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Abstract—Increasingly, Internet of Things (IoT) domains, such
as sensor networks, smart cities, and social networks, generate
vast amounts of data. Such data are not only unbounded and
rapidly evolving. Rather, the content thereof dynamically evolves
over time, often in unforeseen ways. These variations are due
to so-called concept drifts, caused by changes in the underlying
data generation mechanisms. In a classification setting, concept
drift causes the previously learned models to become inaccurate,
unsafe and even unusable. Accordingly, concept drifts need to be
detected, and handled, as soon as possible. In medical applications
and military zones, for example, change in behaviors should be
detected in near real-time, to avoid potential loss of life. To
this end, we introduce the McDiarmid Drift Detection Method
(MDDM), which utilizes McDiarmid’s inequality [1] in order to
detect concept drift. The MDDM approach proceeds by sliding
a window over prediction results, and associate window entries
with weights. Higher weights are assigned to the most recent
entries, in order to emphasize their importance. As instances are
processed, the detection algorithm compares a weighted mean of
elements inside the sliding window with the maximum weighted
mean observed so far. A significant difference between the two
weighted means, upper-bounded by the McDiarmid inequality,
implies a concept drift. Our extensive experimentation against
synthetic and real-world data streams show that our novel
method outperforms the state-of-the-art. Specifically, MDDM
yields shorter detection delays as well as lower false negative
rates, while maintaining high classification accuracies.

I. INTRODUCTION

A proliferation of Internet-enabled devices such as smart-

phones, tablets, and smartwatches are ubiquitous in our soci-

ety. These devices continuously generate vast amounts of data

in the form of infinite streams. In most applications, sensors

are responsible for collecting the data from their surround-

ing environment, in order to facilitate data-driven decision-

making. For instance, smart houses make use of various types

of sensors for adapting the domestic services to the changing

needs of their inhabitants. Automobiles are equipped with

onboard chips that uninterruptedly monitor vehicle-health, fuel

consumption and driver behavior, while detecting unexpected

events on the road [2].

Learning from data streams coming from a dynamic sensor

network is a challenging task for various reasons: (1) sensors

are generally not synchronized, (2) they have access to a

limited amount of computational and memory resources, (3)

high throughput external processing is restricted by the low

transmission bandwidth of the sensors, (4) data are generated

at high rate; and (5) sensors usually operate in evolving

environments [2]. The first three challenges may be overcome

by topological or hardware solutions; whereas, the last two

may be addressed by online and adaptive learning algorithms.

This paper focuses on the last two issues, namely the high rate

of arrival and the evolving nature of such environments.

Traditionally, machine learning algorithms assume that the

data are generated by a stationary distribution and that all the

data are collected prior to learning. Yet, these assumptions

are not valid in evolving environments, where the underlying

distributions may change over time: a phenomenon known as

concept drift [3]. As a consequence, model accuracy decreases

as concept drifts arise. Therefore, adaptation to new distribu-

tions (or situations) is essential to ensure the efficiency of

the decision-making process. An adaptive learning algorithm

may utilize a drift detection method for observing concept

drifts in a data stream. Once the drift detector signals the

presence of a concept drift, the learning algorithm updates

and adapts its current model by taking into account the new

distribution. For the learning process to be efficient, the drift

detector must detect concept drifts rapidly, while maintaining

low false negative and false positive rates. In this paper, we

introduce the McDiarmid Drift Detection Method (MDDM)

which applies the McDiarmid inequality [1] and various

weighting schemes in order to detect rapidly and efficiently

concept drifts. Through numerous experiments, we show that

MDDM finds abrupt and gradual concept drifts with shorter

delays and with lower false negative rates, compared to the

state-of-the-art.

This paper is organized as follows. Data stream classifica-

tion and concept drift are formally defined in Sections II and

III, respectively. Section IV describes adaptive learning as a

form of incremental learning from evolving data streams. Sec-

tion V reviews the state-of-the-art for concept drift detection.

In Section VI, we introduce the McDiarmid Drift Detection

Methods (MDDMs). Next, in Section VII, our approaches are

compared with the start-of-the-art for both synthetic and real-
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world data streams. We conclude the paper and discuss future

work in Section VIII.

II. DATA STREAM CLASSIFICATION

The primary objective of data stream classification is to

build a model incrementally, using the (current) available

data, the so-called training data, for predicting the label of

unseen examples. Data stream classification may be defined

as follows:

Let a stream S be a sequence of instances:

(X1, y1), (X2, y2), ..., (Xt, yt). The pair (Xt, yt) rep-

resents an instance arriving at time t, where Xt is a

vector containing k attributes: X = (x1, x2, ..., xk),
while yt is a class label which belongs to a finite

set of size m, yt ∈ {c1, c2, ..., cm}. Assume a

target function yt = f(Xt) which maps an input

vector to a particular class label. The learning task

consists of incrementally building a model f̃ that

approximates the function f at all time. Naturally,

an approximation which maximizes the classification

accuracy is preferred [4].

As suggested in the literature [5], [6], for data stream clas-

sification, incremental learning algorithms should fulfill four

essential requirements: (1) the examples should be processed

one-by-one and only once in the order of their arrival, (2)

memory usage should be constrained as the size of a data

stream is typically substantially larger than the size of the

available memory, (3) all the calculations should be performed

in real-time or at least, in near real-time, and (4) the outcome

of the classification process should be available at any time.

III. CONCEPT DRIFT DEFINITION

The Bayesian Decision Theory is commonly employed

in describing classification processes based on their prior

probability distribution of classes, i.e. p(y), and the class

conditional probability distribution, i.e. p(X|y) [3], [7]. The

classification decision is related to the posterior probabilities

of the classes. The posterior probability associated with class

ci, given instance X, is obtained by:

p(ci|X) =
p(ci) · p(X|ci)

p(X)
(1)

where p(X) =
∑m

i=1 p(ci) · p(X|ci) is the marginal probability

distribution. Formally, if a concept drift occurs in between

time t0 and t1 we have:

∃X : pt0(X, y) 6= pt1(X, y) (2)

where pt0 and pt1 represent the joint probability distributions

at time t0 and t1, respectively [3]. Eq. (2) implies that the

data distribution at times t0 and t1 are distinct, as their joint

probabilities differ. From Eq. (1), it may be observed that a

concept drift may occur [3]:

• As a result of a change in the prior probability distribution

of the classes p(y),

• As a result of a change in the class conditional probability

distributions p(X|y),
• As a result of a change in the posterior probability

distribution of the classes p(y|X), thus affecting the

classification decision boundaries.

Gama et al. [3] and Žliobaitė [7] classify changes into two

types, namely real concept drift and virtual concept drift. A

real concept drift refers to the changes in p(y|X) which affects

the decision boundaries or the target concept (as shown in

Fig. 1 (b)). On the other hand, virtual drift is the result of

a change in p(X), and subsequently in p(X|y), but not in

p(y|X). That is, a virtual drift is a change in the distribution of

the incoming data which implies that the decision boundaries

remain unaffected (as in Fig. 1 (c)).

(a) Original Data (b) Real Drift (c) Virtual Drift

Fig. 1: Real Concept Drift vs. Virtual Concept Drift

(Similar to Fig. 1 in [3])

In practice, a virtual concept drift may appear in conjunction

with a real concept drift. As a result, the class boundary

is also altered. Consequently, from a predictive perspective,

adaptation is required once a real concept drift occurs, since

the current decision boundary turns out to be obsolete [3].

By adaptation, we mean updating the classification model

according to the new distribution in order to maintain a

high classification accuracy. Adaptive learning is discussed in

Section IV.

A. Concept Drift Patterns

A concept drift may appear in different patterns [7]; as

illustrated in Fig. 2. An abrupt concept drift results from a

sudden change in the data distribution. On the other hand, a

gradual concept drift results from a slow transition from one

data distribution to the next. The two patterns may coexist

concurrently (Fig. 2 (b)). In an incremental concept drift, a

sequence of data distributions appear during the transition.

In re-occurring concept drift, a previously active concept

reappears after some time, as shown in Fig. 2 (d). In practice,

a mixture of different concept drifts may be present.

