constrained Molecular Dynamics or How to Reduce
the Computational Complexity. Macromolecules, such as the
inluenza hemagglutinin, possess many degrees of freedom.
A typical inluenza hemagglutinin is constituted of approxi-
mately 23.000 atoms, which means the macromolecules have
typically 138.000 degrees of freedom in phase space (atomic
positions and momenta). Unsurprisingly, the number of
degrees of freedom increases dramatically if the structure
is solvated. To reduce the computational complexity, it may
be advantageous to impose constraints on certain degrees
of freedom. Since the hydrogen atoms are light, they tend
to follow the motion of heavier atoms quasi-instantaneously.
Consequently, it is customary to ix their bonding length to
reduce the computational burden. Let us assume that we have� holonomic (that depends only on time and coordinates)
constraints:

�� (�) = �����r� (�) − r� (�)�����2 − �2� ≡ 0. (62)

he constraints are enforced in the equations of motion with
themethod of Lagrangemultipliers. Each constraint becomes
a potential to which a variable is attached called a Lagrange
multiplier ��:

�� ̈r� (�) = −�U (r� (�))
�r� + �∑

�=1
�� ����r�

������������=1,...,� . (63)

Since the constraints are holonomic, theymust be enforced at
all times:

�� (� + Δ�) ≡ 0. (64)

If we perform a truncated Taylor development of the previous
equation, we may demonstrate that such a condition remains
valid if a correction is applied to the Lagrange multiplier at
each time step:

�̃� (� + Δ�) = �̃� (�) + ��̃�, (65)

where �̃�(�) = (Δ�2/2)�� is the value of the Lagrange

multiplier at time �, ��̃� is the correction, �̃�(� + Δ�) is the
value of the Lagrange multiplier at time � + Δ�, and

A��̃ ≈ −� (r� (� + Δ�)) , (66)

which are deined as

A = [A��] = [ �∑
�=1

1��
��� (r� (� + Δ�))�r� ⋅ ��� (r� (�))�r� ] ,

��̃ = [��̃�] ; � = [��] .
(67)

In this the linear equation governing the corrections to

the Lagrange multipliers in which r�(�) are the constrained
atomic coordinates at time �. Consequently, to obtain the
correction, onemust solve the linear equation associatedwith
the correction.

Algorithms distinguish themselves by the approach they
use to solve this equation. For the RATTLE algorithm,
this equation is solved analytically [63]. For the SHAKE
algorithm [64], only the diagonal elements of theAmatrix are
considered to reduce the complexity of the calculation, while
for the MSHAKE algorithm [65] the whole matrix is solved
with the LU decomposition. If the constraints are periodical,
they must be expressed in terms of quaternions in which case
the algorithm becomes QSHAKE [66].

In the next section, we consider a hybrid approach based
on both molecular dynamics and Monte Carlo simulations.

4.4. Hybrid Monte Carlo Dynamics or How to Wisely Accel-
erate the Dynamics. In order to obtain realistic molecular
dynamics simulations, the time increment must be kept
small. Usually, the value of the time increment is chosen

around 1 femtosecond (10−15 seconds), which is typically
one to two orders of magnitude smaller than the time scale
associated with the fastest molecular event, the bound-length
vibration [48]. If one desires to explore slow molecular
events, the time required to run the simulation may become
rapidly prohibitive. For instance, the rotation of buried side

chains takes about 10−4 to 1 second to complete, while an
helix-coil transition may take as long as 104 seconds. he
situationmight be even worse withmacromolecular docking.
Naturally, the time increment could be increased but the
corresponding trajectory becomes rapidly unphysical.

his problem may be partially solved with an approach
called hybrid Monte Carlo (HMC) simulation [28, 67]. As
indicated by its name, HMC is a combination ofMD andMC.
he time evolution of the macromolecule is calculated with
standard MD but with larger time increments. he outcome
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of a time iteration is accepted only if it is physically feasible.
he feasibility of the outcome is assessed with a standardMC
acceptance probability rule:

�(r� (�) , p� (�) �→ r
� (� + Δ�) , p� (� + Δ�))

= min {1, exp [−� (H (r� (� + Δ�) , p� (� + Δ�))
−H (r� (�) , p� (�)))]} .

