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ABSTRACT

A survey of design techniques for digital filters is
presented in this report. Design techniques employing the
z-transform and numerical methods are discussed, and the
frequency domain synthesis of digital filters is illustrated.
The theory of the discrete Fourier transform and the many
possible forms of fast Fourier transform are presented. %
The realization of digital filters in terms of hardware . -
modules and the impact of LSI technology on them is
discussed. Finally, a cost evaluation of digital filters,
assuming current LSI technology, is attempted. A compre-
hensive bibliography is presented.
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A SURVEY OF THEORY AND DESIGN TECHNIQUES FOR
DIGITAL FILTERS

o« L3
— K.R. Srinivasan and S.E. Tavares —

1.00 Introduction

Processing of signals by digital techniques as compared to the conventional
analog method is gaining wide acceptance in many branches of science and engi-
neering. With the rapid growth in large-scale integration and computer technology,
on-line digital information processing is now considered fairly attractive in terms of
speed, economy, and accuracy. Linear filtering and spectrum analysis are basic
and widely used signal processing operations. The concept of analog filtering is
quite familiar and very well established. It varies in complexity from the simple
RC circuit used commonly to suppress noise to complex filters such as Tschebyschev
and Butterworth types. Recently, active filters making use of low-priced integrated-
circuit operational amplifiers have been used very extensively in signal processing
operations. At low frequencies, they have proved very competitive with the con-
ventional passive discrete-component filters. This is mainly due to the fact that at
low frequencies high value capacitors and inductors are needed and hence the filter
becomes bulky and unwieldy.

The signal applied to an analog filter is continuous — that is, it is present all the
time — whereas a digital filter requires that the signal be in discrete form; that is, it
is the discrete samples of the continuous signal quantized at equal intervals. Analog
filtering is based on linear network theory, which in turn is based on the electrical
properties of components like resistance, capacitance, and inductance. The performance
of the network is defined by a linear differential equation. In contrast, a digital filter
is defined in terms of a linear difference equation. In order to realize the difference
equation, the input signal should be in the form of discrete samples. These samples
are then processed by digital logic which performs the required numerical operations
defined by the difference equation. A digital filter may also be considered as a set
of numerical weights that are applied to the incoming discrete sampled signal, the
values of the weights and the number of them required being dependent on the filtering
requirements. The filtering operation consists of multiplying the input signal with the
corresponding weights and summing them. As a large number of additions and multi-
plications are involved in carrying out the filtering operation, in general these operations
are performed numerically (digitally) by special or general purpose digital computers.
The numerical error encountered in the computation process can be considered as
noise superimposed on the signal [27, 40].

*Nationa! Aeronautical Lab., Bangalore — 17, India
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Digital filters find extensive application in such areas as audio/electroacoustics,
telephone switching circuits, speech processing, radar and sonar systems, telemetry
data processing, and digital control system compensation. Digital filtering techniques
appear to be much superior to analog techniques in several areas. As an example,
precise equalizers are very difficult to design and realize in the analog form but
are much easier in the digital form. Advantages of digital techniques over analog
are small size, IC implementation, stability, absence of impedance matching problems
(this is due to the inherent isolation in digital circuits), greater flexibility, time-
sharing facility, and repeatability.

The basic block-schematic of a digital processor can be conceived as in Fig. 1.

DIGITAL
A/D PROCESSOR D/A DE-
MULTIPLEXER |
CONVERTER (DIGITAL CONVERTER MULTIPLEXER
FILTER)

Figure 1 Block-schematic of a digital processor

This consists of an A/D converter which quantizes the analog input and presents
the quantized samples to the digital processor — a digital processor which is essentially
a digital filter configuration and a D/A converter which converts the filter output back
to the analog form. Time-sharing of the processor is achieved via the multiplexer to
the input. Numerous variations of the above are possible and in cases where the pro-
cessing is between two digital terminal systems there is no need of A/D and D/A
converters. Due to the high cost of A/D, D/A converters and the digital processor,
the design of real-time digital filters was limited in the past. However, with the rapid
growth of large scale integration (LSI) technology, the over-all system cost will be
lowered, size will be greatly reduced, and reliability increased, and hence digital
filtering will be competitive with analog filtering.

Digital filter hardware consists basically of shift registers, adders, and gates, and
hence the filter design can be of highly flexible modular form; this approach is elaborated
on later in this report. Recently, the approach to digital filters has been in terms of a
hardware system, used to realize the particular task. A few companies are already in
the process of developing digital filter hardware. The hardware will be fast enough
to permit multiplexing for efficient use. For example, as shown in Fig. 1, many-
section filters may be implemented by building one section and multiplexing it by
commutation. The filtering coefficients may be changed for each section. The con-
version rates of presently available A/D and D/A converters limit the useful higher
frequency range of digital filters. A/D converters having a conversion rate as high as

S1Nd1N0 DOTVNY
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200 Mega samples per second are presently available and they tend to be costly,
but it is not unreasonable to expect to get higher conversion rates at reasonable
prices in the future, thus making digital filters feasible at much higher frequencies.

Recently many techniques have evolved which increase the speed and frequency
range of digital filters such as: the discrete Fourier transform, fast Fourier transform,
high-speed convolution and correlation. We will examine some of these techniques,
including the conventional ones, in this report. At the end of this report an
extensive bibliography is presented and it is hoped that it will be useful to those
starting in this expanding field.

2.00 Digital Filter Design by z-transform Method

2.01 Difference Equations and z-transforms

Continuous linear dynamic systems are generally analyzed by the use of Laplace
and Fourijer transforms, and by using general network concepts. Linear discrete
systems are analyzed by the use of the z-transform and network concepts. The
z-transform is a natural tool for the solution of linear constant-coefficient difference
equations, just as the Laplace transform is for the solution of linear constant-
coefficient differential equations [41].

To understand the difference equation better we can look at it in terms of
network concepts.

