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SO MMAIRE 

Les methodes par Clement fini et  par difference finie 

utilisCes pour rCsoudre les problkmes de transfert  

de chaleur et de masse traitent habituellement l a  de- 

rivCe par rapport au temps en s e  basant su r  des calculs 

en d e w  points du temps. Dans les probl'emes de gel 

et de dkgel, les dquations sont non linkaires. L1absence 

de linCarit6 es t  due 'a la  ddpendance des propri6tCs du 

materiau sur  la temp6rature et  11humidit6. Avec la 

mCthode des calculs en deux points du temps, i l  faut 

habituellement proceder par itbration, afin dlobtenir 

des resultats prbcis. 

Pour les situations non lineaires de ce type, on peut 

slexempter du processus dliteration en utilisant un 

calcul en trois points du temps, dans lequel on 6value 

les propriCtCs du materiau au point intermediaire. Le 

calcul le plus connu de ce type est  cependant sujet 'a 
oscillation, ce qui restreint  grandement son utilitC. 

- 

Le present document traite dlune nouvelle m3thode de 

calcul en trois points du temps et  la compare, en ce 

qui a trai t  'a la  precision et  'a la  susceptibilit6 'a 1'0s- 

cillation, avec plusieurs autres mdthodes de calculs 

basdes sur  la variation reguli'ere par rapport au temps. 
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ABSTRACT where (81 is the vector of nodal 

Finite element and finite difference methods temperatures, {8} represents time derivatives 

for heat and mass transfer problems are and the thermal capacitance, and conductance 

usually based on two-time-level schemes for matrices [C] and [K] are temperature 

treating the time derivative. In freezing dependent. The most widely used time- 

and thawing problems the equations are non- stepping procedure is the Crank-Nicholson 

linear. The non-linearity arises because of central time difference scheme: 

the dependence of the material properties on At m+l 

both temperature and moisture fields. With 
[c] i e ~ ~ + l  - [cl {elm + [K] (61 

two-time-level schemes it is usually At m 
+ [K] {el = 0 

necessary to iterate the solution in order 

to obtain accurate results. 

For non-linear problems of this type 

iteration can be avoided by using a three- 

time-level scheme with material properties 

evaluated at the intermediate time level. 

The most well known three-time-level scheme 

is, however, subject to oscillation which 

seriously limits its usefulness. 

This paper discusses a new three-time- 

level scheme and compares it with several 

other time marching schemes from the stand- 

point of accuracy and susceptibility to 

oscillation. 

For non-linear heat flow problems such as 

occur in freezing and thawing soils, spatial 

discretization using either finite elements 

or finite differences leads to the system of 

equations 

[C] + [K] = 0 (1) 

While the simplest procedure to accommodate 

temperature-dependent thermal properties is 

to update the coefficient matrices at the 

beginning of each time step using the known 

thermal properties from the old time level, 

to ensure accuracy and convergence it is 

preferable to use values [c]'"+~/~ and 

[K] m+1/2, determined at an intermediate time 

level. Because the thermal properties are 

functions of the unknown temperatures, 

{81~+', iteration is required for solution. 

It is generally conceded that, for one- and 

two-dimensional linear heat flow problems, 

direct solution techniques are more 

efficient. 

Direct solution methods can be retained 

for non-linear problems by using a three- 

time-level formulation in which the thermal 

properties are evaluated at the intermediate 

time level. A well known three-time-level 

scheme (Douglas 1961) consists in replacing 

the time derivative in eqn. (1) by a 

difference over two-time steps, while the 



temperature vector is replaced by a simple 

average of values at three-time levels, viz., 

2At 
[C] - [C] {elm-' + [K] 

({elm+' + {elm + ie~~-') = o (3) 

This method has been used with finite 

difference schemes by Bonacina and Comini 

(1973) and Bonacina et a1 (1973). A finite 

element formulation for heat transfer with 

phase change is described in Comini et a1 

(1974). Although eqn. (3) is unconditionally 

stable, the method is subject to serious 

oscillations. Comini and Lewis (1976) 

describe an averaging procedure that is 

helpful in controlling the oscillation but 

that does not eliminate it. 

A general method of formulating multi-time 

level marching methods using finite elements 

in time is outlined in Zienkiewicz (1971). 

Assuming an interpolated form for the time- 

dependent temperature vector 

j =m-n 

where ~ e l j  is the nodal temperature vector at 

time level j, and N j  (t) are shape functions 

in time, then applying the Galerkin weighted 

residual procedure to eqn. (1) gives 

Only one weighted residual equation is 

required because the temperatures are known 

at time levels j (m. 