(68)

Note that there is an importance subtlety associated with
HMC. Because Newton’s equations are time reversible (any
trajectory may be reversed by inverting the direction of the
motion), the transition probability must also be so [68]. hat
implies that the transition probability must be chosen so that

� (r� (�) , p� (�) �→ r
� (� + Δ�) , p� (� + Δ�))

= � (r� (� + Δ�) , −p� (� + Δ�) �→ r
� (�) , −p� (�)) .

(69)

Otherwise, the HMCmay generate unphysical results.
In the next section, we explore other ways that may be

used to assess slow processes.

4.5. Computational Alchemy or How to Virtually Explore
Experimentally Hidden Processes. Molecular dynamics is not
limited to real physical potentials and equilibrium processes.
Introducing an external, nonphysical, time-dependent, and
possibly position-dependent potential may accelerate the
dynamics of a slow process. his is called steered molecular
dynamics or computational alchemy [69]. For instance, a
force may be applied to a hemagglutinin to study potential
conformational changes or to a drug (ligand) to analyse the
docking process in between a drug and a neuraminidase.
An example of how this could be achieved is by applying
a random force (both in terms of amplitude and direction)
to the barycentre of the ligand [70]. If the displacement of
the ligand is above a certain threshold, the force is reapplied
without modiication. Otherwise, a new random force is
generated. he whole process is repeated until the desired
outcome is obtained. Such an approach is oten combined
with an immersive virtual environment to better visualise
the outcome of the simulation [69]. In the next section, we
explore an alternative to molecular dynamics and Monte
Carlo simulations, namely, stochastic dynamics.

4.6. Molecular Dynamics and Inluenza. here have been
numerous applications of molecular dynamics in studies
related to the inluenza virus. For instance,molecular dynam-
ics has been utilised for rational drug design for the inluenza
neuraminidase [7]. It has been instrumental to illustrate that
the electrostatic funnel directs binding of Tamilu to the
inluenza N1 neuraminidase [8]. Using molecular dynamics,
it has been revealed that HR1039 is a potent inhibitor of
the 2009 A (H1N1) inluenza neuraminidase [9]. In addition,
molecular dynamics has been valuable to show the role
played by the BM2 channel in proton conductance and drug
resistance for the inluenza virus B [10]. Using molecular

dynamics has made possible the design of inhibitor tar-
geting drug-resistant mutants of the inluenza A virus M2.
Finally, conformational analysis of peptides and lipids of
the inluenza hemagglutinin fusion peptide in micelles and
bilayer would not have been possible without the aid of
molecular dynamics [14].

5. Langevin Dynamics, Self-Guide Langevin
Dynamics, and Self-Guided Molecular
Dynamics: Toward a Better Sampling of
the Conformational Space

he dynamics of a macromolecular system is entirely deter-

mined by the potentialU(r�) associatedwith the process. For
computational and practical reasons, this potential is virtually
always an approximation of the real physical potential.
Stochastic (random) dynamics attempts to bridge the gap in
between the real and the approximate potential. Stochastic
dynamics does not attempt to deine the real potential but
a general correction, which is independent on the particular
details of the real potential. In other words, stochastic
dynamics attempt to take into account the neglected degrees
of freedom to obtain more realistic simulations, especially in
the case of conformational sampling [71].