R
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»__/
D
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~_ ./
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VW

Figure 2 Ladder network

In the ladder network of Fig. 2, the voltage equation for the (1 + 1)th loop can be
written as

or i(n) - 3in+1)+in+t2) = 0 (2.02)

This is a linear, constant-coefficient difference equation of second order. In
order to solve this equation we resort to the z-transform, which will be described below.
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In sampled-data systems a sampled function is approximated by a train of pulses,
each having an area equal to the value of the function at the sampling instant. The
sampled function corresponding to f(¢) is defined as

f*@) £(0) 8(1) + f(M 8¢t -T) + fQ2T) §(t-2T) + .... (2.03)

2 f(uT) 8(t - nT) (2.04)

where T is the sampling period in seconds and 6(¢) is the Dirac delta function. Taking
the Laplace transform of the sampled function,

F*@G) 2L = n)‘i fuTye™sT (2.05)
=0
Making a change of variable

z =% (2.06)

we have

F&y &[Limo]

eT=;

=% f(uT)z™" (2.07)
n=0

where z is interpreted as a complex transform variable. The definition of the z-transform
is given by the equation (2.07). Letting T = 1, the z-transform can be written as:

>

ZIfn)] & F(z) n“'>;__of(n)z-". (2.08)

£O) + f()z™ + fz7 + .. (2.09)

As an illustration, the z-transform of a unit step function given by

a)l,n=20 2
u(n)_{o,n<0.. (2.10)
is
Zum) = Sz =14zt 4z 4. = —L¢ @.11)
n=o0 1-z
Similarly, the z-transform of a” is given by 7 1 —. The z-transform pairs may be
- az

obtained from any standard textbook on the z-transform [64].
The z-transform is a linear operation and hence
Zlag, t axh,] = a;Zlg,] + a,Z(h,] (2.12)

where a, and a, are constants.
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Also, ZIf, )= z7%z(f,) (2.13)

which is the z-transform of a delayed sequence. The z-transform, F(z), of the convolution
of two sequences g,, and k,, is equal to the product of their individual z-transforms, that is,

F(z) = G2)H(2) (2.14)

where

F(z) = ZIf,y), G@) = Zlgyl , HE)=Z[hy,} . (2.15)
202 Inverse z-transform
As we have seen, the z-transform is given by
ZIfm) = Z f(z™" = FE) (2.16)
The inverse operation can be written as
Z7' [F@)] = fin) (2.17)
f(n) being obtained from a complex inversion formula

fn) = # § Fz) 2" ‘dz (2.18)

This formula may be applied to any transform that has a region of convergence.

In the case of a rational function of z~!, we can find an inverse z-transform which
does not require the contour integral (2.18). From (2.16) we can write

F(z) = fO)+ f(Dz™' +f(2)z72 +.... (2.19)

In the case of a rational function, the expansion can be made by long division as

below. For example,
L4z ' +z72+ ...

1-z71 |1
1-2z71
Z—l
z !l -z72
72
z72-z73

Hence

z“[ 1 ]= T4z +272 +.,. (2.20)
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The above computation could be easily implemented on a digital computer. The
long division is susceptible to round-off error, but has the advantage that the location of
the poles of F(z) need not be found.

For a proper rational function of z~', with N-poles we have,

N-1 . N-1 .
T gzt > a-zN“l"
i=o ! = j=g !
F@z) = I = z N (2.21)
I+ 32 bz N+ 3 p N
i=

=1

Assuming that the poles p; are distinct, and expanding the bracketed expression in a
partial fraction expansion,

N 4. N .
F(iz) = z2 L = X ——A—'—:— (2.22)
i=v z-p; i=1 1-p;z7!
N
Sy = 2 Apl (2.23)

i=1

where p; may be complex. This method has the advantage that the value of the signal at
time n can be computed without computing any other values.

2.03 Digital Filter Design
Let x,, and y, represent the input and output, respectively, of a linear discrete
system, related by a linear difference equation with constant coefficients of the form
Yp ¥ o1y, _, .ot byy N =aox, * ...t tayx, (2.24)

Equation (2.24) implies that the output at time n can be computed from the present
input and linear combinationof past inputs and outputs. Taking the z-transform of
(2.24), term by term, we have

N . ,
Y(2) [l + Z biz"’] = X(2) % gzt ... (2.25)
i=1 i=o
M .
Z a2z
LY@ =X(2) "1‘\’, . (2.26)
1+ 2D 27!

or
Y() = X() H(z) 2.27)
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M
z

1

1 + g b,'Z_i

i=1

-i
az
0o !

where H(z) = (2.28)

is the transfer function relating x to y. H(z) in (2.28), which represents a time-invariant
linear operation on discrete-time signals, characterizes a digital filter. The response of
the system given by H(z) to a discrete-time signal (x,,) is

Yo = 2 Xphy g (2.29)
k=0
From equation (2.24), we obtain
Vg = Gox, tapx,_, + oot ey oy byyy-y = --- ~byYn-nN (2.30)

As mentioned earlier, the output at an instant n depends on the present input and a
finite linear combination of the past inputs and outputs.

The frequency response of a digital filter is found by the values of its transfer function
on the unit circle in the z-plane (z| = 1). For stability of linear continuous systems, the
necessary and sufficient condition is that the roots of F(s) lie in the left half of the
s-plane. These conditions have been studied in detail and we have the criteria of Routh-
Hurwitz and Leenard-Chipard. A linear discrete system is stable if and only if the roots
of F(z) lie inside the urit circle in the z-plane.

2.04 Digital Filter Implementation

As seen earlier, the design of a digital filter rests in choosing the proper transfer
function H(z), to realize the particular task. In the case of digital filters, unlike the
analog case, the implementation of a difference equation or system of difference equations
to realize the particular transfer function H (z) is fairly simple.

To illustrate this, let

H(z) = =0 (2.31)

then Y(2)

[
)
~~
N
A
>
~
[\M]
S’

X@) ... (2.32)

M : N .
Yz) = X(@) 2 a;z7b - Y(z) 2 biz7 . (2.33)
1 =0 =1
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Hence we get the output y,, in the time domain as

M N
Yol = F ax, (1) = X by, i©) (2.34)

Hence the output y,, can be computed in a digital computer by inserting the (M + 1) most
recent samples of the input x,, and the N previous values of the outputs. We can draw
the digital network for the above difference equation as in Fig. 3.

¥, (OUTPUT!}

INPUT x
n-M

A Entnmeals NSy Ern Snaatly

M-y LY b, b, by.y by

o Yn-N

Figure 3 Digital network of equation 2.34

The operation of the digital network of Fig. 3 may be interpreted as follows: at the
instant ¢, which is a multiple of thesampling period T, x,, forms the input to the network.
The other quantities X, _,, X, _,, -+ - Xp_p>Vn-1, Ypog' T Yn-n are stored and

used in the computation of y,. The block z~! represents a unit delay, i.e., the sampling
period T, the rectangles containing the constants a, a,, etc., represent multiplication by
the constants, and the symbol @ represents an adder. The block diagram also gives an
estimate of the number of multipliers, adders, and delay elements needed to realize the
required digital filter. There are a number of ways in which a digital filter transfer function
H (z) can be realized and hence the design is aimed at a configuration which uses less
memory and fewer multipliers. As an illustration, Figs. 4 and 5 show different configurations
of Fig. 3 which use fewer delay elements.

