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ICE AND SNOW MEASUREMENTS

in support of the
OPERATIONAL EVALUATION OF THE NATHANIEL B. PALMER
IN THE ANTARCTIC WINTER ENVIRONMENT

§1.0 INTRODUCTION

The Nathaniel B. Palmer is a 6620 tonne Antarctic research ship commissioned in
March 1992. The vessel was designed to operate continuously in 1 m level ice, and to
penetrate pressure ridges with keels up to 6 m. Figure 1 shows a general view of the
ship. Edison Chouest Offshore (ECO) owns and operates the vessel. North American
Shipbuilding of Larose, Louisiana, a subsidiary of ECO, built it. The Palmer is
chartered to Antarctic Support Associates, who manage it for U. S. National Science
Foundation (NSF).

U. S. Coast Guard Naval Engineering Division (USCG) and Ship Structures
Committee (SSC), and Canadian Coast Guard Northern (CGN) and Transportation
Development Centre (TDC) sponsored an operational evaluation of the Nathaniel B.
Palmer in the Antarctic winter environment. in the region of the Weddell Sea in August
and September, 1992. Science and Technology Corporation (STC) provided the
technical coordination for the project. STC, Fleet Technology Corporation, Melville
Shipping Limited, and IMD performed separate tasks which comprised the broad trials
project. Table 1 lists performing agency, sponsor, and funding level for each of the
tasks. :

The Palmer departed Punta Arenas, Chile, on August 22, 1992, and transited the
Drake Passage to the Weddell Sea, near the South Orkney Islands. After entering the
ice, the ship operated in medium to very heavy pack, -including pressured ice, for 6
days. The ship then transferred to the eastern side of King George Island, on the West
side of the Antarctic Peninsula, and completed 4 days of testing in level ice. The
Palmer returned to Punta Arenas on September 13. Figure 2 is a map of the area of
operation, showing daily ship positions.

The IMD task was to lead the ice and snow measurement program and to report on
the results. The purpose of the ice and snow measurements was to provide the
environmental data required for the interpretation of the ship performance and ice
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load measurements. IMD planned the program, provided the test equipment, and
directed the on-ice activities.

This report describes the ice and snow measurements, and presents the data from the
trials. Separate reports by other project participants [1-4] present the ship
performance, propulsion, and hull loads results.

§2 SHIP MEASUREMENT PROGRAM

The measurement of ship performance in the Antarctic winter environment was a
principal project objective. The performance tests included open water resistance and
maneuvering, seakeeping, resistance in broken ice and level ice, ramming in thick ice
and ridges, and maneuvering in ice. Table 2 lists the ship performance tests
conducted, including test name, time, and location.

Companion project objectives were measurement of ice loads on the hull and the
propulsion machinery in the Antarctic winter environment. These parameters were
monitored throughout the periods of operation in ice, and the respective data
recording system was triggered automatically by preset load levels.

Determination of the effect of ice and snow conditions on ship performance and hull
loads requires that the ship parameters be correlated with the properties of the ice
and snow in which the performance or loads were experienced. For simplified ice and
snow conditions, the measurements required to meet project objectives are listed in
Tables 3 to 6, in order of importance to the interpretation of the associated ship
parameters. Measurements may appear in more than one table. Table 3 gives
measurements which are important for evaluation of performance in level ice. Table 4
concerns broken channel and broken ice fields. Table 5 lists measurements relevant
to ship progress in a ridge. Table 6 lists measurements which assist in the
interpretation of ice loads on hull and propeller. In each table, the ‘ID’ column is the
measurement identity number, and the ‘# column gives the typical number of samples
per site.

The ice and snow conditions in which the ship operated were complex. At each site,
the objective was to characterize the ice encountered by the ship as completely as
possible, within the limitations of personnel safety, ship logistics, and time available
on the ice. Measurements which were incomplete or not carried out are indicated by
‘NA’ or a blank in the tables of results.
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-§3 ICE MEASUREMENT METHODS
§3.1  Thickness (ID 1)

An ice thickness profile is a set of thicknesses at measured distances from the
beginning of the test section, along the line of ship travel. For level ice tests, the test
section was defined by markers thrown from the bridge, and the ice party measured
ice thickness at regular intervals along the edge of the ship track. In heavy floes where
the ship would not advance steadily, the ice party measured thickness ahead of the
ship in holes augured through the ice.

§3.2 Temperature and salinity profile (ID 3,4)

A 9.68 cm diameter vertical ice core was taken at each site. The internal temperature
of the core was measured immediately upon retrieval, at 10 cm intervals. Slices of
core were then cut, and stored in airtight bags.