In this framework, it is assumed that each particle is
under the inluence of the potential U(r�) and of a heat
bath formed by the remaining�− 1 particles. Under general
conditions using the Mori-Zwanzig theory [72] (one may
obtain the same result by assuming that each particle is
minimally coupled to a harmonic heat bath formed from the
other particles), it is possible to demonstrate that the particles
obey the generalised Langevin equation (GLE) [73]:

�� ̈r� (�) = −�U (r� (�))
�r�

− ∫�
0
�� ̇r� (�) �� (� − �) + �� (�)���������=1,...,� ,

(70)

where ��(� − �) is the memory kernel or dynamic friction and
��(�) is a stochastic term with mean:

⟨�� (�)⟩ = 0 (71)

and covariance:

⟨�� (0) �� (�)⟩ = 2�������� (�) ���I. (72)

Consequently, the correction is formed of two terms: a
friction term, which introduces an artiicial viscosity, and
a stochastic term, which takes into account the unknown
nature of the correction. One should notice that the frictional
term depends on the previous history of the trajectory
(Markovian process). he friction term is important in
obtaining realistic simulations, as it takes into account the
viscosity of the solvent (a feature, which is absent from both
MD and MC). If one assumes that the frictional term is
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constant (no history), one obtains the celebrated Langevin
equation (LE):

ṗ� (�) = −�U (r� (�))
�r� − ��ṗ� (�) + �� (�)

������������=1,...,� . (73)

In that particular case, �� is simply called the frictional or
damping term. he Langevin equation improves conforma-
tional sampling over standard molecular dynamics.

Conformational samplingmay still be further improved if
the trajectory history is reintroduced into the model [71]. To
take history into account, a history-dependent guiding term
Γ�(�) is added to the Langevin equation:

ṗ� (�) = −�U (r� (�))
�r� − ��ṗ� (�) + �� (�) + ��Γ� (�)

������������=1,...,� .
(74)

his term could be deined in variousmanners. In self-guided
Langevin dynamics (SGLD), the history-dependent guiding
term is deined as the time average of the momentum over
the last ℓ iterations:

SGLDΓ� (�)
= ��p� (�)������∈[�−ℓΔ�,�]
= (1 − Δ�ℓΔ�) Γ� (� − Δ�) + Δ�ℓΔ����� ̇r� (� − Δ�2 ) .

(75)

When, for self-guided molecular dynamics (SGMD), the
history-dependent guiding term is deined as the time aver-
age of the potential plus its self-time average,

SGMDΓ� (�)
= −�U (r� (�))

�r� + ��Γ� (�)
�������������∈[�−ℓΔ�,�]

= (1 − Δ�ℓΔ�) Γ� (� − Δ�)
+ Δ�ℓΔ� (−

�U (r� (�))
�r� + ��Γ� (�)) .

(76)

he guiding term is unphysical (as opposed to the memory
kernel) and does not conserve energy. To reestablish energy
conservation, an additional term �(�)p�(�), proportional to
the momentum, must be added to the SGLD equation:

ṗ� (�) = −�U (r� (�))
�r� − ��ṗ� (�)

+ �� (�) + ��Γ� (�) − � (�) p� (�)�����=1,...,� .
(77)

his term ensures the conservation of energy, providing that
the running constant �(�) obeys

� (�) = ∑��=1 ��Γ� (�) ⋅ ̇r� (�)∑��=1 p� (�) ⋅ ̇r� (�) . (78)

hese equations may be easily integrated if they are recast
under the form of Wiener processes [74]. he integration
requires two independent Gaussian random variables.

Langevin dynamics has been used in many applications.
For instance it has been instrumental to unravel the bilayer
conformation of the fusion peptide of the inluenza virus
hemagglutinin [75]. Further, the use of Langevin dynamics
aided researchers to characterise the loop dynamics and
ligand recognition in human- and avian-type inluenza neu-
raminidase [76].

In the next section, we address complexes stability such
as an interaction between a drug and neuraminidase or that
between monoclonal antibodies and hemagglutinin.

6. Free Energy, Binding, and Complexes or
a Measure of Stability

he interaction in between a small molecule (drug) or an
antibody with an antigen (hemagglutinin or neuraminidase)
may result in a complex. It follows that, oten, the stability
of such a complex must be assessed. Indeed, if the complex
is stable, the small molecule or the antibody may eiciently
neutralise the corresponding antigen. Free energy [53] is a
measure of such stability. Consequently, the calculation of
free energy is addressed in the next section.