" _)g} _T__ o bl N _l

b, b, by ag a, a; a

\i) y,(OUTPUT)

Figure 4 Modified digital network of Fig. 3
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In Fig. 4 ky = x, - i§1 bik,_; ... (2.35)
M
Yp = _Eo a,-k,,_,- (2.36)
l=

It can be noted that in Fig. 4, we have to store only N or M previous values of k,,
depending on which is greater. This reduces the memory required. In Fig. 5, single
delay elements are used for the same output (assuming N = M, for convenience).

/E Y, (OUTPUT)

+

N a, 8, [———=— ay
l
X, __;(/_:2 KnT 5 z-! gs 2" % ———]
b, b, bN

Figure 5 Another digital network version of Fig. 3

It is known that for higher-order difference equations, the direct forms tend to be
more inaccurate owing to numerical inaccuracy. The other two forms, which are slightly
better than the direct forms in terms of numerical errors, are shown in Fig. 6 and Fig. 7.
Their transfer functions are of the form, respectively,

H(z) = H\(z) - Hy(z) ... Hyz) 2.37)
H(z) = H\(z) + Hy(z) +...+ Hyfz) (2.38)
x, —> Hi(2) Hyld) f—————— Hl2  |—>v,

Figure 6 The graphical representation of equation 2,37
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H| (2)
+
Hz (z) 2 yn
: +
X, ———> .
= H,(z)

Figure 7 Graphical representation of equation 2.38
2.05 Recursive and Non-Recursive Filters

Digital filters may be synthesized by using direct convolution, linear recursive
equations, or fast Fourier transforms. The mathematical methods used to design
digital filters depend strongly on whether the filter impulse response is of finite
duration or of infinite duration. In the case of finite-duration impulse response, the
filter has only zeros and no poles, and in the case of infinite-duration impulse response,
it has both zeros and poles. Generally, the term recursive implies that the computation
of the output is an explicit function of previous outputs and inputs, whereas non-
recursive implies that the output is an explicit function of previous inputs only. A
recursive filter is one that has infinite-duration impulse response and a non-recursive
filter is one with finite-duration impulse response. Classification by duration of
impulse response may not necessarily be valid in all cases. It has been shown that
any finite-duration impulse-response filter can be synthesized by recursive techniques
[26, 48]. A finite-duration impulse response can be synthesized by fast Fourier
transform techniques.

Recursive filtering can increase the speed of computation by an order of magnitude
compared to non-recursive filtering. For example, if we need 100 samples to achieve
good frequency shaping, we have to carry out 100 muitiplication and addition operations
to obtain a single output using a non-recursive filter, whereas with the recursive filtering
we may require only 10 multiplication and addition operations to achieve comparable
frequency shaping. However, it has been shown that, with the development of FFT
algorithms, for some applications non-recursive filtering is quite competitive with
recursive filtering [55, 61, 66].
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3.00 Classical Numerical Approach to Digital Filter Design

General methods for designing a variety of filters of specified transfer function have
been developed by M.A. Martin [ 49, 50]. The performance of several classical methods
applied to sampled data was also evaluated by him. We will examine a few design
methods in this section.

Digital filtering can be considered as a branch of numerical analysis from an
electrical engineer’s point of view. Basically, we can conceive of a digital filter as a
set of numerical weights that are applied to the incoming signal which is assumed to
be in a sampled form. The values of these weights and the number of them required
will depend on the filtering requirements. The filtering operation consists in multiplying
the input values by the corresponding weights and summing. Each such operation yields
one output and the process is repeated for each succeeding output. We can refer to this
as a numerical evaluation. As can be seen, we have to perform a large number of
multiplications and additions, which could be done in a general purpose computer.

Let the filter weights be represented by 4,,, the input data values by x,, and the
output values y,. Then we have the relationship

Y = z hnxk-n (3.01)

where the number of filter weights is (N, - N, + 1). The digital filter is the set of
(N, - N, + 1) fixed weights th , thﬂ,..., hyse-vs th. To filter a set of sampled data,
(3.01) is repeated by moving the set of weights along the sampled data. We can visualize

this relationship qualitatively, as in Fig. 8, which illustrates the filter operation with
5 weights [74].

Xl X2 X3 X4 XS X6 X7 Xs Xg XlO
h, h, hg h_, h_,
O ~ J

Ya = WXy + h X3 + hoXq + ho X + hy X (3.02)

Figure 8 Filtering operation with five weights

In Fig. 8, we have computed the output y,. To compute the output ys, the filter
is shifted one unit to the right and multiplication and summation performed as before.
For an analog filter, the output is equal to the input convolved with its impulse response
function and can be written as

y() = h() *x(t) (3.03)
where % represents convolution.
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Comparing the analog and digital version, we can write

M
Ve = Z lyXgop - - (@igital) (3.04)
yny= [ “h(t) x(r - £)dt (analog) (3.05)
0

Extending this similarity to the frequency domain, for the analog case we have
Y(w) = Hw) X(w) , (3.06)

which means that the Fourier transform of the output is equal to the product of the
Fourier transform of the input and the system transfer function. Extending this to the
sampled representation, we can write

Yy(w) = Hp(w) Xy(w) (3.07)

where the subscript N represents the sampled value of the function. To convert a continuous
representation to a sampled representation, the function is multiplied by an infinite sequence
of equally spaced delta functions. For instance, one way of computing the weights of a
digital filter is to multiply the impulse response of the equivalent analog filter 4(¢) by the
impulse train E 6(t - nT),

ie., hy(t) = h(t) )n36(t - nT) (3.08)

where T is the spacing between the impulses. From the above equation, we derive the
transfer function of a digital filter. Taking Fourier transforms, we have the digital filter
transfer function as

Hy(w) = I hinT) e Ml (3.09)

where 1(nT') represents the weights.
Equation 3.09 is a periodic function with period 2#/T.

