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ABSTRACT

A procedure for simulation of digital control systems is
described which uses a simple hybrid arrangement consisting
of the conventional elements of an analog computer and the
digital elements normally provided in the digital panel avail-
able as an accessory from most analog computer manu-
facturers. The method is developed from the basic principles
of the z-transform and the zero-order hold, and applied to the
synthesis of suitable software compensation for a variety of
control problems including some with non-uniform sampling
characteristics. In each case, the response of the simulated
system is compared with a calculated response to confirm
the accuracy and validity of the simulation.
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FIGURES

Block diagram of a digital control system.

Sampling of an analog signal. A - Unit pulse train; B - Analog signal;
C - Product of A and B.

Example of a zero-order hold and one sampling interval delay. Curves
A, B and C are taken from points A, B and C, respectively, on the
diagram.

Operation of two track-hold pairs in tandem to produce a sample, hold
and delay function.

A simple digital control system. (a) Block diagram; (b) Simulation
diagram.

Unit step-response of simple digital system.
Clz)=04221+1.2922+1.9023+1.7827%+1.077°+...

(a) Digital flow diagram for D(z) of Equation 14; (b) Simulation of D(z);
(c) Complete system.

Minimal prototype response to a unit step input for the system of Fig. 7.

Three methods of simulating a digital controller transfer function such as

.D(Z) = _/1__—_BZ_1+CZ-2
I-Dz'-Ez?
Responses of the system of Fig. 7 (c) with digital compensation of
Equation (16).
(a) Step response, C(z)=1.3221+1.68 22+ 1.00 73:1.0027%+...
(b) Ramp response, C(z)=1.32 272+3.00 272 +4.00 7%+ 5.00 4.

(a) Simulation of computer delay by adding one more track-hold pair
(T-H-4); (b) Time relationship of points A and B of (a).

Feedback sampling delay (step input only). (Q,, qQ,, Q, and Qm have
time relationships as given in Fig. 11 (a)).

(a) Two rate digital control system; (b) Simulation circuit diagram;
(c) Digital logic required to generate sampling waveforms ;
(d) Ramp responses and sampling waveforms forn=1, 2 and 4.

Two-plant system with two sampling rates. (a) Both plants in forward
path; (b) One plant in feedback path; (¢) Simulation diagram;
(d) C,(t) and C,(z)+ HOLD outputs (no compensation).

Step response of the two-plant, two-rate system of Fig. 14 using digital
compensation. Curve A - Response using calculated compensation;
Curve B - Improved response found during simulation.



SIMULATION OF DIGITAL CONTROL SYSTEMS ON

AN ANALOG COMPUTER WITH DIGITAL LOGIC

— C. R, Clemence —

Introduction

In the last few years, digital computers have become increasingly important as
controlling elements in cldsed-loop control systems, and with the presently available speed
and capacity, it is practical to control very complex systems or to have one computer
control many systems. With digital techniques, control synthesis differs from that of
continuous data systems because the signals must appear as samples or pulses, and delays
will be encountered due to finite computing times or time-sharing of computer facilities.
Since any delay usually tends to create instability, the theory of stabilization of this type
of system has been well developed and many control loops of various degrees of complexity
are now in existence. Because of uncertainties in regard to the physical characteristics
such as inertia, friction, orifice flow, heat transfer, etc., of the devices being employed, the
design procedure for all but the very elementary system calls for a simulation and the
setting up of stability criteria tailored to the expected variation of the uncertain character-
istics. Digital computers have many advantages for data processing and the performance of
routine calculations, but are, in general not well suited to this type of simulation because
the digital program is usually an artificial sequence of steps which bear little relation to the
physical processes involved. On the other hand, the analog computer can provide real-
time (or time-scaled) solutions to the differential equations and a “live-model”’ presentation
which makes it eminently suitable for representing the continuous-data part of a proposed
system. The purpose of this paper is to show that the modemn analog computer can be
adapted to represent the digital part also, in a manner which allows the engineer to
manipulate the software by changing digital parameters or introducing new sampling rates,
to determine the effects of computer speed or of time-sharing, and often to make a
significant improvement in the system response by calibrated potentiometer adjustment
while observing the result on an oscilloscope display. Since one of the problems in
simulation is to confirm that the simulation truly represents the device being simulated,
theoretical calculations will be made in parallel and comparison of mathematical and
simulation results will be provided throughout.