IV. ADAPTIVE DATA STREAM LEARNING

As learning algorithms are often trained in non-stationary

environments, where concept drift is inevitable, they must have

the capacity to adapt to new situations. Adaptive learning is

defined as a form of advance incremental learning in which



(a) Abrupt (b) Gradual (c) Incremental (d) Re-occurring

Fig. 2: Patterns of Concept Drifts (Similar to Fig. 2 in [3], and colors represent different distributions)

concept drifts are detected while the classification models are

updated accordingly [3]. Adaptation methods fall into two

categories known as blind and informed.

Blind Adaptation – Blind adaptive algorithms adapt the

classification model without any concept drift detection. These

algorithms often use a sliding window mechanism to hold

the most recent examples from a stream. As the window is

displaced over the examples, the model is periodically updated.

Informed Adaptation – Informed adaptive algorithms are

reactive, meaning that they adapt their models once an alarm

has been triggered by a concept drift detector [3]. The reaction

to an alarm for a concept drift may be in the form of global

replacement or partial replacement [3]. In global replacement,

the outdated model is discarded, and a new model is trained

from scratch. This strategy is suitable for global classifiers,

e.g. Naive Bayes learners, as well as for granular classifiers,

such as Decision Trees [3]. In contrast, in partial replacement,

the adaptation is limited to some parts of the classification

model in order to better represent the data space that has been

partially affected by a concept drift. This strategy is restricted

to granular classifiers where only some parts of the models

must be updated.

A. Adaptive Learning Requirements

Recall that classical incremental algorithms should process

each example only once, use a limited amount of memory,

converge in a limited amount of time, and be ready to perform

a prediction at any time. Adaptive learning algorithms must

fulfill the following requirements in order to maintain high

predictive performances [8], [9], [10]: (1) Minimum false

positive and false negative rates – an adaptive algorithm must

detect concept drifts with a small number of false positives

and false negatives. A high false positive rate involves more

model retraining which in turn requires more computational

resources [11]. On the other hand, a high false negative rate

reduces the classification accuracy, as the current model does

not reflect the new distribution. (2) Short drift detection delay

– An adaptive learning algorithm should detect concept drifts

rapidly, and update its predictive model in quasi real-time in

order to maintain the classification accuracy. (3) Robustness to

noise – adaptive learners must be able to distinguish concept

drift from noise. Indeed, no adaptation is required if noise is

present in a stream.

V. CONCEPT DRIFT DETECTION METHODS

Change detection methods refer to techniques and algo-

rithms that detect concept drifts and distributional changes

explicitly. Drift detection methods characterize and quantify

concept drifts by discovering the change points or small time

intervals during which concept drifts occur. Gama et al. [3]

classify concept drift detectors into three groups:

1) Sequential Analysis based Methods sequentially evalu-

ate prediction results as they become available. They

alarm for concept drifts when a pre-defined threshold

is met. The Cumulative Sum (CUSUM) and its variant

PageHinkley (PH) [12], as well as Geometric Moving

Average (GMA) [13] are representatives of this group.

2) Statistical based Approaches analyze statistical parame-

ters such as the mean and the standard deviation associ-

ated with the predicted results in order to detect concept

drifts. The Drift Detection Method (DDM) [14], Early

Drift Detection Method (EDDM) [15], Exponentially

Weighted Moving Average (EWMA) [16], and Reactive

Drift Detection Method (RDDM) [17] are members of

this group.

3) Windows based Methods usually utilize a fixed reference

window for summarizing the past information and a slid-

ing window for summarizing the most recent informa-

tion. A significant difference in between the distributions

of these two windows implies the occurrence of a con-

cept drift. Statistical tests or mathematical inequalities,

with the null-hypothesis indicating that the distributions

are equal, are employed. The Adaptive Windowing (AD-

WIN) [18], the SeqDrift detectors [8], the Drift Detec-

tion Methods based on Hoeffding’s Bound (HDDMA-test

and HDDMW-test) [4], and the Adaptive Cumulative

Windows Model (ACWM) [19] are members of this

family.

CUSUM and its variant PageHinkley (PH) are some of

the pioneer methods in the community. DDM, EDDM, and

ADWIN have frequently been considered as benchmarks in

the literature [4], [9], [15], [18], [20]. SeqDrift2, HDDMs,

and RDDM present similar performances. Therefore, all these

methods are evaluated in our experiments. These methods are

described in more detail below:

• Cumulative Sum (CUSUM), by Page [12], alarms for a

change when the mean of the input data significantly

deviates from zero. The input of CUSUM may be, for in-

stance, the prediction error from a Kalman filter [3]. The

CUSUM test has the form gt = max(0, gt−1+(xt− δ)),
and alarms for concept drift when gt > λ. Here, xt is

the current observed value, δ specifies the magnitude

of allowed changes, g0 = 0, and λ is a user-defined

threshold. The accuracy of CUSUM depends on both δ
and λ. Lower values of δ result in a faster detection, but

at the cost of an increasing number of false alarms.



• PageHinkley (PH), by Page [12], is a variant of CUSUM

employed for change detection in signal processing [3].

The test variable mT is defined as the cumulative dif-

ference between the observed values and their mean

until the current time T ; and is evaluated by mT =
∑T

t=1(xt − x̄T − δ), where x̄ = 1
T

∑T

t=1 xt and where

δ controls the variation range. The PH method also

updates the minimum of mT , denoted as MT , using

MT = min(mt, t = 1...T ). Significant difference in

between mT and MT , i.e. PHT : mT −MT > λ where

λ is a user-defined threshold, indicates a concept drift. A

large value of λ typically results in fewer false alarms,

but at the expense of increasing the false negative rate.

• Drift Detection Method (DDM), by Gama et al. [14],

monitors the error-rate of the classification model to

detect drifts. On the basis of the probably approximately

correct (PAC) learning model [21], the method consid-

ers that the error-rate of a classifier decreases or stays

constant as the number of instances increases. Other-

wise, it suggests the occurrence of a drift. Let pt be

the error-rate of the classifier with a standard deviation

of st =
√

(pt(1− pt)/t) at time t. As instances are

processed, DDM updates two variables pmin and smin

when pt + st < pmin + smin. DDM warns for a drift

when pt + st ≥ pmin + 2 ∗ smin, and while a drift is

detected when pt + st ≥ pmin + 3 ∗ smin. The variables

pmin and smin are reset when a drift occurs.

• Early Drift Detection Method (EDDM), by Baena-Garcia

et al. [15], evaluates the distances between wrong pre-

dictions to detect concept drifts. The algorithm is based

on the observation that a drift is more likely to occur

when the distances between errors are smaller. EDDM

calculates the average distance between two recent errors,

i.e. p′t, with its standard deviation s′t at time t. It updates

two variables p′max and s′max when p′t + 2 ∗ s′t >
p′max + 2 ∗ s′max. The method warns for a drift when

(p′t + 2 ∗ s′t)/(p
′

max + 2 ∗ s′max) < α, and indicates that

a concept drift occurred when (p′t + 2 ∗ s′t)/(p
′

max + 2 ∗
s′max) < β. The authors set α and β to 0.95 and 0.90,

respectively. The p′max and s′max are reset only when a

drift is detected.

• Reactive Drift Detection Method (RDDM), by Barros et

al. [17], addresses a performance loss problem of Drift

Detection Method (DDM) when the sensitivity of the

method deteriorates over time, particularly in the context

of large concept drifts. As in DDM, RDDM evaluates

two variables pt and st over time; and updates pmin and

smin if pt + st < pmin + smin. The constants αw and

αd represent the warning and drift levels, respectively.

Additionally, RDDM holds three variables: max (the

maximum size of a concept), min (the reduced size of a

stable concept), and warnLimit (the maximum number

of instances that limits the warning level). The method

warns for a drift when pt + st > pmin + αw ∗ smin,

and alarms for a drift when either of following three

conditions occur (1) pt + st > pmin + αd ∗ smin, (2)

num instances > max, or (3) num warnings >
warnLimit.