If we design the basic low-pass filter, the other filters like high-pass, band-pass, and
band-elimination could be easily derived from the basic low-pass version. For example,
we can derive a band-pass filter by subtracting the weights of two low-pass filters with
different cutoff frequencies. Similarly, the high-pass filter is derived by subtracting the
weights of a low-pass filter from the all-pass filter. The digital all-pass filter has simply
one weight equal to unity and all the others are zero. It is also possible to perform
integration and differentiation by digital techniques as presentedby Martin. Martin has
also illustrated the different techniques used to compute the weights of a digital filter.
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Considering a low-pass central filter (for a central filter N, = N, = N), we have
the transfer function given by

N -jnwT
Hy(@) = X h,e /"

phase we have

(3.10)
and hence we have now [- (-N) + N + 1] weights, i.e., (2N + 1) weights. For a linear

h -n = hn
Therefore,

N
Hy(w) = hog +2 X hy, cos (nwT)
n=1

which is the transfer function of a low-pass filter. [t is to be noted here that since

Hp(w) is a real function of w, the phase shift introduced is zero for the case when
Hp(w) is positive, and 7 when Hy(w) is negative.

H(w)
A
1 — i N = 50
T~C "\A N =20
~ \
~ \
\ [} \
NS N =10
[N,
0.5 |- ' .
\ \\\\ n=2
\ TN
1 ——
'. N
)
| ‘\ == | - l\~> i

Figure 9 Sine-terminated digital filters

Figure 9 shows the transfer functions of some low-pass filters designed by Martin
for N = 10, 20, 50.

3.1

(3.12)
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4.00 Frequency Domain Synthesis of Digital Filters
4.01 Synthesis of Digital Filters

Design of analog filters involves finding a practical transfer function that approximates
closely the ideal filter response. For example, Fig. 10 shows the amplitude characteristic
of an ideal low-pass filter, and Fig. 11 the practically realizable filter characteristic
(Butterworth type).

2 2
(H(w)) A (H(w)) A
~_ |
I
!
i
1
| [N
ral®) 7 W
We We
Figure 10 Ideal low-pass filters Figure 11 Butterworth filter response

It is evident that the response of Fig. 10 is not realizable using passive components
and hence the approximation of Fig. 11.

Once the transfer function is chosen we have to realize the transfer function using
real components. One of the important problems in synthesis is to isolate each pair of
complex poles and zeros and this is generally achieved using operational amplifiers. In
digital filter analysis we do not need to worry about this problem, owing to the inherent
isolation of digital logic elements. In view of the fact that analog filter design techniques
are very well established, the digital filter design problem is often converted into analog
form. A number of such techniques are available now, namely, the bilinear transformation,
impulse invariance, frequency sampling, etc. In this section we will examine some of the
aspects of the bilinear technique which is fairly straightforward.

4.02  Bilinear Transformation Technique

The sampling theorem dictates that we sample at least twice the rate of the highest
signal frequency to be able to recover the signal completely. It is also fairly well known
that sampling introduces an aliasing effect in frequency and this occurs at the folding
frequency, also called the Nyquist frequency. Moreover, the folding frequency ff is equal
to one-half the sampling frequency, i.e., = —2—1? , T being the sampling period. Hence
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in a sampled data system, all frequencies above the folding frequency f, will be folded
back and appear to be in the range O to f The aliasing effect that is caused by the
sampling limits the useful frequency range of a digital system to 0 < w < #/T, whereas
in the analog case the range extends to 0 < w < oo,

The linear transformation technique for the design of a digital filter involves
mapping the fundamental frequency range of a digital system into a pseudo-frequency
w, having a range 0 < Sw, S < oo, which is similar to the analog system and facilitates
the use of transfer functions of analog filters for the digital filter design.

The bilinear transformation is defined by

s = 2-1 4.0
z+1 (4.01)

where s is the Laplacian operator and z is the discrete operator defined by
z = efwT (4.02)

T being the sampling period.

Any exponent raised to the operator z indicates the number of sampling periods a
signal is delayed. z~" for example indicates nT seconds delay. From (4.01) and (4.02)
we can write

joT  -jwT jwT
T 1 3 Tl -IaT T (4.03)
e 2 + e 2 2
e
sin %T
= j = jwp (4.04)
cos @I
2
_ wT -
where W, = tanT (4.05)

Hence the transformation jw,_ maps the fundamental frequency range O < w < 7/T into
the infinite pseudo-frequency range 0 < W, < oo, This effect is shown in Fig. 12.

As we can see, the bilinear transformation is a powerful tool since it permits the use
of Bode-plot techniques and continuous transfer-function methods to write difference
equations as applied to a continuous linear filter.



In the bilinear transformation, the transfer function of a continuous signal G(s)
is converted into a transfer function of a discrete sampled signal G(z). G(z) is then

w, = tan wT/2
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12

| 1 1 1 —> Lc::_
2 4 .6 8 1.0 f

Figure 12 Digital filter frequency transformation

in turn converted into the difference equation form.

If, for example, G@z) = X@) _ z+1 . 1+z7!

Y(z) z-1 1-2z71

where X (z) is a filter input and Y (z) filter output, then from (4.06)

Xz (1-z"H)=Y@) (+z7")

Ifx, and y,, are the filter input and output at time », we can write,

x,(1-27) =y, (1 +271)

: -1 = -1 —
Representing X z Xp_, and y,z Y-y

which we identify as the difference equation obtained from the transfer function G(z). A

computer

n

Xp = Vp Yy ¥ Xno

program could be written for the difference equation (4.10).

< FOLDING FREQUENCY

(4.06)

4.07)

(4.08)
(4.09)

(4.10)

The following procedure indicates the digital filter design by the bilinear transformation

technique.

1.

Specify the filter cutoff frequency w, required in the range 0 < w, <

r
T
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2. Convert this frequency into the pseudo-frequency wWp using the relationship

- wcT
w, = tan

3. Design a transfer function G (s) with the properties of the digital filter at the
new frequencies and ranges. There is no need to synthesize G(s).

4, Replace s by Z__I_ 1 and express the transfer function in the form of a difference
z+1

equation which yields the desired digital filter.

As an example, let us consider the design of a low-pass digital filter with the following
specification.

Sampling rate = 2kHz
Corner frequency = 100 Hz (3 db point)
Roll-off rate = 10db down at 200 Hz and over.

The filter has to be monotonic in pass-band and stop-band. As we know, in the analog domain,
this calls for a Butterworth type filter.

The critical frequencies are wF, T = 2¢ - 100

2000
wf, T =2m" 200
2 2000
T
w = tan i)L
p 2
w, = tan 27 X100 _ h9° =0.158
1 2 X 2000
o = tan 2TX200 oy 180 = 0,325,
- 2 X 2000

Design a Butterworth filter with the corner frequency

w
P2 0.325
w,. = 0.158, and - = . .
¢ Wy 0.158 2.1
Hence 14+ 2.111)2" = 10

. n =2 (2nd order filter).