In the ship laboratory, the core samples were melted and warmed to 24°C. The
conductivity of the melted samples was measured using a Guildline Instruments
Model 8400B Autosal, with a rated precision of + 0.002 ppt. We calibrated the Autosal
using a laboratory standard seawater sample. Guildline provides the following
formula to convert the conductivity reading from the Autosal to salinity [5, 6]

S =ag +ayRT-5 + agRT + agRT1-5 + a4R12 + agR725 +
(1)
(T - 15)*{bg + byRT-3 + boRT + baRT1:5 + bgRT2 + bsRT2-5)/{1 + k(T - 15)}

where 'Sis salinity in parts per thousand (%o)
‘ RT is the conductivity ratio = instrument reading + 2
T is instrument bath temperature, °C

ag = 0.0080 bg = 0.0005

a1 = -0.1692 | by = -0.0056

ap = 25.3851 , bo = -0.0066

a3z = 14.0914 : bz =-0.0375 (2)
ag = -7.0261 bs = 0.0636

ag = 2.7081 bg = -0.0144

k ="0.0162

In fact, the accuracy of the salinity measurements was limited not by the
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instrumentation, but'by brine drainage and contamination (by snow or seawater) at
the time of sampling. The sampling process was accurate to within + 5% or
approximately 0.2 %.. The spread sheet uses an approximation of the above formula
correct to + 2% or approximately 0.08 %.. Both of these variations are less than
differences which can exist between different locations in a single floe. In level,
uniform first year sea ice, salinity differences up to 2 %. can occur between samples
from the same level in adjacent cores [7].

§3.3 Density (ID 8)

The bulk density of the ice is a factor in both ice inertia effects and ice buoyancy
effects on ship performance. The bulk density measurement was accomplished in-
situ, by measuring the thickness and freeboard of a flat, snow-free ice piece.

§3.4 Flexural strength and bending modulus (ID 10,11)

§3.4.1 BILT: Beam in Laboratory Test. The ice party cut large ice blocks from test
floes, or from broken pieces at floe margins. Orientation and depth in the floe was
marked on the blocks. Some ice pieces were retrieved directly from the water using a
cargo basket. We cut uniform beams approximately 1.2 m X 0.1 m X 0.1 m, using
chain saws with a chain saw mill. The beams were stored in the science freezer for 24
hours to allow the tempeérature to stabilize. The temperature of the freezer was set to
the average ice temperature for the test area. At test time, we measured the core
temperatures of the beams. The test configuration was three point bending, with load
and deflection measured. Figure 3 shows the test setup. Appendix F contains the
instrumentation set-up and calibration information. Beams were tested with the top, or
~ uppermost, surface of the ice in tension. Flexural strength was calculated from the
maximum load, and bending modulus from the slope of the linear portion of the load-
deflection curve, using the classical beam expressions

- 3Pl :

2 b h? 3)
E=_kaPP®
4bh3Ay

where ¢ is the flexural strength, E is bending modulus, P is the load,, |, b and h are -
beam length, width and thickness, y is beam deflection, and k is a geometric factor
which depends on the offset of the deflection measurement from the point of load
application.
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§3.4.2 BIST: Beam In-Situ Test. The global strength and bending characteristics of
the floe may be inferred from small beam tests, but direct measurement requires a full
thickness, in-situ, test. We did full thickness three point bending tests, with load and
deflection measurements, at level ice sites in Maxwell Bay and Admiralty Bay. Figure
4 shows the apparatus. Appendix-F contains the instrumentation set-up and
calibration information. The ice party cut beams approximately 5h long X 0.8h wide X
h, where h is the full thickness, using long bar (up to 48 in), chain saws and a saw
guide. A clearance space was cut with the first beam, to allow it to be rolled onto its
side for testing. Subsequent beams were cut at either end of the first, and slid into the
original hole for testing. Beams were tested with the top, or uppermost, surface of the
ice in tension, within 10 minutes of being cut. Flexural strength and bending modulus
were determined in the same way as for the BILT test.

§3.5 Hardness (ID 24)

Ice surface hardness, or effective contact pressure over a small area, is an important
parameter for contact forces such as hull and propeller loads. We measured hardness
on the top, or tension, surface of the broken BILT samples, at the same room
temperature, using a 136° pyramid Vicker's Indenter and mechanical advantage to -
apply the load. Figure 5 shows the apparatus. Hardness is

H =d—'2° 4)

where P is the load, and d is the length of the maximum diagonal of the square
indentation.

§3.6 Crystal structure (ID 13)

The ice party examined the crystal structure on site in core and beam samples. In the
laboratory, we prepared thin sections of the ice from the broken BILT samples and
examined them through crossed polaroid filters under low power magnification. A
limited number of thin sections were photographed. '

§3.7 Fracture toughness (ID 23)

The fracture toughness K| is related to the maximum stress through
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K = oVmaF(a/h) (5

where a is the size of the flaw which initiated the failure. For notched three point bend
specimens with a = notch depth, I/h > 8 and a/h < 0.6 [8],

F(x) = 1.106 - 1.552 x + 7.71 x2 - 13.53 x3 + 14.23 x4 - (6).