• Adaptive Windowing (ADWIN), by Bifet and Gavalda

[18], slides a window w as the predictions become

available, in order to detect drifts. The method examines

two sub-windows of sufficient length, i.e. w0 of size n0

and w1 of size n1 where w0 ∪ w1 = w. A significant

difference between the means of two sub-windows indi-

cates a concept drift, i.e. when |µ̂w0
− µ̂w1

| ≥ ε where

ε =
√

1
2m ln 4

δ′
, m represents the harmonic mean of n0

and n1, and δ′ = δ/n. Here δ is the confidence level

while n is the size of window w. Once a drift is detected,

elements are removed from the tail of the window until

no significant difference is observed.

• SeqDrift2, by Pears et al. [8], relies on a reservoir

sampling method [22], as an adaptive sampling strategy,

for random sampling from input data. SeqDrift2 stores

entries into two repositories called left and right. As

entries are processed over time, the left repository forms

a combination of old and new entries by applying the

reservoir sampling strategy, while the right repository

collects the new entries. SeqDrift2 subsequently finds an

upper-bound for the difference in between the means of

the two repositories, i.e. µ̂l for the left repository and µ̂r

for the right repository, using the Bernstein inequality

[23]. Finally, a significant difference between the two

means suggests a concept drift.

• HDDMA-test, by Frı́as-Blanco et al. [4], detects concept

drifts by comparing moving averages. A significant differ-

ence between them indicates a concept drift. HDDMW-test,

a variant of HDDMA-test, employs the EMWA forgetting

scheme [16] to weight the moving averages. Then, the

weighted moving averages are compared to detect con-

cept drifts. In both cases, the Hoeffding inequality [24]

determines an upper-bound for the difference between the

two averages. The authors have suggested that the first

and the second methods are ideal for detecting abrupt

and gradual drifts, respectively.

Discussion – CUSUM and PageHinkley (PH) detect concept

drifts from the deviation of the observed values from their

mean and alarm for a drift when this difference exceeds

a user-defined threshold. These algorithms are sensitive to

the parameter values, resulting in a trade-off between false

alarms and detecting true drifts. DDM and EDDM require

less memory as only a small number of variables is maintained

[3]. On the other hand, the ADWIN and SeqDrift2 approaches

necessitate multiple subsets of the stream which lead to more

memory consumption. They are also computationally more

expensive, due to the sub-window compression or reservoir

sampling procedures. Barros et al. [17] observed that, in gen-

eral, RDDM leads to a higher classification accuracy compared

to DDM, especially against datasets with gradual concept drift,

despite an increase in false positives. EDDM may frequently

alarm for concept drift in the early stages of learning if the

distances in between wrong predictions are small. HDDM



employs the Hoeffding inequality to detect concept drifts.

Recall that SeqDrift2 employs the Bernstein inequality in order

to detect concept drift. SeqDrift2 uses the sample variance, and

assumes that the sampled data follow a normal distribution.

This assumption may be too restrictive, in real-world domains.

Further, the Bernstein inequality is conservative and requires a

variance parameter, in contrast to, for instance, the Hoeffding

inequality. These shortcomings may lead to longer detection

delay and a potential loss of accuracy. Moreover, our prelimi-

nary experimentation confirmed that these methods may cause

long drift detection delay, as well as high false positive and

false negative rates.

In Section VI, we introduce the McDiarmid Drift Detection

Methods (MDDM), which extends our Fast Hoeffding Drift

Detection Method (FHDDM) which was introduced recently

[9]. FHDDM slides a window over the stream, in order to

detect concept drift. Two variables are maintained, namely the

mean of the elements inside the window at the current time as

well as the maximum mean observed so far. FHDDM employs

the Hoeffding inequality [24] to detect concept drifts. FHDDM

and MDDM are detailed in the next section.

VI. MCDIARMID DRIFT DETECTION METHODS

In a streaming environment, one may assume that old ex-

amples are either obsolete or outdated. Therefore, incremental

learners should rely on the most recent examples for training,

as the latter reflect the current situation more adequately.

Fading or weighting approaches are typically used by online

learning algorithms to increase the weight attributed to the

most recent instances [3]. This is important from an adaptive

learning perspective, especially when a transition between two

contexts is occurring. For instance, Klinkenberg [25] relies on

an exponential weighting scheme wλ(Xi) = exp(−λi), where

λ is a parameter and i is the entry index, to assign lower

weights to old examples. Assigning higher weights to recent

predictions results in a faster detection of concept drifts. In this

section, we introduce the McDiarmid Drift Detection Methods

(DMMDs) which utilizes a weighting scheme to ponderate

the elements of the window. We, first, introduce the Fast

Hoeffding Drift Detection Method (FHDDM) [9] since our

MDDM approaches extend the former.

A. Fast Hoeffding Drift Detection Method (FHDDM)

Fast Hoeffding Drift Detection Method (FHDDM) uses the

Hoeffding inequality [24] to detect drifts in evolving data

streams. The FHDDM algorithm slides a window of size n
over the prediction results. The algorithm inserts a 1 into the

window if the prediction result is correct and 0 otherwise. As

inputs are processed, the mean of the elements of the sliding

window is calculated, i.e. µt, as well as the maximum mean

observed so far, i.e. µm. As indicated in Eq. (3).

if µm < µt ⇒ µm = µt (3)

On the basis of the PAC learning model [21], the clas-

sification accuracy should increase or stay constant as the

number of instances increases; otherwise, the possibility of

facing drifts increases [14]. Thus, the value of µm should

increase or remain constant as more instances are processed. In

other words, the possibility of facing a concept drift increases

if µm does not change and µt decreases over time. Finally, as

shown by Eq. (4), a significant difference in between µm and

µt indicates the occurrence of a drift:

∆µ = µm − µt ≥ εd ⇒ Drift := True (4)

In [9], the value of εd was evaluated by the Hoeffding

inequality, i.e. Eq. (7). The Hoeffding inequality has the very

attractive property that no particular probability distribution

is assumed for the data [4], [24], [26]. The Hoeffding in-

equality assigns an upper-bound for the deviation between the

empirical mean of n random variables and their corresponding

expected value.

Theorem I: Hoeffding’s Inequality – Let X1, X2, ..., Xn be

n independent random variables such that Xi ∈ [ai, bi], where

i ∈ {1, ..., n}. Then, given any εH > 0, we have for the

difference between the empirical mean X = 1
n

∑n

i=1 Xi and

its expectation E[X]:

Pr{E[X]−X ≥ εH} ≤ exp

(

−
2n2ε2

H
∑n

i=1 (bi − ai)
2

)

(5)

As a result of this theorem, given a confidence level of δH ,

the value of εH is determined by:

εH =

√

1

2n
ln

1

δH
(6)

Corollary I: FHDDM test – In a stream setting, assume µt is

the mean of a sequence of n random entries, each belonging to

{0, 1}, at time t, and µm is the maximum probability observed

so far. Let ∆µ = µm − µt ≥ 0 be the difference between

these two quantities. Given the desired δd, i.e. the probability

of error allowed, the Hoeffding inequality entails that a drift

is detected if ∆µ ≥ εd, where:

εd =

√

1

2n
ln

1

δd
(7)

B. McDiarmid Drift Detection Methods (MDDMs)

This section presents our MDDM approach, which extends

the above-mentioned FHDDM. MDDM is based on the as-

sumption that by weighting the prediction results associated

with a sliding window, and by putting more emphasis on the

most recent elements, concept drift could be detected faster

and more efficiently. This concept is illustrated in Fig. 3. Given

the rule wi < wi+1, the elements at the head of the window

have higher weights than those located at the tail. Different

weighting schemes have been considered including arithmetic

and geometric schemes. The arithmetic scheme is given by

wi = 1 + (i − 1) ∗ d, where d ≥ 0 is the difference between

two consecutive weights. The geometric scheme is given by

wi = r(i−1), where r ≥ 1 is the ratio of two consecutive

weights. In addition, we employ the Euler scheme which is

defined by r = eλ where λ ≥ 0. We have implemented

three weighted drift detection methods based on these three



schemes: MDDM-A (A for arithmetic), MDDM-G (G for

geometric), and MDDM-E (E for Euler)1. All these methods

are described below. As the prediction results are processed

one-by-one, the algorithm calculates the weighted average of

the elements inside the sliding window, and simultaneously

updates two variables µt
w (i.e. the current weighted average)

and µm
w (i.e. the maximum weighted average observed so far).