A second-order Butterworth filter with w, = 0.158 has poles at

S

0.158 (- 0.707 £j0.707)
-~ 0.108 £ 70.108 and no zeros.

Il
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Therefore we can write the transfer function as

5182
G(s) =
(s +5;)(+52)
— 2 (0.108)?
(s + 0.108)% + (0.108)?
— 0.0234
s +0.216s + 0.0234
e —2z-1
Substituting s i
G(z) = 0.0234
_(Z_:_I.Lz + 0.216 (Z - ll
. + 0.
z + 1) Z+ 1) 0.0234
— 0.0234 (z2 +2z+ 1)
(z- 1) +0.216 (z2 - 1)+ 0.0234 (z + 1)?
- 0.0234 (z2 + 2z +1)
1.2394z% - 1.9532z + 0.8074
Yz  _ 00234 (z72+2z7'+ 1)
X(2) 0.8074z°% - 1.9532z"! + 1.2394

Normalizing the above equation, we obtain the difference equation

y, = 0.0189x,_, +0.0378x,_, +0.0189x, - 0.652y, , + 1.58y,_,

which is the digital filter for the given specification.

5.00 Fast Fourier Transform Technique
5.01 The Fast-Fourier Transform

The fast Fourier transform, first reported by Cooley and Tukey, is a powerful tool
for computing the coefficients of the discrete Fourier transform (DFT). It is now widely
used in signal analysis, power spectrum analysis and simulation of filter characteristics[ 7, 8 ].
The solutions to many of the above problems are now obtainable more economically than
by using conventional techniques.



-19 -

The discrete Fourier transform is a powerful, reversible, mapping operation for
time series. The usefulness of the discrete Fourier transform arises from the fact that
it has properties analogous to the Fourier integral transform. The DFT essentially
defines a spectrum of a time series.

In order to analyze a continuous signal by means of a digital system, we generally
sample the continuous signal and produce a time series of discrete samples which are
fed to the digital system. 1t is well known that when the sampling is done according to
the sampling theorem, the discrete time series represents the continuous signal completely,
taking into account the fact that the signal is band limited. The discrete Fourier transform
of such a series, the samples being taken at equal intervals, is closely related to the Fourier
transform of a continuous signal. This property makes the DFT a very efficient tool in
power spectrum analysis and filter simulation in digital computers.

The FFT is an efficient algorithm for computing the coefficients of the DFT of a
time series and is carried out iteratively, saving a considerable amount of computing
time. For example, if the time series consists of N = 2" samples, then only about
2nN = 2N log , N arithmetic operations are required to evaluate all N associated DFT
coefficients, whereas with the conventional straightforward method, N? operations are
required. As can easily be seen there is a tremendous saving in computation time,
especially when NN is large. As an illustration, it has been reported that for N = 8,192
samples, the computation by FFT requires 5 seconds to compute all the DFT coefficients
on an IBM computer, whereas the conventional method takes as long as half an hour.
By virtue of the reduction in computation time, the FFT finds extensive application in
the following areas:

1.  Filter simulation

2. Computation of power spectra and autocorrelation
functions of sampled data

Pattern recognition

Computation of cross-variance functions

5. Decomposing convolved functions.

W

5.02 The Discrete Fourier Transform

Let us consider a time function f(¢) represented by the sequence of N samples
f(nT), 0 < n <N - 1, where T is the sampling period in the time domain. Let F(kv)
represent the spectrum F(w), 0 < kK < N - 1, where v is the chosen increment between
samples in the frequency domain. Taking the discrete form we have

N-1 .
F*(kv) = % f(uT) e ¥Tkn (5.01)
H=0
The DFT is defined by
Fo o= 3 g emTuk (5.02)

H=0
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where F is the kth coefficient of the DFT, f, denotes the nth sample of the time

series which consists of N samples. The f,,’s and v = 2—; can be complex numbers
and the Fk’s are almost always complex.
Rewriting (5.02)
N1 nk
F, = ’Eofnw , k=01, ..... N-1 (5.03)

where W = ¢~ (27/N)

The discrete Fourier transform is also called the discrete-time finite-range Fourier
transform. The inverse of the DFT does exist, is very similar to the DFT, and can be
computed by the fast Fourier transform methods. The inverse of (5.02) is

. N-1 X2
= (=) Z FW*® £=01..... N-1 5.04
fQ (N ) n=o k ( )
We also have the relationship

Fk = FN"'k = F2N+k=.... (505)
and similarly, fo = I+ = faN+2 = ... (5.06)

The DFT has properties that are quite similar to those of the Fourier integral
transform. One of the important properties of the DFT is the convolution relationship.
That is, the inverse DFT of the product of the two DFT’s is the periodic mean convolution
of the two time series of the DFT’s.

5.03 Comparison of Computation Time

As mentioned earlier, the fast Fourier transform is a powerful algorithm for the
efficient computation of the coefficients of the DFT of a time series. The FFT reduces
the computation time considerably. Table I compares the computation time between
the direct and the FFT methods for a few operations.

The FFT not only reduces the computation time, but also reduces round-off errors
associated with these computations. As seen earlier, the computation time and round-
off errors are reduced by a factor of ﬁlgvily. The FFT is a computation technique of
sequentially combining progressively larger weighted sums of data samples so as to
produce the DFT coefficients defined by

N-1
F, = Z fwnk

n=o
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TABLE I

Comparison of the number of multiplications required

using direct and FFT methods

Approximate Number
of Multiplications

Operation Formula
Direct FFT
Discrete Fourier N1 rk/N
T Xye~ 2k N*  |2Nlog,N

transform (DFT) k=0

where r=1,2,....N-1

. . . N_l 2

Filtering (convolution) k>=:o XY, i N 3N log,N

where u = 0,1,....N-1

N-1-r N/N
Autocorrelation functions T X Xepk —Z(-2- +3)|3Nlog,N

k=0

wherer =0,1,... . N-1
Two-dimensional Fourier N-1 N1 ;

Tz x, germlkat(r/N)] N*  |4aN?log,N

transform (pattern analysis) k=0 9=0 k2

whereq=0,1,....N-1

. . N-1 N-1
Two-dimensional 4 2
2 X X,y N 3N?log ;N

filtering k=0 =0 k2 q-k, r-2 g2

wheregqr = 1,2,....N-1

There are two types of fast Fourier transform algorithms, namely, decimation in
time and decimation in frequency, and each has several modifications [20].