Simulation Requirements

The simulation of digital software has been made possible by the recent introduction
of digital logic as an analog computer accessory. This circuitry has been designed by the
computer manufacturers primarily for the purpose of manipulating analog parameters in
a purely analog representation of a problem, but it can be easily adapted to control of the
computer elements in a manner which will produce a simulation of digital-control software.
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Figure 1 Block diagram of a digital control system

The methods to be used may be derived from a consideration of the software character-
istics. Since the digital calculation is based on pulses (samples), the pulse transfer function
of any dynamic process (the ‘plant’ in Fig. 1) can be stated as a z-transform, thus

G(z) = G¥s) where T is the sampling interval

=T
_ 4 + alz‘l +a22'2 + ...
1+blz'l +bzz'2 + ... (1)

To produce any desired output such as a least-squared error, ripple-free response, or zero
steady-state error, sampled data theory shows that the controlling element, D(z), must
have a transfer function of the form

Ez(z) ¢, t clz‘l + czz‘2 + ...
E,(z) 1 +dz ' +dz2+... (

D(z) =

Placing &’T = 7z and converting (2) to the time domain

E,(t) = c,E,(1) + ¢ E(t-T) + ¢,E (t-27) + ...

- [d,E,(t-T) + d,E,(t-27) + ...] 3)

Equation (3) shows that the digital software is based upon a manipulation of present
and past samples and so requires memory capacity and an arithmetic capability. It is
apparent also that the simulation requires a timing system to produce the sampling
interval and to provide delays such as may be found in the real system. Thesc requirc-
ments can be met by appropriate use of analog computing elements controlled by the
digital logic in the manner to be described.

Operations of Sample, Hold and Delay

Ignoring the arithmetic operations for the moment, the fundamental operations of
a control device, D(z) of Fig. 1 as represented by Equation (2), are to sample, to hold,
and to delay. It is appropriate to discuss these concepts briefly and also some basic
principles of the z-transform which are most pertinent to the simulation methods to be
developed. The sampling of any analog signal can be described mathematically as the
product of a train of unit impulses, and analog information, as shown in the curves A



Figure 2 Sampling of an analog signal A — Unit pulse train;
B — Anralog signal; C — Product of A and B

and B respectively of Fig. 2. The curve C, obtained by an analog multiplier, is the
product thus

R*¥t) = R(t) 35' 8(t - nT) where T = the sampling interval 4)

n= -

Because of the nature of hardware it is often necessary to keep the sample available for

a short period of time. In the digital process, a memory store is used while, in the analog,
the integrator ‘hold’ mode can be utilized to store the value at the instant of sampling
until the next sample is available. This is called a zero-order hold and is illustrated in

Fig. 3. The modulated pulses, A, after passing through a sampling device and zero order
hold are shown in curve B. The curve C is produced when curve B is passed through
another device producing a delay of T, one sampling interval.

PULSE TRAIN

HOLD DELAY

ANALOG SIGNAL

Figure 3 Example of zero-order hold and one sampling interval delay.
Curves A, B and C are taken from points A, B and C, respectively, on the diagram.
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Implementation of Sample, Hold and Delay

It is now appropriate to discuss the manner in which the sampling, zero-order hold,
and the delay can be mechanized on an analog computer with digital logic. A number of
methods have been proposed [1, 2] which usually require very short and accurate sampling
pulses in order that one amplifier only may perform both the sample and hold functions,
but which may accumulate appreciable timing errors as the sample is given successive
delays as required for implementation of Equation (3).

In order to utilize low-cost units and to simplify the timing requirements, a method
of switching the sample-hold devices using square waves rather than short pulses has been
used. (Hereafter these devices will be called* track-hold "’ as being more appropriate since
each one “tracks” on one half cycle of the square wave and “holds” on the other half).
This method requires two track-hold devices, acting as a pair, to simulate each sample-
hold operation and each delay. The modes of operation and the connections of the
amplifier-integrators to obtain the track-hold functions are illustrated in Fig. 4. Note that
the first pair provides a sample-hold only, while the second pair provides a delay equal to

one cycle of the square wave,
— <> = SWITCH

: D = D.C AMPLIFIER
|

_——— e

INPUT: OUTPUT| OUTPUT
" OF ! OF
T-H-1 :‘/T-H-z CLOCK
_——
}
1
[}
[}
FF
0] T 2T 3T
IHIT H TlHlTl\ 1?_7
Q 1Q

_IT1* T

T

T-H-I o T-H-2—— 4

Figure 4 Operation of two track-hold pairs in tandem
to produce a sample, hold and delay function.