Determination of fracture toughness requires measurement of flaw size, or
introduction of a flaw of prescribed size. For sites where sufficient beam samples were
available, fracture toughness tests were conducted in addition to the strength tests by
_ cutting a sharp-tipped notch, about half the thickness, in beam samples. Where it was
not possible, due to time restrictions on the ice, to secure a sufficient number of
samples to conduct independent strength and toughness tests, we estimated the
fracture toughness from the flexural strength tests using a typical grain diameter,
measured on the thin sections, as the flaw size a and the stress intensity in the vicinity
of an elliptical crack, given by equation (5) [9] with

F (a/h) =1.122 - (7

Table 7 shows that, with this method, the stress intensity factors from the notched
beam specimens, with an average of 167 kN/m3/2, are higher than from the _
unnotched specimens. The value from the notched beam specimens is somewhat
high compared with other values obtained for sea ice [10]. Previous studies [10] on
the influence of crack size on toughness results suggest that the stress intensities
calculated from the unnotched specimens should be as high as the results for the
notched specimens. This discrepency indicates that a typical grain diameter does not
represent the flaw size. In fact, a flaw size approximately four times the reported grain
size would give stress intensity factors in the same range as those from the notched
specimens. The photos show that the grain size distribution is quite broad, and grain
diameters four times the nominal values reported do occur. This topic requires further
study. '

§4 SNOW MEASUREMENT METHODS
§4.1  Thickness (ID 2)
A snow thickness profile is a set of snow depths at measured distances from the point

of first bow contact, along the line of ship travel. In thick floes where the ship would not
advance steadily, the ice party measured snow depth at each auger hole. For level ice
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tests, the snow depths were measured along the edge of the ship track, along with the
ice thickness. '

§4.2 Temperature profile (ID 5)

Snow temperatures were measured at depth intervals of 10 cm in a fresh vertical cut
through the snow cover.

§4.3 Density (ID 6)

The snow density varies with depth. For ship performance, the total mass and buoyant
mass of the snow are significant. The global snow density is mass per unit area
divided by volume per unit area of cover. We took full thickness snow cores of
diameter 10.4 cm, recorded the undisturbed depth, and placed the core in a sealed
bag. The weight was determined in the laboratory from the volume of the melted
sample.

§4.4 Compactness (ID 12)

Compactness is a measure of the energy required to compress a unit volume of
material. It is an indication of the amount of energy the snow cover can absorb while
being compressed by the ship hull. We measured compactness at the surface only,
using a modified Kinosita hardness gauge. Figure 6 shows the gauge, which allows a
known mass, m, to be dropped from a known height, r, and the sinkage s measured.

The diameter of the gauge is 11.36 cm. The compactness yx is given by

_m(r+s)g
As ®
where A is the contact area. Two different masses, 5.5 kg and 2.2 kg, were available
with the gauge. On this trip, because of high snow compactness, we used the 5.5 kg
mass most frequently.

§4.5 Grain structure (ID 7)

Snow grains metamorphose readily with change in temperature, humidity, wind, and
solar radiation. Therefore- we examined snow grain structure in-situ, behind a sun and
wind shelter, using low power magnification and a dark background. Size and shape
of the surface layer grains were noted in order that the snow category [11] might be
determined. The snow category description table from [11] is included in Appendix E.
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§5 RESULTS

§5.1 Ice and snow thickness

Appendix A shows ice and snow thicknesses and distance along the ship track for
each test site where the ice party completed a thickness profile. The average
thickness of ice and of snow for each site is reported in the summary, Table 10.

§5.2 Temperature and salinity profiles

The ice party retrieved and sampled 12 full thickness cores during the project.
Appendix B contains a table and a chart of temperature and salinity versus depth for

each core. Table 10 shows the average, or bulk, salinity and temperature for each
site. '

The tables in Appendix B calculate brine volume vy, at each level in two ways. The
columns ‘v1’ use the formula from [12]

vy = sx1o«3[o.93-i5-$—17] ' (9)

More recently, [13] revised the formula as

v = 0.93XS [-4.732-22.45 T - 0.6397 T2- 0.0107 T (10)

The columns headed ‘v2’ use this second formula. The differences between the two
formulae are smaller than the range of error of the measurements.

The tables in Appendix B also contain a calculation of ice flexural strength according
to the relationship between strength and brine volume presented by Vaudrey [14]:

o = 960 - 1920 Vv, (11)

where o is in kPa. These numbers, in column ‘Str’, are included for reference only.
The average of these numbers is reported in Table 10 as ‘Vaud'.
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§5.3 Ice hardness

Hardness results were sensitive to local ice structure on the scale of the indentation,
10 mm. To increase reliability, multiple measurements were performed on each beam
fragment. The data are contained in Appendix C. The average for each small beam
fragment is reported, together with the depth in floe and strength results for that site, in
Table 7.