6.1. hermodynamic Integration. he thermodynamics inte-
gration method [77] requires two states to determine the free
energy: an unbound stateI and a bound stateJ. From them,
a parametric potential is deined as a linear superposition of
the two potentials:

U (r�; �) = (1 − �)UI (r�) + �UJ (r�) . (79)

A corresponding parametric partition function is also
deined as follows:

� (�,�, �; �) = ∫�r� exp [−�U (r�; �)] . (80)

Such a procedure is called adiabatic switching. he paramet-
ric derivative of the free energy may be obtained from the
deinition of the free energy:

�� (�,�, �; �)�� = − 1� ��� ln� (�,�, �; �) . (81)

It follows that the diference of free energy in between the
bound and the unbound state may be evaluated from

�J − �I = ∫1
0
��⟨�U (r�; �)

�� ⟩
U(r�;�)

. (82)

In the next section, we introduce a method based on irre-
versible work.

6.2. Nonequilibrium Method. In this section we describe
an approach inspired from steered molecular dynamics
(Section 4.5). As opposed to thermodynamic integration,
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the nonequilibriummethod does not require the bound state.
his state is reached as a result of the irreversible work
efectuated by the synthetic time-dependent Hamiltonian.
he nonequilibrium method is based on Jarzinski’s equality
and irreversible work [78]. Jarzinski’s equality may be derived
from a time-dependent Hamiltonian ensemble average and
the Liouville theorem. From this equality, the diference in
free energy in between a bound and an unbound state may
be calculated from the ensemble average of the irreversible
work applied to the system to bring the unbound state into a
bound state:

�J − �I = −�� ln ⟨exp [−�WIJ (r�, p�)]⟩I , (83)

whereWIJ(r�, p�), the irreversible work, is given by

WIJ (r�, p�) = ∫�J
�I
���HIJ (r�, p�, �)�� , (84)

and where the time-dependent HamiltonianHIJ(r�, p�, �)
is equal to the sum of the unbound macromolecular Hamil-
tonian HI(r�, p�) and of an external arbitrary time-

dependent potential UIJ(r�; �), which brings the macro-
molecular system from an unbound stateI to a bound state
J:

HIJ (r�, p�, �) =HI (r�, p�) +UIJ (r�; �) . (85)

he ensemble average of the irreversible work is performed
with the unbound Hamiltonian:

⟨exp [−�WIJ (r�, p�)]⟩I
= (∫�p��r� exp [−�WIJ (r�, p�)]

× exp [−�HI (r�, p�)])
× (�I (�,�, �))−1 .

(86)

he next two sections present methods, which evaluate
the free energy based on a subset of their generalised
coordinates.

6.3. Blue Moon Ensemble Approach. hermodynamic inte-
gration and the nonequilibrium method both exploit all the
coordinates and momenta associated with the macromolec-
ular system to evaluate the free energy. Correspondingly, one
may evaluate the free energy from a subset called the reaction
coordinates (e.g., bound length and bound angle) of the
generalised coordinates such as the generalised coordinates
directly associated with the binding process. his consider-
ably reduces the complexity of the calculation but introduces
a certain level of approximation, as most coordinates are
neglected. In order not to clutter the notation, we will use
only one reaction coordinate while keeping in mind that the
generalisation of more than one coordinates is immediate.

he probability that a reaction coordinate �� has a value� is
Pr (�) = ∫ �p��r� exp [−�H] � (�� (r�) − �)� (�,�, �) , (87)

where

�� = �� (r�) (88)

is the representation of the reaction coordinates in terms of
the Cartesian coordinates. he free energy associated with
this coordinate is by deinition

� (�) = −���lnPr (�) . (89)

If we marginalise (integrate) the momenta and if we express
the potential in terms of the generalised coordinates, we
obtain for the free energy [79]

� (�) = � (��)
+ ∫�

��
⟨�U (r� (�3�))

��� − ����ln det J��� ⟩
�
��,
(90)

where

⟨�⟩� = 1� (�,�, �) ⟨� (�� − �)⟩
× ∫��3��

× exp [−� (U (r� (�3�))
− ���ln det J)] � (�� − �) ,

(91)

and where the Jacobian matrix of the transformation is

J = �r���3� . (92)

he main disadvantage of this approach is that all Cartesian
coordinates must be converted into generalised coordinates,
although only a subset of them (the reactions coordinates) are
efectively exploited in the calculation of the free energy.his
ineiciency is addressed in the next section.