—

Thus the sampling frequency is equal to that of the square wave and the instant of sampling
occurs when the second unit of any pair is switched to “track”. This method requires
more analog equipment than the single amplifier method but sampling errors, timing

errors, and other equipment problems are virtually eliminated and logic hardware require-
ments are simplified considerably. Note also that, although the hold operation precedes
the delay in this case, the effect is the same as it would be if the delay were preceding

the hold.

The additional amplifiers necessary for this method are not a serious disadvantage
since sample-hold units are now readily available at quite reasonable cost, or, in any
problem set-up, there is likely to be a number of unused amplifier-integrators in the
computer.

Digital Logic

As will be seen in the diagrams to follow, the digital logic consists of pulse generators
(clocks) flip-flops, variable monostable multivibrators, and some AND and OR gates. All
of these items are generally included in the accessory digital logic but, if not, they are
available commercially in modular form usually directly compatible with the computer
to be controlled.

Principles of z-Transforms

Sampled data theory and the z-transform are very well developed in a number of
textbooks [3, 4, 5] some of which are listed in the references, so that no general outline
need be given here. However it may be useful to discuss very briefly the unit step, the
zero order hold, and the unit ramp to provide some background for later calculations and
to indicate the inherent simplicity of the z-transform approach.

(a) The Unit Step Function

It has been noted above (Equation 4) that a modulated train of impulses may be
represented as:

R¥*(t) = R(t) +§ 8(t-nT) where T is the sampling interval

n=-w

The Laplace transform of this is the ‘pulse transfer function’:

+ oo
R¥s) = R(s) s e™Ts (5)

n=-e



Then, for unit impulses starting att =0
5 T
R¥*(s)=(1) 33_0 egtis

=] +e—Ts+e-2Ts.,.e-3Ts+...

1
= (6)
1-¢T5

Note that equation (6) is also the Laplace transform of a unit step function which has been
sampled at intervals of 7. For ease of manipulation, a substitution of z =eST has been
made so that for a step,

R(z) =—L = = )

which is known as the z-transform of a unit step function. Thus the z-transform of any
time function, R(t), is the same as the Laplace transform of R*(t) with the change of
z = ¢5T as indicated.

(b) Zero-order Hold

The Laplace transform of the zero-order hold is, of course, simply the transform of
a rectangular pulse of unit amplitude and length T,
e—sT

Lil(t) - 1(¢t-T)) = SL - £

1 'Z-] (8)

(c)_The Unit Ramp

The unit ramp is often used as a test signal and is defined as that function which
increases by one unit per unit of time. The pulse transfer function is:

4 co T
R*(s)=20 nT e™s

n=

=0+TeT+ 27?5+ 3735+ .
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This may be thought of as the product of two transfer functions, a step of amplitude 7,
and a unit step delayed by 7. The product is:

T X ST B 75T
] - e-ST 1 - e‘ST (] - e'ST)Z
-1
_ Tz _ Tz 9)
(1-771) (z-1)?

(d) Other Time Functions

The transforms of a number of time functions are listed in tables or may be derived
as required. For example, transforms of K(1 - ¢'dt) are as follows:

The Laplace transform is: L [K(1-¢%)] = K3 __
s(s +a)

-aT)Z

and the z-transform is: Z[K(1-€9) = K (1-e
(z-1)(z-¢9T)

where T is the sampling interval as before.

Illustrative Example

A block diagram of a simple system is shown in Fig. 5 (a) where the first sampler may
be an analog-digital converter, the gain K and the second sampler represent the digital computer
and G, (s) = =42 represents the plant. A ‘hold’ circuit is placed between the computer

s(s+a)
and the plant because the latter is a ‘continuous-data’ device such as a D.C. motor and does

not operate well on samples. Such a system may be simulated as shown in Fig. 5 (b) in which
one track-hold pair, T-H-1, and the potentiometer, K, are used for the digital computer and the
hold, while the plant is represented in analog form. That this is a true simulation can be readily
verified by calculation of the output and comparison with the output of the simulated system.
To do this, take the z-transform of the computer, the hold circuit, and the plant, as

esT a_ ]
s  s(sta)

=K[ 77! ) 1 (I-e'aT)z'l ]
]- Z-] a ]- e-aT Z-]
-1 -2
(1-21)(1-0.60621)

ZIK G, , Gi(s)]=Z[K_1-

wherea = 25, T = 0.02, K = 100.