Similar to FHDDM, a significant difference between µm
w and

µt
w implies a concept drift. The McDiarmid inequality [1] is

employed to determine if the difference is deemed significant.

Fig. 3: McDiarmid Drift Detection Method (General Scheme)

Theorem II: McDiarmid’s Inequality – Let X1, X2, ..., Xn

be n independent random variables all taking values in the set

χ. Further, let f : χn 7→ R be a function of X1, ..., Xn that

satisfies ∀i, ∀x1, ..., xn, x
′

i
∈ χ,

|f (x1, ..., xi, ..., xn)− f (x1, ..., x
′

i, ..., xn) | ≤ ci.

This implies that replacing the ith coordinate xi by some

arbitrary value changes the function f by at most ci. Then,

for all εM > 0, we have:

Pr{E[f ]− f ≥ εM} ≤ exp

(

−
2ε2

M
∑n

i=1 c
2
i

)

(8)

Consequently, for a given confidence level δM , the value of

εM is obtained by:

εM =

√

∑n

i=1 c
2
i

2
ln

1

δM
(9)

Corollary II: MDDM test – In a stream context, assume µt
w

is the weighted mean of a sequence of n random entries, at

time t, and µm
w is the maximum weighted mean observed so

far. Recall that each entry pi is in {0, 1} and has a weight

of wi. Let ∆µw = µm
w − µt

w ≥ 0 be the difference between

these two weighted means. Given the confidence level δw, the

McDiarmid inequality detects a drift if ∆µw ≥ εw, where

εw =

√

∑n

i=1 v
2
i

2
ln

1

δw
(10)

and where vi is given by

vi =
wi

∑n

i=1 wi

(11)

All three MDDM approaches apply Corollary II in order to

detect concept drift.

1The source codes are available at https://www.github.com/alipsgh/ (One
may use them with the MOA framework [27]).

The pseudocode for the MDDM algorithm appears in Al-

gorithm 1. Firstly, the INITIALIZE function initializes the

parameters, including the window size n, confidence level δw,

εw, the sliding window win, and µm
w . As the data stream

examples are processed, the prediction results are pushed into

the window (lines 8-14). The algorithm updates the variables

µt
w and µm

w over time (lines 15-17). Finally, a drift is detected

if (µm
w − µt

w) ≥ εw (lines 18-21). Recall that we have

wi = 1+(i−1)∗d for MDDM-A, wi = r(i−1) for MDDM-G,

and wi = eλ(i−1) for MDDM-E.

Algorithm 1 McDiarmid Drift Detection Method

1: function INITIALIZE(windowSize, delta)
2: (n, δw)← (windowSize, delta)
3: εw = CALCULATEEPSILON()
4: RESET()

5: function RESET()
6: win = [] ⊲ Creating an empty sliding window.
7: µm

w = 0

8: function DETECT(pr) ⊲ pr is 1 for correct predictions, 0
otherwise.

9: if win.size() = n then
10: win.tail.drop() ⊲ Dropping an element from the tail.

11: win.push(pr) ⊲ Pushing an element into the head.
12: if win.size() < n then
13: return False
14: else
15: µt

w = GETWEIGHTEDMEAN()
16: if µm

w < µt
w then

17: µm
w = µt

w

18: ∆µw = µm
w − µt

w

19: if ∆µw ≥ εw then
20: RESET() ⊲ Resetting parameters.
21: return True ⊲ Signaling for an alarm.
22: else
23: return False
24: function CALCULATEEPSILON()
25: S =

∑n

i=1
v2i ⊲ vi = wi/

∑n

i=1
wi

26: return
√

S
2
ln 1

δw

27: function GETWEIGHTEDMEAN()
28: return

∑n

i=1
(pi × wi)/

∑n

i=1
wi

C. Comparison of Hoeffding’s and McDiarmid’s Inequalities

Recall that the Hoeffding inequality [24] bounds the differ-

ence in between the ‘empirical mean’ of n random variables

and their expectation. This means that all the weights, which

are implicit, are equal to one. Consequently, the Hoeffding

inequality cannot be applied to a weighted average (see Eq.

(5) to (7)). Alternatively, the McDiarmid inequality may be

applied to an arbitrary function including a weighted average

(see Eq. (8) to (11)). The Hoeffding inequality is a special case

of the McDiarmid inequality which occurs when ∀i, ci = 1/n
meaning that all the weights are equal to 1.

D. Discussion On Variants of MDDM

Recall that the MDDM-A approach employs an arithmetic

scheme wi = 1+(i−1)∗d, where wi+1−wi = d meaning that

https://www.github.com/alipsgh/


the weights increase linearly. On the the other hand, MDDM-

G applies the geometric scheme wi = r(i−1), indicating that

the weights increase exponentially with wi+1/wi = r (Note

that r = eλ for MDDM-E). The linear or exponential nature

of the weighting scheme affects the detection delay and the

false positive rate. That is, the exponential weighting scheme

often results in a faster concept drift detection, but at the

expense of a higher false positive rate if compared to the

linear weighting scheme. These statements are supported by

experimental results in Section VII.

E. Parameters Sensitivity Analysis

Recall that the classic Fast Hoeffding Drift Detection

Method (FHDDM) has two parameters: n and δd. These

parameters are inversely proportional with respect to εd. That

is, as the value of n increases, the value of εd decreases.

This implies that, as observations become available, a more

optimistic error bound should be applied. On the other hand,

as the value of δd decreases, the values of εd increases (i.e. the

bound becomes more conservative). These observations also

apply to the McDiarmid Drift Detection Methods (MDDMs).

The parameter d in MDDM-A controls the scale of the weights

assigned to the sliding window elements. The value of εw
increases, as the value of d increases. Larger values of d lead

to faster drift detection, since higher weights are assigned to

the element located at the head of the window; however, the

false positive rate may increase. MDDM-G and MDDM-E

behave similarly; the scale of their weight is determined by

their parameters r and λ, respectively. That is, a higher r or

λ leads to a shorter detection delay, but at the expense of a

higher false positive rate. In order to set the default values

of these parameters, we conducted a number of experiments

against various synthetic data streams. We gradually increased

the values of their parameters to find the optimal values:

δd, δw = 10−6, d = 0.01, r = 1.01, and λ = 0.01.

VII. EXPERIMENTAL EVALUATION

A. Benchmarking Data Streams

1) Synthetic Data Streams: We generated four synthetic

data streams from SINE1, MIXED, CIRCLES and LED, which

are all widely found in the literature [4], [9], [14], [28].

Each data stream consists of 100, 000 instances. A class noise

of 10% was added to each stream in order to evaluate the

robustness of the drift detectors against noisy data2. The

synthetic data streams are described below.

• SINE1 · with abrupt drift: It has two attributes x and y
uniformly distributed on the interval [0, 1]. The classifi-

cation function is y = sin(x). Instances are classified as

positive if they are under the curve, otherwise they are

negative. At a drift point, the classification is reversed.

• MIXED · with abrupt drift: The dataset has two numeric

attributes x and y distributed in [0, 1] with two boolean

attributes v and w. The instances are classified as positive

if at least two of the three following conditions are

2Available at: https://www.github.com/alipsgh/data streams/.

satisfied: v, w, y < 0.5+0.3∗sin(3πx). The classification

is reversed when drift points occur.

• CIRCLES · with gradual drift: It has two attributes x
and y distributed in [0, 1]. The classification function is

the circle equation (x − xc)
2 + (y − yc)

2 = r2c where

(xc, yc) and rc are the center and the radius of the circle,

respectively. Instances inside the circle are classified as

positive. Four different circles are employed in order to

simulate concept drift.

• LED · with gradual drift: The objective of this dataset

is to predict the digit on a seven-segment display, where

each digit has a 10% chance of being displayed. The

dataset has 7 class attributes, and 17 irrelevant ones. Con-

cept drift is simulated by interchanging relevant attributes.