Using quadratic Lagrange polynomials as 

shape functions leads to a three-time-level 

formulation. In terms of the local time 

T = t - tm-l, the element shape functions are 

where A = tm - tm-' 
1 

, and = tm*' - tm. 

Combining eqns. (4), (5) and (6) and 

assuming that [C] and [K] are independent of 

time in the interval tm-I < t < tm+l, yields - - 

[cl [(a-a){elm-l - + slelrn+'] 
b 

A1+A2 + - .  
10 

[K] ((10-3a){01~'~ + (3-26)a . {elrn 

where 6 = A1/A2, and a = (1+6) . (1+1/6). 

For a fixed time step A1 = A = At, 
2 

eqn. (7) reduces to 

(-{81~-~ + 2(01rn + 4(81~+'] = 0 (8) 

Figure 1 illustrates the behaviour of the 

truncation error of the quadratic Galerkin 

three-time-level scheme, eqn. (8), compared 

with that for several other schemes. The 

problem considered is that of one-dimensional 

heat conduction in an homogeneous semi- 

infinite medium initially isothermal at zero 

temperature and whose surface is suddenly 

brought to temperature -1. The grid spacing, 

time step and thermal diffusivity values 

assumed are indicated on the figure and 

correspond to a ~ t / A x ~  = 2.58. In all cases 

the numerical solution was started at time 

level 3At using the analytical solution to 

generate temperature values at time levels 

At, 2At. The figure shows the over-all error 

for the first interior node point. 

As seen in Fig. l(a), the method of 

eqn. (3) results in very large oscillations. 

Although stable, oscillation of this 

magnitude could lead to serious errors in 

problems with time dependent boundary 

conditions or with temperature dependent 
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Fig. 1. Truncation error for a simple heat flow problem. 

thermal properties. The quadratic Galerkin give more accurate over-all results than 

scheme, eqn. (8), gives results shown in Z15malfs scheme when applied to practical 

Fig. l(b) similar to those of the Crank- problems with temperature dependent thermal 

Nicholson scheme, Fig. l(c). The quadratic properties. 
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Galerkin method does, however, exhibit 

slightly greater errors than those of 

eqn. (2) during the first few time steps. 

Results for a three-time-level scheme 

proposed by Zl5mal (1975) are shown in 

Fig. l(d). Although the error of Z15ma11s 

In order to verify the performance of the 

quadratic Galerkin scheme with variable time 

steps, eqn. (7) was applied to the sample 

problem of Fig. 1, using a ratio of succes- 

sive time steps Atrn+l/~trn = 1.1. This 

scheme is slightly superior to that of the 
corresponded to an increase in the parameter 

quadratic Galerkin scheme for intermediate 
aAt/ax2 from 2.58 to 21.0 after 24 time 

times, relatively larger errors occur at 
steps. The results, shown in Fig. 2, 

early times with Z15ma11s method. Both 
indicate that the quadratic Galerkin variable 

Z15malfs scheme and the quadratic Galerkin 
time step scheme is satisfactory. The 

truncation error is, however, somewhat larger 
scheme are distinctly superior to the three- 

than that of the Crank-Nicholson scheme. 
time-level scheme of eqn. (3). Because the 

quadratic Galerkin scheme produces a more Z15malfs scheme is obtained from the 

smoothly varying truncation error, it may general two-step method 



Fig. 2. Truncation error with increasing 
time step. 

with coefficients a. f 3 .  chosen so as to 
J J 

minimize the maximum modulus of the roots of 

the characteristic equation. In this way the 

stability of the scheme for large time steps 

should be improved. 

In terms of the Zienkiewicz two-parameter 

three-time-level scheme described in 

Wood (1978) 

Z15malts scheme corresponds to 

a = $ + a  

B = kj(1 + u) 
2 

(11) 

O < U L l  

which, with u = 1/3 as recommended by ZlBmal, 

gives, 

a = 5/6 

B = 4/9 (12) 

By inspection, eqn. (8) also corresponds 

to eqn. (10) but with 

a = 3/2 

B = 4/5 

In the notation of Wood (1978), eqn. (10) 

is A. stable if a 2 % and B > 4 2 .  The 

method is second order with error coefficient 

C = -1(1/12 + f3 - a/2) (14) 