DIGITAL
_/R(z) FCOMPUTER~}—HOLD —- PLANT—| , C*(8)=C(2)
- —_—— e m————
1 T T 1
— K —"— Gho (5) G, (S) '
R(S) C(s)
(a)
l-DiaiTAL COMPUTER-sp———PLANT————
+ HOLD
INPUT TEST T-H- | @
FUNCTION A B
[ I )
G |a
CLOCK F FJ
COMPUTER
TIMING
RESET SYSTEM
(b)
Figure 5 A simple digital control system
(a) Block diagram; (b) Simulation diagram
Also
’ KG Gl(Z)
Clz) = - R(2) (11)

1+ KGy Gi(z)

1

l-z']

For a step position input: R(z) = and, using the results calculated in Appendix A:

az)=04271+12972+ 19073 +1.7827% +1.0727 + ...

Note the agreement of these figures with the values of the samples shown on the photograph
in Fig. 6 which contains oscilloscope traces of the output, C(t), and the output samples,
C(z), with a hold circuit applied to delineate the sample values.



Figure 6 Unit step-response of simple digital system
C(2)=04221+1.2922,1.9023+1.78 7%+ 1.07 7+ .

Minimal PrototypewL Design

It is evident that the response shown in Fig. 6 is too oscillatory to be practical. The

transfer function of a system having minimal prototype response to a step input is
defined to be )

K(z) = 92 = ;1 (12)
for a transient response of one sampling interval.

Equation (11) may be rewritten to include a digital compensation function, D (z), so that:

C(Z)= D(Z) K Gho GI(Z) R(Z)
1+D(z) KGpy, Gi(z)

and, re-arranging

D(z) = 1 K(z) (13)
K Gy, Gilz) 1-K(z)

+ Minimal Prototype Design requirements for a step input are, in brief:
(a) Steady-state response to be zero.
(b) Transient response to be in minimum time,
(c) Settling time to be finite.
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Substituting equations (10) and (12) in (13)

-1
1+ 086271

and using the form of equation (3)
E,(t) = 236 E (1)-1.43E,(t-T) - 0.86E,(t- T)

where E1 and E- are the input and output, respectively, of D (z), when converted to the
time domain. Equation (14) may be represented by a digital flow diagram as shown in

Fig. 7(a) which, in turn, may be simulated as shown in Fig. 7(b). As indicated above, the
first track-hold (T-H-1) performs the “‘sample” and “hold” operation of the flow

diagram and does not create any sample delay while T-H-2 and T-H-3 each provide a delay

of one sampling interval. Once again the calculated output for a step input may be compared
with the actual output of the simulated system (Fig. 7(c) ) to confirm the accuracy of the
calculations and the validity of the simulation. The calculated output, using equation (12)
is:

C(z)=K(z) R(z)
=z'1 X __1__
]-z'l

=71 4 z'Z + 277+, (15)

which means that the output must have zero error at every sampling instant after ¢ = 0.
This is shown to agree with the simulated output (Fig. 8) where the sampling instants are
indicated by the zero crossings of a super-imposed rectangular wave. This is an ideal
response so far as the computer is concerned since the output of the plant at every sampling
instant has no error and satisfies equation (15) exactly. However the intersample error
(called “ripple™) is very large, and would remain undetected without use of an analog
simulation such as described or use of a digital computer program utilizing partial delays.
Note the clear picture of the response obtained by analog means.

Ripple-Free Systems

Methods are available for design of ripple-free systems which reach steady-state in
a minimum number of sampling intervals. A digital program for the system discussed
above which will produce a ripple-free response to either a step or ramp input can be
designed.
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0.86
DELAYOFT ()

@,
% (4
E,l0) , —|088Ey (t-T) E,* (£)+HOLD
————— SAMPLE] HOLD
2.36 “l1L4a3E* (£-T)
DELAYOFT T:=0.02
1.43
(a)
0.86
T-H-3
B A
lo Ta
E, (t) ' E,* (t)+ HOLD
: T-H-1 ~ |o|\ [ \ | _—°
./
LH_ 0.236 l/ IO/
2 Iq \
T-H-2
 0.143 ? ‘? —{ 0.02 |+—
g g um s U
(b)
A c(z)_
T=0.02

100
UNIT STEP | 100 55 . cit)
K
INPUT ! D{z) < 0.25

(c)