5.04 Decimation in Time

As we have seen earlier the DFT and its inverse are of the same form and hence
the same procedure could be used for computing either of them just by exchanging the
roles of fp and /. and applying proper scale factors and sign changes. The decimation
in time was first used by Cooley and Tukey. The decimation in frequency is obtained by
changing the role of fp and F;.. We will first consider the decimation in time.
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Suppose we have a time series of N samples-and divide them into two functions,
g, consisting of the even-numbered samples and &, consisting of odd-numbered samples.
Each function now has N/2 samples — the even-numbered function has g4, 82,84 . . - -

and the odd-numbered function has h,, kA3, hs ... .. . We can write
g, = fon (5.07)
hy = finer n=201..... ,1—2\’- 1 (5.08)
This situation is illustrated in Fig. 13.
N =10 X
n X X X X
X X X
X X X X
1 ! 1 1 1 1 L 1 ] I 1 > n
0o 1 2 3 4 5 6 7 8 9 10 n SAMPLES
N=6 X
g
" X
X
X X X
L 1 ! ] 1 1 > n
0 1 2 3 4 5
A
N=6
hl'l
X X X
X X
X
1 1 1 1 ! ! N
0 1 2 3 4 5 -0

Figure 13 Decomposition of time-series into odd and even-numbered samples
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Since g, and h,, are sequences of % samples each, they have discrete Fourier
transforms defined by

Ny
2 k
G, = g, W2Y' (5.09)
n=o
N,
2
H, = T h, (W2 Y% (5.10)

where £k =0,1,2,..., & _
> - L

Writing the discrete Fourier transform of the sequence Fj in terms of the odd and even
numbered sequences,

-1
Fk = 22 (gnwznk + hnw(2n+l)k) G.11)
n=o
N N
2 koo ok 2o nk
or F, = T g,wWy* +wk ' n,w*) (5.12)
n=o n=o
= Gy + WkH, o<k<Z (5.13)

The implication of equation (5.13) in terms of computational speed is worth noting
at this point. The computation of G, and Hy by the ‘direct’ method requires (%)2

operations each and an additional N operations are required to combine them to give
F,. Thus the total number of computational operations required is N + N?/2. ‘Direct’
computation of F; would have required N? operations and hence FFT reduces the
computation by a factor of 2 for large N.

For values greater than N/2, the discrete Fourier transforms G, and Hj repeat
periodically the values obtained when k < N/2. Hence substituting k + 1—; for k in
equation (5.13),

(k+—1!)
F Gk+w 2 Hk, 0<k<N/2 (5.14)

k+

wl=z

= G, - wkH, 0<k<NJ2 (5.15)

From equations (5.13) and (5.15), the first N/2 and last N/2 samples of the DFT of f,

(a sequence of n samples) can be simply obtained from the DFT of g, and A, both

sequences of N/2 samples. This situation is dipicted graphically in Fig. 14. Now the
computation of G, (or Hy) in turn can be further reduced to the computation of sequences of

.(Agl)_ = % , samples. These reductions can be carried out as long as the number of
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Go
fo =9, Fo
DISCRETE we
fi =9, &— FOURIER Fi
TRANSFORM G w!
2
f, =g, & (N = 4) F,
G, w?
f; =g; & wF33
fq =ho > F
H
fs = h; &—- DFT 5Fs
{N = 4)
fs = h; & w,Fe
H
f-, = h3 w-, F'l
wn = _wn -(N/2)
therefore WS = -ws-(®/2) = _py!
Also, Fs = F.4 =G, - W'H, , by equation (4.13)
= G, +WH, .
Figure 14 Signal flow graph of decimation in
time, Eight point DFT reduced to two DFT’s
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F
DFT Wo WO °
(N=2) G, ,
.—' Fl
Wl
G
C— Fa
DFT W
(N =2) G
*— Fa
we E
o— H Faq
DFT we° w4
(N=2) W

!

!

DFT Vﬁ)
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Figure 15 Eight point DFT of Fig. 14
reduced to four two-point DFT's
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Figure 16 Eight point DFT of Fig. 13 completely
reduced to complex multiplication and addition

samples of the function is a multiple of 2. Thus if the function f,, has 2" samples, n such
reductions could be made. Of course the DFT of one point function is the sample itself.
These reduction procedures are illustrated in Figs. 15 and 16.

In Fig. 16 the whole operation is reduced to complex multiplications and additions.
From the signal flow graph of Fig. 16 we note that there are 8 X 3 terminal nodes
corresponding to 24 additions and 2 X 8 X 3 arrows corresponding to 48 multiplications.
This amounts to Nlog,N + 2Nlog N operations. Half of the multiplications can be
omitted since the transmission indicated by the arrow is unity. Half of the remaining
multiplications are also easily eliminated as we will see, by using the fact that w2 =_1.
Thus for N samples, a power of 2, we see that we need Nlog,N additions and, at
most, —;— N log , N multiplications for the computation of the DFT of an N point sequence.

If we assume that input data are stored in the computer in the order fy, fa, f3,f6, f1: 5,
fs, f, the computation of the DFT can be done ‘in-place’. To see the iteration process,
suppose that each node corresponds to two memory locations (two memory locations are
required due to the fact that the quantities are in general complex). Then the left eight
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nodes represent memory locations corresponding to the input data in the order specified
above. The computation of the DFT is done ‘in-place’; that is, by writing all intermediate
results over the original data sequence, and then writing the final answer over the inter-
mediate results. The advantage of this ‘in-place’ computation is that no storage is required
beyond that required for the original N complex numbers. The first step in the com-
putation is then to compute the contents of the memory locations corresponding to the
left-most eight nodes. Since each pair of input nodes affects only the corresponding
nodes, the newly computed value could be stored in the same memory locations from
which the input was taken, as they are no longer needed for further computation. The
computation is now carried to the next vertical array of nodes to the right and this
iteration process is continued till the last pair of nodes.

We can note at this point that the shuffling of the input data shown in Fig. 16 was
necessary for the ‘in-place’ computation. This shuffling is called bit reversal. A number
of modifications are suggested by various authors to keep the input and output data in
the serial sequence order and still carry out the in-place computation [26]. These are
illustrated in Figs. 17 and 18.