§5.4 Ice flexural strength and bending modulus - Bl LT

The BILT apparatus provided smooth consistent results for both flexural strength and
bending modulus. Figure 7 shows a typical test load and deflection time series. Since
the beams were 10 cm deep and were identified according to their location in the
parent ice sheet, the BILT results make it possible to distinguish properties of granular
and congellation ice types. Table 7 presents the results of all the BILT tests, and
includes the average hardness at each depth. Table 10 lists the average BILT flexural
strength and bending modulus at each site.

§5.5 Ice flexural strength and bending modulus - BIST

In-situ beam tests were carried out at four sites. Multiple beams at a single site
provided very consistent results. For one series of four beams, the average strength
was 550 kPa, and the standard deviation 30. Certain ice conditions made the tests
more difficult to perform. At one site, ice thickness changed from 80 cm to 54 cm over
the length of the beam. Here, the ice party trimmed the beam bottom surface to
achieve a uniform beam. At another site, parts of the unconsolidated snow-ice top
layer flaked off when immersed in water. The ice party trimmed this layer off before
testing. Table 8 presents the results of all the BIST tests. Figure 8 shows a typical test
load and deflection time series. Table 10 shows the average BIST flexural strength
and bending modulus at each site. At three sites, the ice party pulled half of a broken
beam out of the test hole and used it for BILT samples. These samples are indicated
in Table 7.

§5.6 Ice crystal structure and.density

A detailed study of ice crystal structure was beyond the scope of the present project.
From the limited number of thin sections examined, it seems that the Weddell floes
contained large portions of granular ice, which might be frazil, refrozen rubble, or
snow ice. Maxwell Bay ice included similar portions of both granular and columnar
ice, but in the level ice in Admiralty Bay, columnar ice was dominant. Appendix D



TR-1992-14 ) 10
contains photos of thin sections for various test sites.

Freeboard measurements at some sites were uncertain because of uneven ice
thickness and persistent snow cover. At the BIST sites, we measured width and
freeboard of beam specimens, slices of ice turned on their side, and thus avoided the
snow effect. Densities calculated from these data are included in Table 8.

§5.7 Snow properties

Snow was a significant feature of the shib operating environment, particularly in the
Weddell Sea, where snow depths reached 0.98 m. Table 9 presents the snow bulk
density and temperature, and the average snow compactness for each site.

§5.8 Snow crystal structure

As for the ice, a detailed study of snow crystal structure was beyond the scope of the
present project. The ship encountered a wide variety of snow types. Table 9 includes
a brief description and a typical size and shape for crystals in the top layer. The snow
category based on these characteristics is also recorded.

§6 DISCUSSION
§6.1 Ice strength comparison

Large scale beam tests (BIST), small scale beam tests (BILT), and estimates from
temperature and salinity data (T-S) provide three indices of ice strength. Figure 9
shows the BIST and T-S strengths plotted against the BILT strength for the same site.
Over the narrow range of strengths encountered on the project, BIST and BILT show
the same trend, while T-S strength shows a weak negative correlation with BILT. All
strength values fall between 350 and 705 kPa. These values are typical of moderate
to cold first year sea ice.

The BIST strength is lower than the corresponding BILT strength, consistent with the
common observation that strength decreases as stressed area, or volume, increases.
A recent study on the effect of of beam size on flexural strength [15] performed tests on
sea ice beams over four orders:of magnitude in beam volume. Strength varied as

(beam volume)-1/12, Hence for the large beam tests, we estimate the corresponding
strength of a smaller beam using
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" 112
02 =0y \\g | (12)

where o2 is a scaled BIST strength, o1 is the measured BIST strength, V1 is the
measured large beam volume, and V2 is a reference volume, here taken to be that of
abeam 1.0 m X 0.1 m X 0.1 m. Figure 9 also shows the scaled BIST strengths plotted
against the BILT strength for the same site. The points fall near the 1:1 line, indicating
that, with volume scaling, the BIST and BILT tests provide comparable measures of
ice strength.

The above ice strength comparisons are supported by a small data set, and
measurements over a narrow range of ice conditions. Repeat measurements, and
experiments with different ice conditions are necessary to determine whether the
results have general applicability.

§6.2 Ice structure and type

fce salinity varied with depth in an indeterminate manner, and salinity profiles varied
from site to site. This lack of pattern is in contrast to Arctic ice, where the characteristic
salinity profile reflects ice growth and brine drainage processes. A study on the
physical and structural characteristics of Weddell Sea ice edge ice in the summer [16]
reports that summer salinities generally fall between 3%. and 7%., with an average of
4.5%o for first year ice and 3.5%. for multi-year ice, increasing slightly with thickness.
Figure 10 shows bulk salinity for Weddell Sea floes and level ice near King George
Island, plotted against ice thickness. The distribution matches that reported in [16].
Figure 10 also shows salinity-thickness trends for first year and multi-year Arctic ice

[71.