Figure 7 (a) Digital flow diagram for D(z) of Equation (14)
(b) Simulation of D(z); (c) Complete system
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Figure 8 Minimal prototype response to a
unit step input for the system of Figure 7

Calculations are.given in Appendix B and result in a digital compensator with the transfer
function

D(z)=_ 3123 - 374521 + 1123772

(16)
1-032421 - 0676272
Then, using the form of equation (3)
Ex(t) = 3.123E1(t) - 3.745E\(t-T) + 1.123 Ex(t-2T)
+ 0.324 E2(t-T) + 0.676 E2(t-2T) an

which can be simulated by one of the methods shown in Fig. 9. The responses to a step
and a ramp are shown in Fig 10 (a) and (b) respectively. To confirm the simulation,
the values of the response curves at the sampling instants may be compared with the
calculated values which are obtained using equation (3) in Appendix B.
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D
E ) [ on- ® "~ >Eo*(t)+HOLD
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o
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|
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Eo™ (t)+ HOLD
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Figure 9 Three methods of simulating a digital controller transfer function such as
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(b)

Figure 10 Responses of the system of Figure 7(c) with digital compensation of Equation (16)
(a) Step Response C(z)=1.322"'+1.68 72,1.0023+1.002%+. ..
(b) Ramp Response C(z)=1.32 2%+ 3.00 73,4.0027%45.0025+. ..

C(z) (step)

K(z) R(z) (step)

_ -1 -2 -3 1
(1.324z7* + 0.353z 0.674 z )_1__2_7

_ 13270 + 16822 + 10023 + 100z + ... (18)

and for the ramp input

C(z) (ramp) = K(z) R(z) (ramp)
_ -1 2 -3 -1
= (132471 +035372 - 0.67427) (—1—271—)7
— 13272430023 +4002%+5.002°+... (19)

In the photographs, the C (z) output (obtained by a sample-hold) is super-imposed on
the ((¢) output to indicate the output sample values. (The first sample, z, is at the
beginning of the step and the ramp in each case).
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Computer Delay

So far, no account has been taken of the delay contributed by the finite computing
time required by the computer to complete the software program. In most cases, this
delay is negligible but, if not, it may be simulated by inserting an extra track-hold device
as shown in Fig. 11(a) with its mode controlled by a monostable circuit which is, in turn,
controlled by the primary sampling wave. The effect is illustrated in the accompanying
photograph Fig. 11 (b).

T-H-3
B A
TQl Q
T-H-1 | T-H-4 PLANT
A B A A B B
Tia| T0| T-H-2 Um Tam
TEST
INPUT A B
T T Q I LI LI LI
Q 'Q 0] T 2T 3T
VARIABLE FF VARIABLE O —JL—1 .
CLOCK - MONOSTABLE -
q, qQ q, va, t ¢ 4 ¢

O+d T+d 2T+d 3T+d

(a)

(b)

Figure 11 (a) Simulation of computer delay by adding one more track-hold
pair (T-H-4); (b) Time relationship of points A and B of (a).
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The same procedure can be used to simulate sampling delay (or dead time) such as might
be caused by the time required to analyze output of the plant. One method of simulating
a delay in the feedback is shown in Fig. 12.

T-H-4
B A
T,Ta

Q

T-H-1
A B

PLANT

STEP INPUT  Gm  Qm

Figure 12_Feedback sampling delay (step input only) (Q,, Q—,,
Qm and Qm have time relationships as given in Figure 11 (a)).

Multi-Rate Sampling

It has been found that the methods described above are also applicable to the
simulation of multi-rate systems. A situation which commonly occurs is one in which
the error sampling interval is fixed by physical considerations of the plant but additional
time is available on the digital controller. An example is shown diagrammatically in
Fig. 13 (a) where the error has been sampled at interval T but D( zn) operates with a
computing interval of T/n (n is -an integer) and supplies output samples to the plant at
the new (faster) rate. The circuit diagrém of the simulation, which follows the pattern of
Fig. 9 (b) is given in Fig. 13 (b) with a table of controller constants (see calculations in
Appendix C) required to obtain minimal prototype response to a ramp input. (The
error at the sampling instants must be zero). The method of generating the required
track-hold waveforms using the digital logic is shown in Fig. 13 (c) and the outputs,

Qn , Q1, Q2 and Q4 are shown as traces A, B, C, and D respectively of Fig. 13 (d).