6.4. Umbrella Sampling and Weighted Histogram Methods.
When using umbrella sampling [80, 81] and the weighted his-
togram method [82] for the blue moon ensemble approach,
the free energy is estimated from the reaction coordinates.
he range (codomain and image) associatedwith the reaction
coordinates is divided into a set of windows or intervals. A
reaction coordinate distribution is associated with each win-
dow.heunbiased estimator for the probability of occurrence
of a reaction coordinate within a given window is assumed to
be the product of a biased Gaussian probability distribution
and a biased correction based on an umbrella potential:

Pr (�)
≈ 1
√2��2� exp[−

(� − ��)22�2� ] exp [−��(�, �(�))] , (93)
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where

�(�, �(�)) = 12� (� − �(�))2 (94)

is the harmonic umbrella potential and �(�) is the centre
of a given window, while �� and �2� are, respectively, the
average and the variance of all the realisations of the reaction
coordinates within window �. By deinition, the derivative of
the free energy associated with a particular window is equal
to

����� = − ���
Pr (�) �Pr (�)�� = ����2� (� − ��) − � (� − �(�)) .

(95)

It is assumed that the derivative of the total free energy is a
combination of the derivatives of the windows’ free energy:

���� =
�∑
�=1
�� (�) ����� , (96)

and that the weighting coeicients are normalised

�∑
�=1
�� (�) = 1. (97)

he full free energy proile may be extracted with numerical
integration. In the next section,we describe another approach
for the calculation of the free energy, which introduces a bias
potential to better sample the reaction coordinates.

6.5. Metadynamics. As opposed to the previous methods,
whichwere based on a singlemolecular dynamics simulation,
the metadynamics approach involved two molecular dynam-
ics simulations: the usual one in Cartesian coordinates under
the inluence of the real physical potential and a second one,
themeta-simulation, which is performed under the inluence
of a biased potential. he bias potential is deined as

U� (r�)
= � ∑

�=��,2��,...
exp[[−

�∑
�=1

(�� (r� (�)) − �� (r�� (�)))22Δ�2 ]
] ,
(98)

where � is a constant, �� is a time interval; r�(�) is the
time evolution (trajectory) of the complete set of Cartesian
coordinates up to time � under the action of the real physical

potential U(r�), and r�� (�) is the trajectory of the system
under the inluence of both the physical potential and the

biased potentialU(r�) +U�(r�). From an analysis based on
the Langevin equation, it is possible to demonstrate that the
free energy may be obtained from

� (��) ≈ � ∑
�=��,2��,...

exp[[−
�∑
�=1

(�� − �� (r�� (�)))22Δ�2 ]
] ,
(99)

in which the reaction coordinates are expressed in a function
of the metacoordinates. he proof of this equation is beyond
the scope of this review and may be found in [83]. As for
umbrella sampling, only the reaction coordinates need to be
expressed in terms of the Cartesian coordinates.

he use of free energy calculations has provided insights
into the susceptibility of antiviral drugs against the E119G
mutant of the 2009 inluenza A (H1N1) neuraminidase [26].
It has also been utilized to show the impact of calcium on the
N1 inluenza neuraminidase [25].

In the next section, we explain how molecular dynamics
may be combined with macromolecular docking to assert
the dynamics of a macromolecular complex, such as a viral
hemagglutinin, when interacting with a broadly neutralizing
monoclonal antibody.