Concept Drift Simulation – Following [29], we used the

sigmoid function to simulate abrupt and gradual concept

drifts. The function determines the probability of belonging to

a new context during a transition between two concepts. The

transition length ζ allows to simulate abrupt or gradual concept

drifts. The value was set to 50 for abrupt concept drifts, and

to 500 for gradual concept drifts in all our experiments. To

summarize, the drifts occur at every 20, 000 instances in SINE1

and MIXED with ζ = 50 for abrupt drift, and at every 25, 000
instances in CIRCLES and LED with ζ = 500 for gradual

drift.

2) Real-world Data Streams: We extended our experiments

to real-world data streams3; which are frequently employed

in the online learning and adaptive learning literature [4],

[14], [15], [28], [29]. Three data streams were selected in our

comparative study.

• ELECTRICITY · It contains 45, 312 instances, with 8
input attributes, recorded every half hour for two years by

the Australian New South Wales Electricity. The classifier

must predict a rise (Up) or a fall (Down) in the electricity

price. The concept drift may result from changes in

consumption habits or unexpected events [30].

• FOREST COVERTYPE · It consists of 54 attributes with

581, 012 instances describing 7 forest cover types for 30×
30 meter cells obtained from US Forest Service (USFS)

Region 2 Resource Information System (RIS) data, for 4
wilderness areas located in the Roosevelt National Forest

of Northern Colorado [31].

• POKER HAND · It is composed of 1, 000, 000 instances,

where each instance is an example of five cards drawn

from a standard 52 cards deck. Each card is described by

two attributes (suit and rank), for a total of ten predictive

attributes. The classifier predicts the poker hand [32].

B. Experiment Settings

We used the MOA framework [27] for all our experiments.

We selected Hoeffding Tree (HT) [26] and Naive Bayes

(NB) [6], [33] as our incremental classifiers; and compared

MDDMs and FHDDM with CUSUM, PageHinkley, DDM,

3Available at: https://moa.cms.waikato.ac.nz/datasets/2013/.

https://www.github.com/alipsgh/data_streams/
https://moa.cms.waikato.ac.nz/datasets/2013/


EDDM, RDDM, ADWIN, SeqDrift2, and HDDMs. The de-

fault parameters were employed for both the classifiers and

the drift detection methods. The algorithms were evaluated

prequentially which means that an instance is first tested and

then used for training. Pesaranghader et al. [9] introduced

the acceptable delay length notion for measuring detection

delay and for determining true positive (TP), false positive

(FP), and false negative (FN) rates. The acceptable delay

length ∆ is a threshold that determines how far a given

alarm should be from the true location of a concept drift to

be considered a true positive. Therefore, the number of true

positives is incremented when the drift detector alarm occurs

within the acceptable delay range. Otherwise, the number of

false negatives is incremented as the alarm occurred too late. In

addition, the false positive value is incremented when a false

alarm occurs outside the acceptable delay range. Following

this approach, we set ∆ to 250 for the SINE1, MIXED, and

to 1000 for the CIRCLES and LED data streams. A longer ∆
should be considered for data streams with gradual drifts in

order to avoid a false negative increase [9]. For FHDDM and

MDDMs, the window size was set to 25 for the SINE1 and

MIXED, and to 100 for the CIRCLES and LED data streams.

We used a wider window for the CIRCLES and LED data

streams in order to better detect gradual concept drifts. These

window sizes were chosen in order to have shorter detection

delay, as well as lower false positive and false negative rates.

Experiments were performed on an Intel Core i5 @ 2.8 GHz

with 16 GB of RAM running Apple OS X Yosemite.

C. Experiments and Discussion

1) Synthetic Data Streams: Our experimental results

against the synthetic data streams are presented in Tables I

to IV, and discussed below:

• Discussion I - SINE1 and MIXED (Abrupt Drift): As

represented in Tables I and II, HDDMW-test and MDDMs

detected concept drifts with shorter delays against SINE1

and MIXED data streams. FHDDM and MDDM resulted

in the lowest false positive rates, followed by CUSUM

and HDDMA-test. This observation may indicate that

FHDDM, MDDM, CUSUM, and HDDMA-test are more

accurate. Although RDDM had shorter detection delays

and false negative rates compared to DDM and EDDM,

it caused higher false positive rates. EDDM and ADWIN

had the highest false positive rates. Moreover, EDDM

had the highest false negative rates since it could not

detect concept drifts within the acceptable delay length.

ADWIN showed the highest execution runtime because

it compares all sub-windows of its sliding window for

drift detection. SeqDrift2 had the highest memory usage,

followed by RDDM and ADWIN as a considerable

number of prediction results must be stored in their

repositories or sliding window. MDDMs and FHDDM

showed comparable results against the other methods.

As shown in Table I, for the Hoeffding Tree classifier,

the highest classification accuracies was obtained with

MDDMs and FHDDM, since they detected drifts with the

shortest delays and the lowest false positive rates. Similar

observations apply to the Naive Bayes classifier. From

Tables I and II, it may be noticed that the false positive

rate is lower for Naive Bayes. This suggests that the Naive

Bayes classifier represented the decision boundaries more

accurately for noisy SINE1 and MIXED data streams.

• Discussion II - CIRCLES and LED (Gradual Drift):

Tables III and IV show the experimental results with the

Hoeffding Tree and Naive Bayes classifiers against the

CIRCLES and LED data streams. The MDDM algorithms

resulted in the shortest concept drift detection delays,

followed by FHDDM and HDDMW-test. Compared to

FHDDM, MDDMs detected concept drifts faster because

of its weighting schemes which favor the most recent

elements. On the other hand, EDDM produced the longest

drift detection delays. It also had the highest false neg-

ative rates. MDDMs, FHDDM, CUSUM, RDDM, and

HDDMs had the highest true positive rates. EDDM and

ADWIN showed the highest false positive rates against

the CIRCLES data streams. ADWIN alarmed falsely for

having a non-conservative test. We achieved higher ac-

curacies with Hoeffding Tree than with Naive Bayes

against the CIRCLES data stream. In the case of the

LED data streams, ADWIN and SeqDrift2 triggered a

relatively large number of false alarms. Although RDDM

outperformed DDM in all cases, both in terms of drift

detection delays and false negative rates, it showed higher

false positive rates. SeqDrift2 caused fewer false positives

compared to ADWIN, since it applies a more conservative

test (Bernstein’s inequality). ADWIN is computationally

expensive since all possible sub-windows of the sliding

window must be compared for drift detection. As in

the previous experiments, SeqDrift2 had a high memory

consumption, followed by RDDM and ADWIN. Finally,

MDDMs, FHDDM, and HDDMs led to the highest

accuracies.

• Discussion III - MDDM Variants: Frequently, MDDM-

G and MDDM-E have shorter drift detection delays than

MDDM-A. The reason is to be found in the fact that

they both utilize an exponential weighting scheme (i.e.

more weight is put on the most recent entries which

are the ones required for faster detection) as opposed to

MDDM-A which has a linear one. The reader will notice

that the false positive rates of these two variants against

the two streams with gradual change, namely CIRCLES

and LED, were higher than those of MDDM-A. This

is a consequence of the fact that MDDM-A put more

emphasis on the older entries in the window, which, in

these cases are beneficial to the learning process. All three

variants had comparable levels of accuracy. MDDM-E

had slightly longer runtimes, due to the overhead incurred

when calculating eλ. In general, one may observe that an

exponential-like scheme is beneficial in scenarios when

faster detection is required. It follows that the optimal

shape for the weighting function is data, context and

application dependent.