In [16], the authors define Antarctic multi-year ice as “all ice that has survived at least
one melt season”, and later conclude that “thickness and salinity measurements ...
did not reveal ice demonstrably older than two years”. In practice, it appears that
previous Antarctic studies have used thickness as the means of identifying multiyear
ice. Figure 10 indicates that the ice development processes, and in particular the
concept of multiyear ice, may be quite different in the Antarctic from the Arctic.

In the pack south of the South Orkney Islands, the ice party tended to study thicker
floes, but the ship encountered a wide range of ice thicknesses. The origin of the
different ice thicknesses is of practical interest to ship operators, because it may give
information on ice mechanical properties and extent of ice hazard. The thickness of
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undeformed Antarctic ice varies little with latitude, but increases during the winter
season to a maximum of around 0.60 m [17]. Further increases in thickness occur
through ridging [17] or frazil accumulation [16].

Near the South Orkneys, ridge features were identifiable, but not prominent.
Thicknesses variations across individual floes were usually less than 100%, and
heavy snow cover obscured surface details. At one site (RM26), ridge blocks about
0.15 m thick added a thickness of approximately 1 m near the edge of a 2 m floe,
indicating pile up of a refrozen channel. Ridging may account for ice thickness
increases between 0.6 m and 1.5 m, but it does not appear to account for the total
volume of ice at the larger ice thicknesses encountered.

For the summer ice edge, [16] reports that in multi-year floes (2.5 m to 5.0 m thick),
about 72% of the ice thickness is frazil ice, and in first year floes (0.4 m to 2.5 m thick),
about 37% is frazil ice. Most of the remainder is congellation (columnar) ice. The frazil
occurs at every level, and in some cases comprises the entire floe. The frazil could
account for the larger ice thicknesses in the Weddell, but it in turn poses the question
of the origin of a very large volume of frazil ice.

The possibility that flooded snow cover makes up part of the ice thickness in the
Weddell was put forward in [17] and confirmed in [18]. If snow cover is on the point of
flooding, then the submerged depth is the ice thickness, and

ps hs =hi (pw - pi) (13)

where hs and hj are snow and ice thicknesses, and ps, pw, and pi are snow, water
and ice densities respectively. Equation (13) also expresses the condition of a floe
with newly consolidated snow ice. With values for pw and pi of 1.025 and 0.937
Mg/m3 respectively, the coefficient of hj in Equation (13) is 0.088.

Figure 11 shows snow mass per unit area, hsps, plotted against ice thicknesses for all
the sites for which the snow data were obtained. The line in Figure 11 represents
equation (13), the condition for the formation of snow ice. The best fit line for the points
is

ps hs =0.002 + 0.080 h; ) (14)

with a squared correlation coefficient of 0.956. Although there is uncertainty in the
result because of the variations in the parameters across a floe, the correspondence
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between equations (13) and (14) indicates that the floes measured were close to the
condition of forming snow ice. In the case of the point which is above the line in Figure
11, the snow was, in fact, flooded.

For undeformed winter ice, [18] found that the increase in thickness due to flooded
snow could be 10 to 20 cm in ice 60 cm thick. These figures, together with crystal
structure photos and the appearance of “banded frazil” in [16] raise the possibility that

some of the ice identified as frazil may have been snow ice, although the 5180 isotope
measurements reported are typical of ice from seawater. Finally, the crystal structure
photos and the relationship in Figure 11 indicate that snow ice comprised part of the
thick floes documented in this project.

The significance of the snow ice formation is that thick floes may contain a significant
portion of new ice, which does not satisfy the ‘survived at least one melt season’
definition of multiyear ice. Nor do these floes satisfy the two other most common
criteria for multiyear ice: flexural strength around 1000 kPa (it was 660 to 700 kPa),
and salinity around 1% (it was 2.5 to 6.5 %o). Hence the classification of these floes,
from the point of view of ship operations, is ambiguous.

§7 SUMMARY AND CONCLUSIONS

During the project, 12 test sites were documented. Measurements included 12 cores,
more than 40 thickness profiles, 60 small beam tests and 11 large beam tests. Ice
thicknesses ranged from 0.5 to 4.0 m, and strengths of small beams from 524 to 705
kPa. The snow cover mass increased with ice thickness. Table 10 provides a
summary of all the measurements, giving average values for each test site.

Full thickness beam tests provide the most direct measure of ice strength related to
ship performance. Laboratory tests on beams 1.0 m X 0.1 m X 0.1 m gave consistent
results, and the small beam strengths were related to the large beam strengths by the
volume scaling law in equation (12). Hence where full thickness tests are not possible
for logistical reasons, the strength of large beams may be estimated from the results of
small beam tests.