The corresponding responses of the simulated system are given as traces E, F and G

for n= 1, 2 and 4 respectively, and are seen to have the ‘“‘zero error at sampling instants”
characteristic as required. The “gate” in the error path, Fig. 3 (b), controlled by Q m

is necessary because the mathematical model requires that when the controller operates
at a faster rate, input at those new sampling instants which do not coincide with the
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Figure 13 (a) Two rate digital control system; (b) Simulation circuit diagram;
(c) Digital logic required to generate sampling waveforms;
(d) Ramp responses and sampling waveforms for n=1, 2, and 4. (see text).
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original (slow) sampling instants, must be zero. Thisis obtained by gating the error signal

at the slow rate so that its value is zero except when required. The mathematical model
could, of course, have been altered to suit but this results in a more complicated calculation
without improving the simulation demonstration. The simulation may be verified by
calculating the series expansion of any of the step or ramp outputs using

C(zn)=K(zn) R(zn") (20)

For example, when n = 2, K(z,,) is given in equation (2) of Appendix C, and the input is

a ramp )
-2 7 "2
C(z,) = I-2z,~ [].5 22'1 -22'2:| 2
1-22'1 (I-z '2)2

2

15z 3. 22'4

— 2

(1-z,71)?

=1523 + 202,% + 252,70 + ... @0

which agrees with the simulation result given in Trace F in Fig. 13 (d).
A Two-Plant Two-Rate System

Another type of multi-rate problem may occur when two or more analog devices
(plants) with different sampling rates are in cascade or one plant is in the forward loop
and one in the feedback loop. Such systems are illustrated diagrammatically in Fig. 14 (a)
and (b) with the simulation diagram shown in 14 (). The simulation represents either
system the only difference being the point which is considered to provide the output
C,(z) or C,(z). Asmay be seen in the diagram, C,(z) may be examined by applying another
sample-hold circuit, T-H-3, as shown while C2( z) is available as the output of T-H-2.
Various methods may be used for calculating the output of such a system, of which the most
straightforward is given by Kuo [5] and requires use of the “modified” z-transform, Z, .
Specifically, for this system

-nTs/N nTs/N
Cilz) = Hz) %) Zle" IN G(s)1 [ e R(s) 2
I_rﬁ:v_ol Z[e-nTS/N G(S}] Z[enTs/N H(S}]
n=

This has been worked out in Appendix D where calculations have been carried far enough
to remove any possibility of undetected error. The photograph in Fig. 14 (d) shows the
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rCZ(Z)
|
5 C{s)
— HOLD G(s)=2 34('350 __/T_l_ HOLD }— H(S):% !
T/N
. C{2)
T...___
(a)
Ca(s)
50
— D G(s)=2
T HoL ) S +50
/N
25
S)z: —
| H{ S HOLD : T
! |
r, Cit2) 1 Ca(2)
| S | i,
T
(b)
050 ;—02(2)
| 0.0l T-H-2 ] | 0.0l C,(s)
T-H-1- 1 A 5
A B 0.25 Ci(t)

(c) ts 1o

(d)

Figure 14 Two-plant system with two sampling rates

(a) Both plants in forward path; (b) One plant in feedback path;
(c) Simulation diagram; (d) Cl( t)and C 1(z ) +HOLD outputs(no compensation).
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C,(t) and C,(z) outputs with a sample-hold circuit applied to delineate the values at the
sampling instants. These may be compared with calculated values which are as follows
(see Appendix D) using an input step of 2 units

C,(2)= 126472 + 2744773+ 34622% + 3.114 75
+212920+ 1255277+, .. «1969717+ . (23)

Note the good agreement throughout the series up to z'] 7 which is within measurement
error on the oscilloscope trace. As may be seen, the system, though not unstable, is quite
oscillatory, and would benefit from some digital compensation. The exact procedure to
use for this calculation is not immediately apparent but, on a trial basis, one may utilize
some of the calculations already performed and demonstrate the particular usefulness of
the simulation when used in conjunction with a minimum of calculation. It is convenient
to lump the two plants together and use part of the denominator of equation (22)

Glz) H{z) =§=5;1 2[e"TN Grs)1 z [TV pys) )

=_0197 (z+221 See Equation 6, Appendix D
SRy (See g et
Following the procedure as given in Appendix B, (substituting Gfz) H(z) for G(z)), it is found
that suitable digital compensation would be

D(z) = 2.35-0.777"

1 +0917" 24)

When this digital flow equation is simulated using the diagram of Fig. 7 (b) and connected in
the system at the slow sampling switch, T, in Fig. 14 (a) the output response, C,(z), to a step
is shown in curve 4, Fig. 15 where the output is sampled as before to delineate the values.