TABLE I: Hoeffding Tree (HT) with Drift Detectors against Synthetic Data Streams with Abrupt Change

Detector Delay TP FP FN Runtime Memory Accuracy
S

I
N

E
1

(A
b

ru
p

t)
MDDM-A 38.60 ± 3.38 4.00 0.21 ± 0.43 0.00 20.00 ± 4.70 232.00 87.07 ± 0.16

MDDM-G 38.56 ± 3.36 4.00 0.20 ± 0.42 0.00 14.33 ± 3.47 232.00 87.07 ± 0.16

MDDM-E 38.56 ± 3.36 4.00 0.20 ± 0.42 0.00 33.43 ± 5.95 232.00 87.07 ± 0.16

FHDDM 40.65 ± 3.15 4.00 0.10 ± 0.33 0.00 10.78 ± 3.25 232.00 87.07 ± 0.16

CUSUM 86.89 ± 4.47 4.00 0.24 ± 0.47 0.00 15.26 ± 4.27 128.00 86.94 ± 0.15

PageHinkley 229.24 ± 13.20 2.30 ± 1.07 1.71 ± 1.08 1.70 ± 1.07 12.08 ± 3.59 136.00 86.46 ± 0.17

DDM 163.11 ± 22.73 3.36 ± 0.77 3.30 ± 2.20 0.64 ± 0.77 15.12 ± 3.67 136.00 86.06 ± 1.34

EDDM 243.83 ± 14.25 0.22 ± 0.44 33.90 ± 11.61 3.78 ± 0.44 10.69 ± 3.71 136.00 84.71 ± 0.55

RDDM 93.63 ± 7.57 4.00 4.72 ± 3.58 0.00 16.01 ± 4.57 7224.00 86.79 ± 0.18

ADWIN 47.32 ± 2.78 4.00 23.77 ± 5.75 0.00 > 2295.0 > 2050.0 86.75 ± 0.21

SeqDrift2 200.00 4.00 4.83 ± 1.16 0.00 38.31 ± 6.34 > 82270.0 86.53 ± 0.15

HDDMA-test 57.62 ± 11.81 4.00 0.71 ± 0.89 0.00 38.53 ± 5.92 160.00 87.01 ± 0.16

HDDMW-test 35.70 ± 2.95 4.00 0.46 ± 0.68 0.00 32.64 ± 4.95 136.00 87.07 ± 0.15

M
I
X

E
D

(A
b

ru
p

t)

MDDM-A 38.38 ± 3.66 4.00 1.11 ± 1.15 0.00 19.68 ± 4.12 232.00 83.36 ± 0.11

MDDM-G 38.28 ± 3.64 4.00 1.19 ± 1.21 0.00 15.31 ± 4.06 232.00 83.36 ± 0.11

MDDM-E 38.28 ± 3.64 4.00 1.19 ± 1.21 0.00 35.06 ± 6.06 232.00 83.36 ± 0.11

FHDDM 40.55 ± 3.70 4.00 0.65 ± 0.94 0.00 11.19 ± 3.68 232.00 83.39 ± 0.10

CUSUM 90.90 ± 6.13 4.00 0.32 ± 0.58 0.00 13.70 ± 4.11 128.00 83.27 ± 0.12

PageHinkley 229.91 ± 13.27 2.26 ± 0.98 1.74 ± 0.98 1.74 ± 0.98 12.33 ± 3.74 136.00 82.88 ± 0.11

DDM 195.73 ± 22.12 2.76 ± 1.01 2.91 ± 1.96 1.24 ± 1.01 14.74 ± 4.03 136.00 81.78 ± 2.06

EDDM 248.46 ± 7.69 0.05 ± 0.22 21.51 ± 7.70 3.95 ± 0.22 11.59 ± 3.66 136.00 80.65 ± 0.82

RDDM 106.68 ± 11.26 3.99 ± 0.10 3.49 ± 2.47 0.01 ± 0.10 15.87 ± 4.42 7224.00 83.16 ± 0.12

ADWIN 52.40 ± 2.86 4.00 20.94 ± 5.70 0.00 > 2315.0 > 2070.0 83.29 ± 0.12

SeqDrift2 200.00 4.00 4.98 ± 1.20 0.00 37.92 ± 6.10 > 81470.0 82.91 ± 0.11

HDDMA-test 69.42 ± 15.51 4.00 1.28 ± 1.09 0.00 38.98 ± 5.89 160.00 83.31 ± 0.11

HDDMW-test 35.56 ± 3.50 4.00 3.23 ± 1.95 0.00 31.96 ± 5.22 136.00 83.27 ± 0.12

TABLE II: Naive Bayes (NB) with Drift Detectors against Synthetic Data Streams with Abrupt Change

Detector Delay TP FP FN Runtime Memory Accuracy

S
I
N

E
1

(A
b

ru
p

t)

MDDM-A 38.55 ± 3.35 4.00 0.13 ± 0.34 0.00 19.04 ± 4.32 232.00 86.08 ± 0.25

MDDM-G 38.47 ± 3.35 4.00 0.14 ± 0.35 0.00 14.18 ± 3.79 232.00 86.08 ± 0.25

MDDM-E 38.46 ± 3.35 4.00 0.14 ± 0.35 0.00 33.37 ± 5.33 232.00 86.08 ± 0.25

FHDDM 40.48 ± 3.37 4.00 0.04 ± 0.20 0.00 10.89 ± 3.65 232.00 86.08 ± 0.25

CUSUM 83.27 ± 6.96 3.99 ± 0.10 0.71 ± 0.86 0.01 ± 0.10 13.83 ± 3.70 128.00 85.96 ± 0.25

PageHinkley 175.07 ± 24.72 3.71 ± 0.50 0.35 ± 0.54 0.29 ± 0.50 11.83 ± 3.35 136.00 85.69 ± 0.27

DDM 179.18 ± 26.83 2.87 ± 0.84 3.09 ± 1.88 1.13 ± 0.84 15.13 ± 3.42 136.00 82.39 ± 4.32

EDDM 234.28 ± 22.22 0.57 ± 0.64 33.53 ± 11.50 3.43 ± 0.64 11.97 ± 3.38 136.00 83.44 ± 2.87

RDDM 89.72 ± 16.45 3.99 ± 0.10 3.93 ± 2.91 0.01 ± 0.10 16.25 ± 4.12 7224.00 85.98 ± 0.27

ADWIN 48.61 ± 2.65 4.00 20.27 ± 5.23 0.00 > 2325.0 > 2070.0 85.97 ± 0.24

SeqDrift2 200.00 4.00 4.26 ± 0.58 0.00 35.96 ± 6.58 > 83665.0 85.59 ± 0.25

HDDMA-test 88.03 ± 25.73 3.97 ± 0.17 0.35 ± 0.55 0.03 ± 0.17 38.70 ± 6.04 160.00 85.95 ± 0.25

HDDMW-test 35.52 ± 3.10 4.00 0.41 ± 0.58 0.00 33.36 ± 5.93 136.00 86.09 ± 0.25

M
I
X

E
D

(A
b

ru
p

t)

MDDM-A 38.52 ± 3.81 4.00 0.69 ± 0.89 0.00 20.30 ± 4.13 232.00 83.37 ± 0.09

MDDM-G 38.41 ± 3.81 4.00 0.70 ± 0.89 0.00 15.32 ± 4.16 232.00 83.37 ± 0.09

MDDM-E 38.41 ± 3.81 4.00 0.70 ± 0.89 0.00 34.25 ± 5.94 232.00 83.37 ± 0.09

FHDDM 40.56 ± 3.72 4.00 0.25 ± 0.48 0.00 11.50 ± 3.44 232.00 83.38 ± 0.08

CUSUM 88.23 ± 8.97 3.99 ± 0.10 0.35 ± 0.54 0.01 ± 0.10 13.59 ± 3.71 128.00 83.27 ± 0.08

PageHinkley 198.79 ± 18.72 3.56 ± 0.65 0.44 ± 0.65 0.44 ± 0.65 11.67 ± 3.47 136.00 82.97 ± 0.10