Fs

Figure 17 Rearrangement of the flow graph of
Fig. 16 gives naturally ordered time samples
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Figure 18 Rearrangement of the flow graph of
Fig. 16 gives DFT computation without bit reversal

5.05 Decimation in Frequency

Another quite distinct form of the fast Fourier transform algorithm known as
decimation in frequency was found independently by Sande, Cooley, and Stockham
[8, 72]. Suppose the time series f,,, having N sampling points, has a DFT Fj, and let
g, and h, represent the two sequences derived from f,, as before. However, in this

case g, consists of the first N/2 points in f,, and &, the last N/2 points in f,,. Then
we have

g, = Iy (5.16)

h n fn

N (5.17)

N[

where n = 0, 1,2,...,%— 1.
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Writing the N-point DFT of f,, in terms of g, and I,

F = j:? [g,,wnk + h,,Wk('H%] (.18)
&
55 [l ) ) 1o

We now consider the even- and odd-numbered points of F} separately (hence the name
decimation in frequency). Replacing k by 2k and 2k + 1 in (5.19) we get

N
F -1

Fyp = @, + h,) W (5.20)
n=o
v,

Faery = 2 [y - ) W W] (5.21)
n=

which we recognize as the (V/2) point DFT’s of the functions (g, + 4,) and (g, - h,) wh.
From equations (5.20) and (5.21) we can conclude that the DFT of a N-sample sequence

f,, may be determined as follows. For even-numbered transform points, it may be computed
as an N/2 point DFT of a simple combination of the first N/2 and last N/2 samples of f,.
For odd-numbered transform points it may be computed as another N/2 point DFT of a
different simple combination of the first and last N/2 samples of f,,. This is illustrated in
Fig. 19 for an 8-point function. Figures 20 and 21 illustrate the replacement of each of

the DFT’s indicated in Fig. 19, by two 2-point DFT’s and each of the 2-point DFT’s by

two single-point transforms, these last being equivalency operations.

Figure 21 gives much information about the method of decimation in frequency and
allows us to compare it with the decimation in time form. As .can be seen, both forms
require ﬂlog N complex additions, complex subtractions, and complex multiplications.
Both computations can be done ‘in-place’. It is interesting to note that Fig. 21 has the
same geometry as Fig. 17, decimation in time form. The different rearrangements are
given in Figs. 22 and 23. It is to be noted here that the arrangement of Fig. 22 needs
no bit reversal of input, output, or coefficients but ‘in-place’ computation cannot be done.

The forms of Figs. 16, 17, 18, 21, 22 and 23 constitute a set of canonic forms of
the FFT. We may choose among these forms, to find an algorithm with the ‘in-place’
computation properties, normally ordered input, normally ordered output, or normally
ordered coefficients, but not all at once. If we need ‘in-place’ computation we have to
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Figure 22 Rearrangement of Fig. 21
with naturally ordered DFT coefficients
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Figure 23 Rearrangement of Fig. 21 to
give DFT computation without bit reversal

accommodate bit reversal and to eliminate bit reversal we have to sacrifice ‘in-place’
computation. All the methods described above are equally useful and the particular
method to be adopted depends on the particular problem.

One of the important applications of the FFT is to compute correlations and
convolutions [7]. In this application it is necessary to compute a transform and an
inverse transform and it is possible to use an algorithm for the inverse transform
which accepts bit-reversed inputs. In this way it is possible to avoid bit reversing
altogether. Another interesting application of the FFT is interpolation. The FFT has
certainly modified the economics of transform methods and more and more interesting
and feasible applications are being found [23].

6.00 Digital Hardware Modules and the Impact of LSI
6.01 Hardware Implementation of a Digital Filter

The earlier view that a digital filter is essentially a software oriented device is no
longer valid. With the rapid growth of digital technology, the digital filter is becoming
more and more hardware oriented, rather than a pure software routine. Due to the
revolution in large-scale integration (LSI), the time is rapidly approaching when it will
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be economically attractive to carry out on-line digital information processing. The
availability of fast computers at very low prices and the concept of time-sharing are
also changing the trend towards hardware implementation of digital filters. In the

last few years, considerable effort has been spent on the theory and design of digital
filters. However, little effort has been devoted to developing hardware building blocks
for the implementation of digital filters. Some of the design aspects are illustrated in
this section.

The high accuracy and precision demanded by digital filters makes their design
more complicated. Once the accuracy of the filter response is specified, the word
lengths required to implement this accuracy in the hardware can be determined. The
filter design considered in this report will be oriented towards implementation in the
form of LSI chips. The choice of the LSI building block will depend to a great extent
on multipliers and the input sample points. If we have a basic digital filter building
block, it can be combined in different configurations to achieve any desired filter
response. This can be thought of as similar to using standard NAND or NOR gates to
achieve any desired logic function.

For example, it has been shown that any multiple-pole transfer function can be
broken up into 2-pole groupings by using either a partial fraction expansion or straight
factoring of the original transfer function. The partial-fraction expansion technique
leads to the parallel 2-pole filter representation of Fig. 24 [ 6] .

2POLE |
DIGITAL FILTER

) 2-POLE
INPUT 7 DIGITAL FILTER * > OUTPUT

2-POLE
DIGITAL FILTER

Figure 24 Serial-order parallel digital filter configuration
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2-POLE - 2-POLE - 2-POLE

Figure 25 Sixth-order cascaded digital filter configuration

Figure 25 shows the result of factoring the original transfer function. Since
complex filters can be realized from either parallel or cascade connections of the
basic 2-pole version, the basic hardware building block should be in terms of the
2-pole filter. The 2-pole filter has to solve the difference equation given by

2 4
Y(¢t+2T) = kz Cor X[t+@2-KT] - Z DyjX[t+(3- k)T

where X and Y are input and output amplitudes, respectively, ¢ is the time, T the
sampling period, and C and D are constants determined solely by the pole and zero
locations of the filter and the sample period.

A/D SR, > SR, > SR, > SR,
CONVERTER

SR: SERIAL REGISTER

SR SR,

SERIAL SERIAL )
MULTIPLIER ADDER ! OuTPUT

Figure 26 Serial-sequential 2-pole filter block schematic

Figure 26 illustrates the filter hardware configuration of a serial sequential-mode
operation. In the serial sequential mode, the hardware design and the useful sampling
frequency obtainable from a given configuration depend on the number of bits per sample.
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Moreover, because of the serial operation, the internal processing must be faster than
the input sampling rate. The bit lengths of the sample registers and multipliers must be
carefully chosen. For a given configuration, the maximum achievable frequency is inversely
proportional to the bit length of the operands due to the serial operation. It is worth noting
here that this configuration requires minimum logic implementation at the expense of speed.
It was estimated that with the current P-MOS technology, a maximum filter frequency of
2 kHz could be obtained. Filter frequencies of 110 kHz are feasible using emitter-coupled
logic (ECL) technology with this serial configuration.