Figure 15 Step response of the two-plant, two-rate system
of Figure 14 using digital compensation.
Curve A - Response using calculated compensation
Curve B - Improved response found during simulation.
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While this response may be acceptable, it is a simple matter to manipulate the coefficients
of the simulated digital software, and discover the near dead-beat response shown in
Curve B.. The new software constants can be read off the dials directly and in this case
the dead-beat digital compensation is

-1
_ 1.78 - 078
D(z) = z
1+070z1

(25)

Conclusions

It will be evident that there are many advantages in simulating digital control systems in the
manner described particularly when the effects of multi-rate sampling are to be investigated.
The complexity of the mathematics for multi-rate systems for even the simple examples
demonstrated is rather frightening and it is easy to predict that it becomes quite unmanageable
as the number of rates and the order of the plants is increased. On the other hand, the

analog computer with digital logic can easily simulate several sampling rates of any reasonable
ratios while representing the plants in conventional fashion and can present a complete
“live-model” system so helpful in obtaining an insight into dynamic characteristics. In

many cases, a complete mathematical solution is no longer necessary, and excessive reliance
on mathematical formulae which often mask real results is reduced.

One other aspect which is worth mentioning is the educational potential of the
technique particularly when used with a multi-beam oscilloscope as was done in the current
study. For greatest benefit, the student should have some prior acquaintance with digital
computers and their associated equipment, and with z-transforms. With this equipment,
fundamental concepts of sampling, holding, partial and interval delays, acquisition time,
compute time, overloading, etc., can be demonstrated and are more readily understood
because they can be “seen” and manipulated. Then, as the student progresses to setting
up and solving problems, the almost direct correspondence of the mathematics and the
hardware is particularly advantageous in the learning process.
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APPENDIX A
Calculation of Output of a Closed-Loop Digital System

From equation (11) of text

K Gy, G, (2)
1+K G G,(2)

az) = R(2)

Then, using equation (10) of text, and a unit step input,

0.424z7 +0.3642
1-z1)(1-0.606z"
o - =7 ) 1
14 042427 + 0364272 -z
(1-z71)(1-0.606z7)

042477 +0364z2  y !
1-1.182z7 4097022 ~ 1-z7

Simplifying by long division

C(z) = 042z7! +1.29z% +190z7% + 1.78z7% + 1.07z7° + ..



APPENDIX B
Ripple-Free Design of a Single-Rate System

To design a ripple-free system which will achieve steady-state in a minimum number of
sampling intervals, sampled-data theory requires that:

- _K(2) 1
P& =17%m 6@ 0

and that K(z) should contain all the zeros, z;, of G (z), and be of the form:

K@) = (1-2zz7")a, + a, z7l + ---2)

and that 1 - K(z) should contain all the poles, p;, of G (2), plus a factor (1 ~ z71Y' where
n = 2 for an input ramp signal, and be of the form

1-K(@) = (l—piz—l)(l_z-l)n (1 +bl 27l +-aa)

In this case, for the plant transfer function,

_ 042477 (1+0.860z7")
G2 = (1-z1(1-0.606z7") v

and an input ramp, a digital compensation network suitable for illustrating a simulation will
be derived by taking

K@) =2z'(1+0860z7")(a, +a, z7")
and

1-K@) = (1-z1)2 (1 +b,z7")

in which the values of a,, a, and b, are found by equating coefficients of like powers of z to
obtain

a, = 1.324

a, = -0.786

bl = 0.676
whence

Kiz)= z'(1+0.860z7")(1.324-0.786 z™h
(3)
= 1.324z71+4+0.3532z2-0.674z73

and

1-K@) = (1-z1)2 (1 +0.676z7") “@



then K |
— z
D@= 1Tk C@

_ |z (1+086027)(1.324-0.78627) | x (1-z")(1-0.606z"")
(-z1)? (1+0.676z7") 0424z 1 (1+0.860z7")
)

3.123-3.7452z7' +1.123 z?
1- 0324z" -0.67627




APPENDIX C

Compensation Design for a Multi-Rate System

For a multi-rate system such as shown in Fig. 13(a), and an input signal of R(s) = L