DDM 192.99 ± 23.82 2.78 ± 1.00 2.41 ± 1.44 1.22 ± 1.00 15.48 ± 4.56 136.00 80.28 ± 4.11

EDDM 247.47 ± 8.60 0.11 ± 0.31 20.22 ± 7.66 3.89 ± 0.31 11.55 ± 2.89 136.00 80.30 ± 2.32

RDDM 104.97 ± 12.06 3.99 ± 0.10 1.86 ± 1.65 0.01 ± 0.10 17.75 ± 3.77 7224.00 83.24 ± 0.09

ADWIN 52.35 ± 2.88 4.00 20.27 ± 5.11 0.00 > 2320.0 > 2070.0 83.31 ± 0.08

SeqDrift2 200.00 4.00 4.39 ± 0.79 0.00 38.08 ± 5.80 > 83520.0 82.91 ± 0.08

HDDMA-test 83.71 ± 19.46 3.96 ± 0.20 0.48 ± 0.64 0.04 ± 0.20 38.47 ± 5.24 160.00 83.28 ± 0.09

HDDMW-test 35.75 ± 3.94 4.00 1.77 ± 1.39 0.00 32.00 ± 5.33 136.00 83.36 ± 0.09



TABLE III: Hoeffding Tree (HT) with Drift Detectors against Synthetic Data Streams with Gradual Change

Detector Delay TP FP FN Runtime Memory Accuracy
C

I
R

C
L

E
S

(G
ra

d
u

al
)

MDDM-A 71.98 ± 22.19 3.00 0.27 ± 0.51 0.00 46.42 ± 6.24 528.00 86.58 ± 0.16

MDDM-G 69.42 ± 22.09 3.00 0.36 ± 0.61 0.00 30.60 ± 5.24 528.00 86.58 ± 0.17

MDDM-E 69.52 ± 22.12 3.00 0.37 ± 0.61 0.00 50.25 ± 5.98 528.00 86.57 ± 0.17

FHDDM 79.28 ± 20.64 3.00 0.17 ± 0.40 0.00 15.15 ± 4.06 528.00 86.58 ± 0.13

CUSUM 220.07 ± 31.79 2.99 ± 0.10 0.04 ± 0.20 0.01 ± 0.10 14.30 ± 4.16 128.00 86.51 ± 0.13

PageHinkley 855.37 ± 56.27 1.79 ± 0.45 1.24 ± 0.47 1.21 ± 0.45 11.87 ± 3.40 136.00 85.96 ± 0.15

DDM 487.97 ± 82.24 2.78 ± 0.52 1.41 ± 1.24 0.22 ± 0.52 15.71 ± 4.51 136.00 86.21 ± 0.47

EDDM 987.61 ± 54.35 0.07 ± 0.26 24.61 ± 14.48 2.93 ± 0.26 10.68 ± 3.49 136.00 84.89 ± 0.29

RDDM 293.80 ± 38.52 2.98 ± 0.14 0.79 ± 1.25 0.02 ± 0.14 17.71 ± 4.30 7224.00 86.46 ± 0.16

ADWIN 214.47 ± 137.38 2.66 ± 0.49 19.46 ± 6.03 0.34 ± 0.49 > 2420.0 > 2140.0 85.64 ± 0.18

SeqDrift2 202.67 ± 16.11 3.00 3.08 ± 0.90 0.00 37.87 ± 6.21 > 104370.0 86.47 ± 0.14

HDDMA-test 111.96 ± 68.22 2.96 ± 0.20 0.65 ± 0.92 0.04 ± 0.20 39.19 ± 6.10 160.00 86.52 ± 0.20

HDDMW-test 94.03 ± 57.61 2.98 ± 0.14 0.73 ± 0.87 0.02 ± 0.14 34.23 ± 5.67 136.00 86.53 ± 0.18

L
E

D
0

.3
.1

.3
(G

ra
d

u
al

)

MDDM-A 210.31 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 55.26 ± 7.71 528.00 89.56 ± 0.04

MDDM-G 208.65 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 30.53 ± 5.77 528.00 89.56 ± 0.04

MDDM-E 208.61 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 48.92 ± 7.79 528.00 89.56 ± 0.04

FHDDM 220.40 ± 76.00 2.97 ± 0.22 0.03 ± 0.22 0.03 ± 0.22 16.70 ± 3.96 528.00 89.56 ± 0.04

CUSUM 300.68 ± 50.30 3.00 0.00 0.00 12.11 ± 3.55 128.00 89.56 ± 0.03

PageHinkley 560.30 ± 79.43 2.95 ± 0.26 0.04 ± 0.24 0.05 ± 0.26 10.37 ± 3.21 136.00 89.35 ± 0.04

DDM 444.13 ± 79.82 2.97 ± 0.17 0.32 ± 0.58 0.03 ± 0.17 13.39 ± 3.66 136.00 89.47 ± 0.56

EDDM 954.97 ± 62.98 0.66 ± 0.71 5.97 ± 1.69 2.34 ± 0.71 9.99 ± 3.11 136.00 88.33 ± 0.50

RDDM 321.88 ± 50.94 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 15.70 ± 4.14 7224.00 89.63 ± 0.04

ADWIN 541.71 ± 213.81 2.45 ± 0.67 718.85 ± 24.77 0.55 ± 0.67 > 1170.0 > 1390.0 72.14 ± 0.44

SeqDrift2 426.00 ± 173.31 2.78 ± 0.44 277.06 ± 47.48 0.22 ± 0.44 37.58 ± 6.13 > 15260.0 76.51 ± 2.28

HDDMA-test 295.03 ± 85.29 2.98 ± 0.20 0.16 ± 0.44 0.02 ± 0.20 34.89 ± 6.83 160.00 89.58 ± 0.05

HDDMW-test 259.18 ± 87.25 2.95 ± 0.26 0.08 ± 0.31 0.05 ± 0.26 28.86 ± 5.42 136.00 89.56 ± 0.04

TABLE IV: Naive Bayes (NB) with Drift Detectors against Synthetic Data Streams with Gradual Change

Detector Delay TP FP FN Runtime Memory Accuracy

C
I
R

C
L

E
S

(G
ra

d
u

al
)

MDDM-A 161.25 ± 87.26 2.95 ± 0.22 0.63 ± 0.70 0.05 ± 0.22 50.12 ± 7.32 528.00 84.14 ± 0.12

MDDM-G 161.73 ± 89.49 2.94 ± 0.24 0.80 ± 0.73 0.06 ± 0.24 31.83 ± 5.98 528.00 84.14 ± 0.12

MDDM-E 161.74 ± 89.49 2.94 ± 0.24 0.81 ± 0.73 0.06 ± 0.24 49.84 ± 6.40 528.00 84.14 ± 0.12

FHDDM 166.13 ± 83.84 2.96 ± 0.20 0.43 ± 0.60 0.04 ± 0.20 15.91 ± 4.47 528.00 84.14 ± 0.13

CUSUM 299.78 ± 52.29 3.00 0.40 ± 0.62 0.00 14.45 ± 4.15 128.00 84.08 ± 0.12

PageHinkley 677.32 ± 76.30 2.11 ± 0.55 0.93 ± 0.53 0.89 ± 0.55 12.61 ± 3.91 136.00 83.94 ± 0.13

DDM 703.59 ± 122.67 1.92 ± 0.72 2.33 ± 1.49 1.08 ± 0.72 16.06 ± 4.44 136.00 83.18 ± 1.61

EDDM 938.27 ± 106.60 0.35 ± 0.50 31.09 ± 18.14 2.65 ± 0.50 11.58 ± 3.22 136.00 83.12 ± 0.40

RDDM 406.50 ± 69.40 2.99 ± 0.10 2.15 ± 1.94 0.01 ± 0.10 17.76 ± 4.31 7224.00 84.05 ± 0.11

ADWIN 200.80 ± 63.23 2.98 ± 0.14 16.58 ± 5.02 0.02 ± 0.14 > 2420.0 > 2150.0 84.12 ± 0.12

SeqDrift2 276.67 ± 91.10 2.92 ± 0.27 2.49 ± 0.97 0.08 ± 0.27 36.36 ± 4.88 > 106125.0 84.13 ± 0.14

HDDMA-test 306.91 ± 107.78 2.91 ± 0.29 0.49 ± 0.69 0.09 ± 0.29 39.85 ± 6.17 160.00 84.09 ± 0.12

HDDMW-test 242.43 ± 134.19 2.73 ± 0.44 1.59 ± 1.00 0.27 ± 0.44 33.03 ± 5.80 136.00 84.11 ± 0.13