The substantial data set obtained will enable the ship performance and ice load
measurements to be interpreted in the context of the snow and ice conditions.
Furthermore, the data set provides valuable information on the actual ice and snow
environment for ships operating in the Antarctic region.

The data from this project pertain to a geographic area and a time of the year not
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previously documented. The results add to the description of Weddell Sea ice
presented in previous studies, and at the same time show that important information is
missing from the scientific data base. The ice nomenclature developed for Arctic ice
types may not be well adapted to the description of Weddell Sea ice from the point of
view of ship operations. Further information on the source, the distribution, and the
“mechanical properties of the various ice types is required in order to determine the
risks and limitations for ship operations at various times of year in the Weddell Sea.
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Table 1
PROJECT TASKS, PERFORMERS AND SPONSORS

Task . Performer Sponsor
Ice loads on hull éTC ‘ SSC, USCG
‘Ship performance STC USCG
Trafficability and operations STC NSF
Propulsion performance and loads Fleet. , CGN, TDC
Ice and snow measurements IMD CGN, TDC, IMD
Ice drift STC USCG
Superstructure icing _ STC USCG
Ice Navigation and piloting STC, ASA NSF
Performance of science in ice Kennedy NSF

Vessel evacuation and survivability Melville CGN, TDC
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Table 3

Table 3

ICE AND SNOW MEASUREMENTS
for ship performance in level ice
(listed in order of priority)

ID measurement

ice thickness

snow thickness

ice temperature profile
ice salinity profile
snow temperature profile
snow density

snow grain size

ice density

9 water salinity

10 ice flexural strength

11 ice bending modulus
12  snow compactness

13 ice crystal structure

25  hull roughness survey

O NO O~ WN =

#

—_
o o

- W WWW-—=WwWwowowow

method

every 10 sec. along ship track
every 10 sec. along ship track
in core immediately on retrieval
melted samples from core

in situ depth profile

full depth snow sample

in situ crystal photo

in samples from core

sample from ship track

in situ 3 point beam test

in situ 3 point beam test
modified Kinosita gauge

thin section photos
roughness gauge
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Table 4
ICE AND SNOW MEASUREMENTS
for ship performance in broken ice
(listed in order of priority)

ID measurement # method

1 ice thickness 10 in ship track
2 snow thickness 10  in ship track

14 ice concentration 1 visual estimate, photo

15 channel width 5 direct or photo

16 ice piece size 1 photo

3 ice temperature profile 1 core in adjacent floe

4 ice salinity profile 1 melted samples from core
8 ice density 1 in samples from core

6 snow density 3 full depth snow sample

9 water salinity 1 sample from ship track
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17
18
19
20

15
21
22

10
11

Table 5

Table 5

ICE AND SNOW MEASUREMENTS
for ship performance in ice ridge
(listed in order of priority)

measurement

ridge sail geometry
ridge keel geometry
distance to major cracks
ridge consolidation profile
thickness adjacent ice
broken channel width
channel profiles in ridge
ice block size

snow thickness

ice flexural strength

ice bending modulus
snow density

snow grain size

#

1
12

anNn wdsprp

W wwow

method

survey

auger holes

video, direct

temperature in core (limited depth)
channel edges, both sides of ridge

in ridge: video, direct

reference lines painted on ridge, video
direct

at auger holes

small (3 point) beam from ridge block
small (3 point) beam from ridge block
full depth snow sample

in situ crystal photo



Table 6

Table 6

ICE AND SNOW MEASUREMENTS
for ice loads on hull and propeller
(listed in order of priority)

TR-1992-14
ID measurement

16
10
11
23

24
13

ice thickness

ice piece size

ice flexural strength
ice bending modulus
ice fracture toughness
ice temperature

ice hardness

ice crystal structure
ice density

water salinity

#

-
o

- W WU WWWwwoom

method

in ship track

photo, direct

3 point beam in block from channel
3 point beam in block from channel
sample block from channel

sample block from channel
Vickers' indenter

thin section photos

in samples from core

sample from ship track
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Figure 5: Vickers indenter and hardness test setup
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Figure 6: Snow compactness gauge
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Figure 9: comparison of ice strength measurements
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Figure 10: Salinity thickness relationship compared with trend
lines for Arctic first year and multi year ice (Cox and Weeks)
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Figure 11: Snow load per unit area as a function of
ice thickness, data points and snow flood line.
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APPENDIX A

Snow and Ice Thickness Profiles
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TR-1992-14
RM4 to RM23: ICE AND SNOW

site and time distance snow ice
description (GMT) from bow thick thick
_ (m) (m) (m)