7. Binding and Docking or Computational
Pharmacology and Vaccinology

From the outset, one may assume that the relative pose
of the constituent of a complex may be obtained through
molecular dynamics without resorting to macromolecular
docking. Although this is, in principle, feasible, it is usually
not realistic in practice. Indeed, the time scale associated
with macromolecular docking is usually out of reach for
most molecular dynamics simulations [48]. Larger time steps
may be taken if a hybrid Monte Carlo approach is followed
(Section 4.4), but most of the time, the increase is insui-
cient. For this reason macromolecular docking remains the
favourite method to determine the relative pose in between
a receptor and a ligand. (Note that macromolecular docking
is beyond the scope of this paper, but a comprehensive
algorithmic review may be found in [84]).

he abovementioned observation does not imply that
MD is irrelevant for macromolecular docking. On the con-
trary, once the pose in between the receptor and the ligand
has been determined through macromolecular docking, the
dynamics of the resulting complex may be explored withMD
simulations. Various dynamical aspects of the complex may
be studied. hese include the study of the conformational
space associated with the receptor [85], binding path anal-
ysis [56], examining the structural changes associated with
induced it, studying the lexibility of the docking region,
analysing transient binding, and aiding in structural reine-
ment of the complex [86] as well as the design of drugs [87]
and antibodies (see Figure 2) with optimal kinetic properties.
MDmay also be employed prior to macromolecular docking
to generate conformations, which become the initial point
for static docking. his is particularly beneicial if the ligand
binds to conformations that rarely occur (relax complex
method). Nevertheless, standard MD should not be utilised
to explore low frequency motions associated with large
conformational transformations. his is due to its limited
ability to explore conformational change. Langevin dynamics
may be more suited in that particular case. Also, from a
computational point of view, multiple copies of the ligand
may simultaneously interact with the receptor to search, in
parallel, for the best docking region. here should be no
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Figure 2: Molecular surface of inluenza hemagglutinin (A/Viet
Nam/1203/2004 (H5N1)) in complex with a broadly neutralizing
antibody F10.

interaction in between the copies. Molecular dynamics may
also be utilised to evaluate the structural accessibility of a
highly conserved epitope [4].

In the next section, we briely explore the relationship in
between quantum mechanics and molecular dynamics.

8. Path Integral or When Quantum Mechanics
Meets Molecular Dynamics

he calculations that we have performed so far are based
on classical and semiclassical approximations of quantum
mechanics. hough being valid, these approximations are
not as accurate as their quantum-mechanical counterpart
[88]. However, quantum-mechanical (QM) methods are
oten computationally prohibitive. For that reason, quantum-
mechanical methods are restricted to a small number of
coordinates of interest (reaction coordinates) and the residual
coordinates are analysed with molecular dynamics (the so-
called hybrid quantum-mechanical molecular dynamics).
Quantum mechanical methods are outside the scope of this
review. More details may be found in [88]. Here, we limit
ourselves to the connection in between quantum-mechanical
methods and molecular dynamics. Quantum-mechanical
methods are also based on the partition function formalism,
which in the quantum case takes the form:

� (�,�, �) = tr exp [−�Ĥ] , (100)

where tr is the trace operator and Ĥ is the quantum Hamil-
tonian operator, which may be obtained from the classical
Hamiltonian as follows:

H(r�, ℏ� ��r�) �→ Ĥ. (101)

By extensively using the following identities:

∫�� |�⟩ ⟨�| = �̂; ∫ �� �����⟩ ⟨����� = �̂;
⟨� | �⟩ = exp [ℏ� ��] ,

(102)

and by making a certain number of approximations (Born-
Oppenheimer approximation, Boltzmann statistics, and adi-
abatic approximation [83], etc.), it may be demonstrated that
the partition function

� (�,�, �) = ∮Dr1 (�) ⋅ ⋅ ⋅Dr� (�)
× exp[−1ℎ ∫

�ℎ

0
��12

�∑
�=1
�� ̇r2� (�) +U (r� (�))]

(103)

is equal to the path integral over all possible closed paths of
the exponential of the classical Hamiltonian. he notation
Dr�(�) means that we must integrate r�(�) over all possible
paths or trajectories.he resulting approach is known as path
integral molecular dynamics [89]. Equation (103) involves
only the atomics coordinates, but it is possible to introduce
the conjugate momenta without altering the partition func-
tion by adding a harmonic potential to the Hamiltonian:

� (�,�, �)
= ∮Dr1 (�) ⋅ ⋅ ⋅Dr� (�)Dp1 (�)Dp� (�)
× exp[−1ℎ ∫

�ℎ

0
�� �∑
�=1

p2�2��� (�)]
× exp[−1ℎ ∫

�ℎ

0

�∑
�=1

12���2�r2� (�) +U (r� (�))] ,

(104)

where

��� = ���(2�ℎ)2 ; �� = √��ℎ ; � �→ ∞. (105)

he two equations are entirely equivalent. If we develop the
notation, we obtain

� (�,�, �)
≈ ∫ �∏

�=1
�r(1)� ⋅ ⋅ ⋅ �r(�)� �p(1)� ⋅ ⋅ ⋅ �p(�)�

× exp[−� �∑
�=1

�∑
�=1

(p(�)� )22��� + 12���2� (r(�+1)� − r(�)� )2

+ 1�U (r(�)1 ⋅ ⋅ ⋅ r(�)� )]
����������r(�+1)� =r(1)� ∀�

.

(106)
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his path integral may be solved with the following ininite
set of molecular dynamics equations:

̇r(�)� = p(�)����
�����������=1,...,∞ ,

ṗ
(�)
� = −���2� (2r(�)� − r

(�+1)
� − r

(�−1)
� )

− 1�
�U (r(�)1 ⋅ ⋅ ⋅ r(�)� )�r(�)�

������������=1,...,∞ .
(107)

Consequently, QM (at the approximation level indicated
earlier) may be formulated in terms of an ininite (in practice,
large) number of MD equations.

hese equationsmay also be solved with anMC approach
inwhich the position is sampled from aGaussian distribution
(the harmonic distribution in the path integral), and the new
position is accepted or rejected according to aMetropolis rule
based on the potential U. he sampling is made diicult by
the fact that the positions are not statistically independent. To
make them independent, the positions are expended in terms
of their Fourier transform or their staging variables. When
the staging variables are used, the partition function becomes

� (�,�, �)
≈ ∫ �∏

�=1
�u(1)� ⋅ ⋅ ⋅ �u(�)� �p(1)� ⋅ ⋅ ⋅ �p(�)�

× exp[[−�
�∑
�=1

�∑
�=1

(p(�)� )22��(�)�
+ 12�(�)� �2� (u(�)� )2

+ 1�U (r(�)1 (u1) , . . . , r(�)� (u�))]]
������������u(�+1)� =u(1)� ∀�

,
(108)

where

r
(1)
� = u

(1)
� ,

r
(�)
� = u

(1)
� + �∑

�=�

� − 1� − 1 u(�)� , � = 2, . . . , �,
�(1)� = 0; �(�)� = �� − 1��, � = 2, . . . , �,

��(1)� = ��; ��(�)� = �(�)� .

(109)

As a result, each normal mode u(�)� may be sampled from an
independent Gaussian distribution and the positions may be
reconstructed from their corresponding staging transforma-
tions. For instance, path integrals have been instrumental to
underline the importance of quantum efects in the inluenza
neuraminidase [90].

9. Conclusions

he conformational space and the dynamics associated with
macromolecules and macromolecular complexes, as well
as their structural stability, may be explored and asserted
through molecular dynamics and Monte Carlo simulations.
Although full knowledge of the algorithms involved is not
absolutely required, to obtain meaningful simulations, it is
impressible to understand the conditions, approximations,
and hypotheses on which they are based, as well as their
limitations and potentialities.

Although most simulations are currently limited to indi-
vidual structures or small organisms and complexes (a few
millions atoms), it is conceivable that in the near future large
viruses, such as the inluenza, may be entirely simulated
in silico over long periods of time. hat would open the
door to an essentially in silico design and lead to a better
assessment of toxicity, speciicity, and eiciency. Such a
phenomenon has occurred before in aerodynamics in which
computational luid dynamics has essentially replaced wind
tunnel experiments in the design of large aeroplane fuselages
and wings.
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