L
E

D
(G

ra
d

u
al

)

MDDM-A 210.31 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 54.31 ± 7.38 528.00 89.57 ± 0.04

MDDM-G 208.65 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 29.78 ± 5.33 528.00 89.57 ± 0.04

MDDM-E 208.61 ± 73.05 2.98 ± 0.14 0.03 ± 0.17 0.02 ± 0.14 49.31 ± 6.52 528.00 89.57 ± 0.04

FHDDM 220.40 ± 76.00 2.97 ± 0.22 0.03 ± 0.22 0.03 ± 0.22 15.90 ± 3.99 528.00 89.57 ± 0.04

CUSUM 300.61 ± 50.30 3.00 0.00 0.00 11.90 ± 3.51 128.00 89.57 ± 0.03

PageHinkley 559.27 ± 78.99 2.95 ± 0.26 0.04 ± 0.24 0.05 ± 0.26 9.89 ± 2.73 136.00 89.36 ± 0.04

DDM 446.23 ± 82.12 2.96 ± 0.20 0.33 ± 0.58 0.04 ± 0.20 12.57 ± 2.98 136.00 89.29 ± 1.15

EDDM 949.61 ± 68.94 0.70 ± 0.73 6.33 ± 1.96 2.30 ± 0.73 9.35 ± 3.14 136.00 88.32 ± 0.53

RDDM 321.80 ± 50.94 2.98 ± 0.14 0.61 ± 0.96 0.02 ± 0.14 15.66 ± 4.30 7224.00 89.63 ± 0.04

ADWIN 550.01 ± 211.60 2.36 ± 0.66 697.51 ± 19.71 0.64 ± 0.66 > 1180.0 > 1400.00 72.72 ± 0.47

SeqDrift2 445.33 ± 192.27 2.75 ± 0.46 278.82 ± 47.50 0.25 ± 0.46 36.20 ± 5.71 > 14790.0 76.54 ± 2.25

HDDMA-test 295.85 ± 83.23 2.98 ± 0.20 0.17 ± 0.47 0.02 ± 0.20 34.56 ± 6.34 160.00 89.58 ± 0.05

HDDMW-test 259.17 ± 87.21 2.95 ± 0.26 0.05 ± 0.22 0.05 ± 0.26 29.22 ± 6.05 136.00 89.56 ± 0.03



2) Real-world Data Streams: There is a consensus among

researchers that the locations and/or the presence of concept

drift in the ELECTRICITY, FOREST COVERTYPE, and POKER

HAND data streams are not known [4], [9], [20], [29]. This

implies, in turn, that the drift detection delay as well as the

false positive and false negative rates cannot be determined

since the knowledge of the drift locations is necessary in order

to evaluate these quantities. Consequently, our evaluation is

based on the overall accuracy and the number of alarms for

concept drifts issued by each drift detector. We have also

considered blind adaptation and no detection approaches as

benchmarks for our experiments. In the blind adaptation, the

classifier is retrained ab initio at every 100 instances. The

classifiers are trained without drift detectors in the case of no

detection. A window of size 25 was selected for both MDDM

and FHDDM; our experiments have shown that this choice is

optimal in terms of accuracy.

Table V presents the experimental results for ELECTRICITY,

FOREST COVERTYPE, and POKER HAND data streams with

the Hoeffding Tree (HT) and Naive Bayes (NB) classifiers.

Firstly, the Hoeffding Tree classifier showed higher classifi-

cation accuracies compared to Naive Bayes when executed

without drift detector. This suggests that the Hoeffding Tree

classifier could branch out and adequately reflect the new pat-

terns. Secondly, both classifiers achieved higher classification

accuracies by using drift detection. Although this observation

indicates that using drift detection methods is beneficial com-

pared to the no detection case, it does not necessarily mean

that a drift detector outperforms the others. Indeed, in a recent

study by Bifet et al. [10], it was found that blind detection has

the highest classification accuracies, against the ELECTRICITY

and FOREST COVERTYPE data streams. Based on multiple

experiments, Bifet et al. [10] concluded that this behavior may

be explained by the temporal dependencies in between the

various instances of the streams. As shown in Table V, a drift

detection method with a higher number of alarms usually led

to a higher classification accuracy. In such a case, a classifier

learns from a small portion of the data stream where almost

all instances are labeled with a common label (this refers to

temporal dependencies among examples as stated by Bifet et

al. [10]). To support this observation, as mentioned earlier, we

considered a blind adaptation as a benchmark. As shown in

the same table, the blind adaptation led to the highest or the

second highest classification accuracies. We further extended

our experiments by running MDDMs and FHDDM with higher

values of δw and δd. Recall that a higher δ implies that the

drift detection technique is less conservative. As indicated in

the table, as MDDMs and FHDDM became less conservative,

the number of alarms as well as the classification accuracies

increased. Therefore, because of temporal dependencies, both

classifiers repeatedly learned from instances presenting the

same labels between two consecutive alarms.

In summary, we concluded that using drift detection meth-

ods against real-world data streams is beneficial. Nevertheless,

we are not in a position to make a strong statement based

solely on the accuracy because (1) the location of the drift

is unknown, and (2) because of the temporal dependencies

in between instances [10]. HDDM and FHDDM consistently

led to higher classification accuracies. Particularly, MDDM

achieved the highest classification accuracies in all cases when

the value of δw increased from 10−6 to 0.001 and 0.01.

VIII. CONCLUSION

Sensor networks, smart houses, intelligent transportation,

autopilots are examples of technologies operating in evolving

environments where experiencing concept drifts over time is

commonplace. In order for the learning process to be more

efficient, concept drifts should be detected rapidly with false

negative rate as small as possible. In this research paper, we

introduced the McDiarmid Drift Detection Methods (MDDMs)

for detecting concept drifts with shorter delays and lower false

negative rates. We conducted various experiments to compare

MDDMs against the state-of-the-art. Our experimental results

indicated that MDDMs outperformed existing methods in

terms of drift detection delay, false negative, false positive,

and classification accuracy rates.

In this paper, we considered incremental learning against

a single stream; and accordingly evaluated the drift detection

methods. However, in most real-world applications, including

sensor networks, one must analyze concurrently multiple data

streams. Therefore, we plan to extend our methods to multiple

data streams by applying Data Stream Processing (DSP)

systems [34]. Further, we aim to investigate streams with

heterogeneous concept drifts, i.e. where different drift types

and rates overlap. We also interested to assess the performance

of drift detection methods against time-series data streams.
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[11] I. Žliobaitė, M. Budka, and F. Stahl, “Towards cost-sensitive adaptation:
when is it worth updating your predictive model?” Neurocomputing, vol.
150, pp. 240–249, 2015.

[12] E. Page, “Continuous inspection schemes,” Biometrika, vol. 41, no. 1/2,
pp. 100–115, 1954.

[13] S. Roberts, “Control chart tests based on geometric moving averages,”
Technometrics, vol. 42, no. 1, pp. 97–101, 2000.

[14] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Brazilian Symposium on Artificial Intelligence. Springer,
2004, pp. 286–295.
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[30] I. Žliobaitė, “How good is the electricity benchmark for evaluating

concept drift adaptation,” arXiv preprint arXiv:1301.3524, 2013.
[31] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neu-

ral networks and discriminant analysis in predicting forest cover types
from cartographic variables,” Computers and electronics in agriculture,
vol. 24, no. 3, pp. 131–151, 1999.

[32] M. K. Olorunnimbe, H. L. Viktor, and E. Paquet, “Dynamic adaptation
of online ensembles for drifting data streams,” Journal of Intelligent

Information Systems, pp. 1–23, 2017.
[33] P. Langley, W. Iba, and K. Thompson, “An analysis of bayesian

classifiers,” in AAAI, vol. 90, 1992, pp. 223–228.
[34] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze, “Revisiting

the design of data stream processing systems on multi-core processors,”
in Data Engineering (ICDE), 2017 IEEE 33rd International Conference

on. IEEE, 2017, pp. 659–670.

View publication statsView publication stats

https://www.researchgate.net/publication/320241820