RM4 to RM22 1250 30 0.63 2.31

part of 60 0.78 2.35

compound floe 90 0.66 2.14
with ridge

1328 average 0.72 2.25

RM23 1846 25 0.44 1.6

uniform floe 1856 50 0.46 1.2

1904 75 0.36 1.42

1915 100 0.4 1.17

1925 125 0.48 1.25

150 0.52 1

175 0.4 1.26

200 0.4 1.26

225 0.35 1.4

1944 250 0.39 1.18

275 0.27 1.05

300 0.56 1.35

2025 average 0.42 1.26
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RM26: ICE AND SNOW

site and marker distance snow ice notes
description from bow thick thick
_ (m) (m) (m)
RM26 1 0 0.42 1.5
1235 GMT 2 25 0.53 2.17
in ridge 3 50
across floe, 4 75
blocks of ice 5 100 0.57 1.57
under old snow 6 125
pressure field 7 150
on far side 8 175 0.43 2.68 pieces underneath
9 200
10 225
11 250 0.75 2.3
12 275
13 300 0.42 1.71
14 325
15 350
16 375 0.54 3.67
17 400
18 425 0.72 2.65 more underneath
19 450
20 475
21 500 0.61 2.68
22 525
23 550 0.18 0.58

average 0.517 2.151
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LR5 ICE AND SNOW

site and marker distance snow ice notes
description from last thick thick
(m) (m) (m)

LR5 1 0.00 0.17 0.26
Maxwell Bay 2 10.73 0.27 0.30
Level ice 3 11.35 0.03 0.53
4 8.90 0.08 0.46

5 12.87 0.05 0.47

6 9.25 0.08 0.50

7 11.84 0.06 0.46

8 10.67 0.06 0.46

9 11.57 0.03 0.41

10 15.80 0.06 0.45

11 21.10 0.06 0.45

12 8.23 0.08 0.43

13 11.33 0.01 0.41

14 11.42 0.05 0.47

15 11.00 0.03 0.50

16 10.83 0.05 0.45

17 12.10 0.08 0.50

18 11.32 0.04 0.48

19 10.44 0.03 0.45

20 15.25 0.07 0.42

LR5 average 11.89 0.07 0.44
LR6 1 0 0.02 0.42
Maxwell Bay 2 30 0.01 0.45
Level ice 3 30 0.03 0.34
4 30 0.07 0.46

5 30 0.09 0.45

6 30 0.04 0.46

7 30 0.11 0.49

8 30 0.03 0.47

9 30 0.12 0.52

10 30 0.05 0.48

11 35 0.11 0.51

LR6 average 0.06 0.46
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LR7 ICE AND SNOW

A4

site and marker distance snow ice notes
description from last thick thick
(m) (m) (m)
LR7 1 0 0.11 0.48
Maxwell Bay 2 30 0.12 0.51
Level ice 3 30 0.10 0.50
4 30 0.10 0.53
5 28.5 0.04 0.50
LR7 average 0.09 0.50
LR8 1 0 0.07 0.57
Maxwell Bay 2 30 0.10 0.56
Level ice 3 30 0.09 0.50
4 30 0.12 0.65
5 30 0.10 0.56
6 30 0.14 0.48
7 30 0.06 0.53
8 30 0.07 0.48
LR8 average 0.09 0.54
LR9 1 30 0.13 0.45
Maxwell Bay 2 30 0.15 0.48
Level ice 3 30 0.08 0.48
4 20.5 0.06 0.48
LR9 average 0.11 0.47
LR10 LR11 1 30 0.16 0.74
Maxwell Bay 2 30 0.12 0.88
Level ice 3 30 0.14 0.77
4 30 0.12 0.72
5 30 0.12 0.78
6 30 0.16 0.78
7 30 0.12 0.62
LR10-11 average 0.13 0.76