K
suitable system transfer function has the form: §
(1-2z,~M* -1 -2
K(z,)) = —4— @,z," +az, + ----)
(-2,

When the input is a ramp, R(s) = SLZ and equation (1) becomes

1-2," | 41 -2
K@) =\ —"—| (P~ 2z, - %)
l—zn

Further, it can be shown that the compensation network

1 K(z )
D(z ) = n
n G(zn) 1- K(zn")
and
K(zn”) =2z, -z
so that

1- K(zn”) 1-2z, "+ z, "
= (1- zn'")2

Let the z- transform of the hold circuit and the plant be

1

G(z,) = Z[l = e"ST/n] [ a ]_ (1- zn-l)(l = e—aT/n)%l_l
n s sta (I—Zn—l)(l—e"ar/"z"')
(1- e—aT/n)Z,i

_ ,-aTn _, <1
l1-e /zn

Then, substituting (5), (2) and (4) in (3) the digital controller is found to be:

B "Zn_rl ’ +1
1 - eaTin, -1 1-zn-1] [nn z, ' - zn_ﬂ
n -
o X
(1-eTim g, (1-z,™M)?

D(zn) =

_a - e z, ") n_;l!-_l - zn—El

(1 - e-aT/n) a - zn-l)z

(1)

(2

3

4

(5)



C-2

Taking a = 6.90, T = 1.0 sec. (selected for convenience)

1-0.001z! 2.00-2z"! 2.001 - 1.003z,~! +0.001 z,72
b@) = 0.999 l X -11 2 - l l
' (1-27") 1-2z°1 + 272
_ -1 -1 _ -1 -2
D) = 1-0.0322, % 1.50 - z, _ 1.55-1.080 z, +0.033 z,
2 0.968 (1- zz“l)2 1- 222'l + 22‘2
1-0.178z,! 1.25-2z,"! 1.52-1.49z "' +0. -2
DG,) = z, z, _ 1.49 z, 219 z,

X
0.820 -z, -2z, 1 +2z,°



APPENDIX D

Calculation of Output for a Two-Plant, Two-Rate System

For the system shown in Fig. 14(@) with N=2, T=0.02

N-1 ]
H(z) z Z [e-"TS/N G(s)] VA E,»"TS/N R(s)
C] (Z) — n=o L -

N-1 -
1 + Z Z l}—nTS/N G(S)]Z '}nTs/N H(si
n=o

where G (s5) and H(s) include their respective HOLD circuits.

Z[e—nTs/N G(sil =7 l}—nTS/Z (1 - e—TS/2)100]

s(s + 50)
-z 100 100
m . s(s+50) m s(s + 50)
m:ﬂ m-—l ﬂl
2 2
forn=0 = 2- 1 _ e_l_— _2r 1 _ %5 1_ 0476
z-1 z-e¢™! z-1 z-et z-0.368
forn =1 —of 1 e o[ 1 e . _0.788
z-1 z-e™ (z-1 z-e' | z-0.368

and
z {e”Ts/N H(s)] =22, [—(————)25 L=l ] =@-1 Z, [%J
m n m=4

forn =0 - (y-1) 05 _ 05
" E-D ooy~ 2o
forn=1 = (Z—l) 025(z-1H+0.5 = 025(@z+1
(2_1)2 z-1
and
zl_;"TS/NR(sEl =22 l] =22 forn=0andn=1
si, .n z-

|
N
N
(7
|
1
3
|
=
th

and T
z[H6)] = E_(sz—l] - o5

(1

(2

(3)

(4)

(5)



D-2

Substituting equations (2), (3), (4) and (5) in (1),

0.5 [ 0476 _ y 2z _ 4 0788 y 2 ]
C(z) = z-1 z-0.368 z-1 z-0.368 z-1
1 0.476 05 . 0.788 025z +1)
1+ X + X
7-0368 z-1 z-0.368 z- 1

1.264 z
_ -1 (z-0.368) )
[+ 0.197(+220) @
- 1)(z - 0.368)
_ 1.264z -

z3 - 2,171z + 1974z - 0.803

1264272 4+ 2.744z73 + 3.462z7% + 3.11427°

+2.1292z76 + 1.255z77 + 1.022z7% + 1.45127°
+2.1412z71° 4+ 2605z71 + 25942712 + 22092713

+1.768 271 + 15602715 + 1.671z7' + 19692717 + ----