Thus the quadratic Galerkin scheme, eqn. ( 8 ) ,  

is A stable but the error coefficient is 
0 

c = -(1/12 + 1/20) 

while for Z15ma17s scheme, with a = 1/3, 

C = -(1/12 + 1/36) 

Woods (1978) compared the behaviour of 

several multi-level schemes for the pure 

initial value problem 

- dy - - -y; y(0) = 1 dt (15) 

and concluded that Zlgmal's scheme was 

subject to unacceptable oscillation at large 

values of step length. Wood's numerical 

experiments were repeated and the results are 

summarized in Table 1. Table l(a) for step 

length At = 0.5 shows ZIBmalfs scheme to be 

inferior to the quadratic Galerkin scheme for 

the first three steps. The superior 

truncation error of Zlgmal's scheme does, 

however, show up at subsequent steps. 

Table l(b) shows the results when the step 

length is increased to At = 5.0. In this 

case the quadratic Galerkin scheme produces 

results with a distinctly smaller oscillation 

than that of Z15malfs scheme. As a result, 

the over-all error is also considerably 

better for the quadratic Galerkin scheme. 

Table 1 also contains results calculated 

using the "classical" three-time-level method 

(eqn. (3)) with smoothing as recommended by 

Comini and Lewis (1976). Although smoothing 

is helpful for At = 0.5, for At = 5.0 the 

truncation error and oscillation are nearly 

as bad with as without smoothing. In all 
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TABLE 1 (a) 

Comparison of errors for various one- and two-step methods At = 0.5 

Exact Error (Numerical - Exact) for 1-step methods 
t 

-t 
Backward Crank- Linear 

y=e Difference Nicholson Galerkin 

1 .O 3.679E-01 3.647E-02 -3.961E-03 1.120E-02 
' 1.5 2.231E-01 4.644E-02 -4.779E-03 1.380E-02 

2.0 1.353E-01 4.438E-02 -4.325E-03 1.274E-02 
2.5 8.208E-02 3.772E-02 -3.479E-03 1.046E-02 

. 3.0 4.979E-02 3.009E-02 -2.623E-03 8.056E-03 
3.5 3.02OE-02 2.305E-02 -1.899E-03 5.955E-03 
4.0 1.832E-02 1.718E-02 -1.337E-03 4.279E-03 
4.5 1.lllE-02 1.256E-02 -9.216E-04 3.013E-03 
5.0 6.7388-03 9.039E-03 -6.255E-04 2.088E-03 

Exact Error (Numerical - Exact) for 2-step methods 
t 

-t Comini and Quadratic 
y=e Classical Lewis Zldmal Galerkin 

1.0 3.679E-01 -1.951E-02 -1.9518-02 -7.235E-03 -3.799E-03 
1.5 2.2318-01 -6.957E-03 1.559E-02 -7.435E-03 -5.901E-03 
2.0 1.353E-01 -1.519E-02 1.144E-02 -6.553E-03 -6.188E-03 

2.5 8.208E-02 -4.033E-03 1.429E-02 -5.156E-03 -5.468E-03 
3.0 4.979E-02 -9.230E-03 1.100E-02 -3.840E-03 -4.391E-03 
3.5 3.020E-02 -1.311E-03 9.093E-03 -2.754E-03 -3.321E-03 
4.0 1.832E-02 -5.259E-03 6.704E-03 -1.924E-03 -2.410E-03 
4.5 l.lllE-02 7.002E-05 4.968E-03 -1.318E-03 -1.699E-03 
5.0 6.738E-03 -3.004E-03 3.536E-03 -8.901E-04 -1.172E-03 

TACLE 1 (b) 

Comparison of errors for various one- and two-step methods At = 5.0 

Error (Numerical - Exact) for 1-step methods 
t 

Exact 
Backward Crank- Linear 

-t 
v=e Difference Nicholson Galerkin 

Exact 
Error (Numerical - Exact) for 2-step methods 

Comini and Quadratic 

Classical Lewis Zl5mal Galerkin 



cases the method remains distinctly inferior 

to both Z15ma17s and the quadratic Galerkin 

scheme. 

CONCLUSION 

The quadratic Galerkin three-time-level 

scheme presented here is distinctly superior 

to the usual three-time-level scheme as 

regards to both oscillation and truncation 

error. Although the truncation error is 

slightly greater than that for a similar 

method proposed by Zldmal, the quadratic 

Galerkin method remains usable over a larger 

range of step lengths and, for this reason, 

should be more attractive for practical 

applications. 
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