A5

TR-1992-14
LR12-LR17: ICE AND SNOW
site and marker distance snow ice notes
description from mark thick thick
(m) (m) (m)
LR12-LR17 1 0 0.07 0.54
level ice 2 50 0.07 0.55
Maxwell Bay 3 50 0.07 0.53
4 50 0.06 0.54
5 40.1 0.12 0.50 nut
6 38.6 0.07 0.46 nut
7 25.1 0.15 0.42 nut
8 14.6 0.06 0.57 nut
9 17.4 0.10 0.52 nut
10 16.5 0.05 0.57 nut
11 10.8 0.13 0.58 nut
12 100 0.10 0.48 other side of turn
13 50 0.08 0.63
14 50 0.08 0.66
15 26.5 0.10 0.66 lug
16 50 0.07 0.69
17 50 0.09 0.70
18 50 0.07 0.71
19 50 0.13 0.76
20 50 0.14 0.60
21 50 0.06 0.63
22 32 0.12 0.61 lug
23 100 0.08 0.56
24 50 0.15 0.58
25 50 0.15 0.54
26 50 0.08 0.59
27 50 0.05 0.50
28 50 0.12 0.58
29 50 0.13 0.58
30 50 0.07 0.54
31 50 0.11 0.60
32 53 0.04 0.50 3 nuts
33 50 0.07 0.57
34 50 0.07 0.57
35 50 0.08 0.49 stern
36 100 0.12 0.58 bow
average 0.09 0.57
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LR18-LR24: ICE AND SNOW
site and marker distance snow ice notes
description from mark thick thick
(m) (m) (m)
LR18 - LR23 1 0 0.14 0.54
Maxwell Bay 2 100 0.08 0.56
level ice 3 100 0.06 0.63
4 100 0.05 0.57
5 50 0.12 0.61
6 10 0.08 0.60
7 25 0.09 0.62
8 25 0.12 0.58
9 25 0.11 0.64
10 25 0.11 0.59
11 25 0.13 0.59
12 25 0.08 0.61
13 25 0.07 0.64
14 25 0.14 0.58
15 25 0.11 0.59
16 25 0.07 0.53
17 25 0.10 0.56
18 25 0.10 0.60
19 25 0.23 0.56 bow
20 50 0.11 0.55 midship
21 50 0.21 0.58 stern
average 0.11 0.59
LR24 , 1 0 0.35 1
Maxwell Bay 2 50 0.24 1.2
level ice 3 50 0.28 1.1
4 50 0.18 1.3
5 50 0.3 1.25
6 50 0.21 1.25
7 50 0.3 1.27 bow
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TR-1992-14
LR25 - LR33: ICE AND SNOW
site and marker distance snow ice notes
description from mark thick thick
(m) (m) (m)
LR25 - LR33 1 0 0.10 0.54
level ice 2 100 0.06 0.57 +10 flag
Admiralty Bay 3 100 0.07 0.57
4 100 0.10 0.57
5 100 0.11 0.39 -10 flag
6 100 0.07 0.52
7 100 0.08 0.48
8 100 0.10 0.45 flag
9 100 0.13 0.37
10 100 0.09 0.55
11 50 flag
12 50 0.09 0.54
13 100 0.06 0.50
14 100 0.09 0.57 flag
15 100 0.12 0.43
16 100 0.14 0.50
17 100 0.13 0.42
18 100 0.10 0.57
19 100 0.12 0.49
20 100 0.10 0.48
21 100 0.11 0.59
22 100 0.07 0.53
23 100 0.09 0.58 start turn
24 100 0.09 0.61
25 100 0.09 0.60
26 100 0.10 0.53
27 100 0.10 0.70
28 100 0.06 0.62
29 100 0.06 0.61
30 100 0.06 0.61
31 100 0.07 0.59
32 100 0.08 0.60 stern
average 0.09 0.54
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LR34 - LR37: ICE AND SNOW

site and marker distance snow ice ice&snow
description from mark thick thick thick notes
_ (m) ____(m) (m) __(in)
LR34 - LR37 1 0 0.08 0.35 17.0
level ice 2 100 0.10 0.64 29.0
Admiralty Bay 3 100 0.14 0.56 27.5
4 100 0.15 0.54 27.0
5 100 0.13 0.61 29.0
6 100 0.06 0.65 28.0 rafting
7 100 0.10 0.59 27.0 2 nut markers
8 100 0.15 0.35 19.5
9 100 0.15 0.46 24.0
10 100 0.27 0.24 20.0
11 100 0.13 0.28 16.0
12 100 0.07 0.43 19.5
50 2 silver nuts
13 50 0.09 0.34 17.0 rafting
14 100 0.07 0.39 18.0
15 100 0.07 0.33 15.5
16 100 0.11 0.46 22.5 nut
17 100 0.13 0.59 28.5
18 100 0.10 0.64 29.0
19 100 0.10 0.61 28.0
20 100 0.13 0.58 28.0 stern
0.12 0.48 23.50

A8
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TR-1992-14
LR38-LR41: ICE AND SNOW
site and marker distance snow ice notes
description from mark thick thick
(m) (m) (m)
LR38 1 0 0.12 0.58 flag (steady state)
level ice 2 50 0.15 0.55
Admiralty Bay 3 50 0.22 0.61
4 50 0.17 0.50
5 50 0.15 0.54
6 50 0.17 0.59
7 50 0.12 0.53
8 50 0.15 0.58
9 50 0.11 0.62
10 37 0.11 0.57
LR38 average 0.15 0.57
LR39 11 50 0.13 0.60 flag (steady state)
level ice 12 50 0.16 0.56
Admiralty Bay 13 50 0.12 0.58
14 50 0.14 0.64
15 50 0.11 0.55
16 50 0.13 0.55
17 50 0.13 0.57
18 50 0.09 0.65
19 50 0.10 0.57
LR39 average 0.12 0.59
LR40 20 50 0.12 0.57 flag (start turn)
LR41 21 73 0.07 0.57 flag
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APPENDIX B

Temperature and Salinity Profiles
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