The block schematic of Fig. 27 illustrates the implementation of a 2-pole filter in the
parallel simultaneous mode. The entire operation is done in a parallel mode and the number
of bits per input sample influences the hardware design more than the sampling frequency, in
contrast to the serial configuration. In this case the hardware design depends on the bit
length, but the maximum achievable filter frequency is not affected as much. Even though
this configuration requires more logic for implementation, high frequencies are feasible.

With the present P-MOS technology, frequencies of about 150—200 kHz are possible, and up
to 10 MHz using ECL technology [70]. Presently, the limitation in achieving higher
frequencies for digital filter implementation seems to be the maximum conversion speed
attainable for the A/D and D/A converters. But it is only reasonable to assume that with the
present state of the art we can easily hope to achieve very high speeds for A/D conversion at
much lower costs in the near future. Ultrahigh or video speed A/D converters have conversion
rates in excess of 100 Mega samples per second, but usually with low resolution and accuracy
(usually 6 bits or less). The high conversion rate is obtained by trading off accuracy for
speed, that is by using ultrahigh-speed components [10, 67].

Digital filter implementation becomes economically attractive only when one filter
configuration system is used to filter at least a few inputs, using the time-sharing technique.
Often, not one, but several analog signals must be filtered. The question then is whether to
use one filter configuration system for each analog input or one over-all system, time-shared
or multiplexed between analog inputs. It is obvious, due to the requirement of large numbers
of digital components, that it is not economically practical to do the filtering individually.
We can use the time-sharing technique by employing a single A/D converter, multiplexer,
and a digital processor as illustrated in Fig. 1 in the introduction. But there are certain
problems involved with time-sharing and it is a question of trade-off between economics
and accuracy. Every time an analog signal is processed by some circuit, no matter how simple
it is, an error is introduced. As this is also the case with time-sharing, it deteriorates the
over-all system accuracy to some extent and the effect increases with the number of
signals being multiplexed.

Another penalty paid for time-sharing is a reduced conversion rate. When /N analog
signals are sequentially converted in time, each signal is being converted at a rate of only
1/N and, hence, the conversion speed is reduced. For example, if 20 analog inputs are being
converted at 10,000 per second, then essentially each input is converted at 500 per second.
This is one of the reasons why higher filtering frequencies are not now obtainable, keeping the
system cost to reasonable limits.
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6.02 Impact of LSI Technology and Cost Evaluation

In evaluating the cost of digital hardware for implementing the digital filter response,
it is not correct to look at it as a single filter element. It has to be assessed from the point
of view of using a single system to filter a number of analog inputs. Moreover, digital
filters are economically feasible only when effectively using LSI technology, and hence
the evaluation should be based on the use of LSI chips. Let us look at a specific example.

Voice-frequency communications equipment basically consists of filters, amplifiers,
and signal processing circuits like modulators, clippers, etc. If LSI technology is to be
applied, these functions should be implemented digitally. Of these, filtering is the most
important and difficult operation. We have seen in the earlier sections the different con-
figurations and ways of designing filters. One of the promising realizations is the form in
which a series of second-order sections are cascaded, as shown in Fig. 28 [51].
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Figure 28 Cascade realization of digital filter

Each section has four multipliers, four 2-input adders and two units of delay. If
time multiplexing is used, one set of adders and multipliers suffices for all the filter
sections. Also, since there is no cross-talk involved in digital systems, one arithmetic
unit can serve many channels as well as many sections. This is illustrated in Fig. 29.
Of course, when sections differ the filter coefficients differ, and hence storage of the
coefficient values is imperative.

The implication of using LSI circuits can be appreciated at this point. The large
number of shift registers required to store the two samples of signal per filter section
and the read-only memories to store the coefficients could be produced more
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Figure 29 Multiplexing for multiple channels

economically using LSI technology. The number of chips required for a filter with
the following specification was estimated by the Bell Telephone Laboratories.

System Specification

12-bit accuracy for the signals

8,000 samples per second signal sampling rate
digital filter arithmetic speed 107 bits per second
10-bit accuracy in coefficients.

-

The arithmetic unit for the filter (in general there is only one per system) can be
constructed of 20 chips, assuming a circuit density of present commercially available
bipolar IC’s, and this is medium-scale integration. If we assume 100-bit shift register
chips and 200-bit read-only memory chips, then for an application such as 25 channels
of identical 8t order filters (4 second-order sections) commonly used in telephone
switching communication systems, the number of chips required can be estimated
approximately as:

Arithmetic unit : 20 chips
Delay unit 2X12X25 X 4 24 chips
100
4 X 10X 4

Coefficient store 1 chip

200
Total 45 chips
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Building 25 filters, each of gth order, out of discrete components cannot compete
with 46 chips, when all but one are standard and one custom chip is a read-only memory.
As stated earlier, in applications where many channels, many sections and low frequencies
are involved, digital filters seem to be more economical at present.

TABLE II

The present state of the art of MSI/LSI devices *

MOST COMPLEX OFF-THE-SHELF MSI/LSI DEVICE
N;ﬂ?tvsrl dlllhm\! lynu of
devices avaliable A
Company off-the-shelf: Catalog I ot N'up‘bu Seliing pproximately squivalent to
# escription o Leads Price Discrete
MS1 LS| Gates| companents| 1C?
FAIRCHILD 16 - 9328 Dual 8 bit 16 $15.40 (1004} | 105 - . -
shift register
GENERAL INSTRUMENT)| 34 10 ROM2048 | 2048 bit 24 $90 (100+) - 2750 15
ROM $20 (20,000+)
HUGHES AIRCRAFT 23 20 HDSR4064]| Quad 64 bit 10 $25 (1000+) - 1200 -
M dynamic
shift register
INTEL INC. 0 3 i-1101 256 bit RAM 16 $65 (100+) 50 1850 -
MOSTEK - 6 MK4003P | Synchionous 36 $180 - 4000 100
buffer memory
(32-8 bit words)
MOTOROLA 44 0 MC1141G | Triple 66 bit 10 $29.70 300 | more than -
shilt register (100+) 1200
NATIONAL SEMI- 18 6 MM423 2048 bit 24 $120 1 - about -
CONDUCTOR CORP. ROM (100+) 2500
PHILCO-FORD CORP, - 10 PLASI6C | 16 channel 34 $38.50 - 700 (36 14-pin
multiplexet (100+) DTL DIPS
RADIATION, INC. 1 0 RS-1000 | 16 channel ana- 28 $360 - 400 10
log multiplexer (254}
RAYTHEON 22 1 RRS5100 | 64 bit RAM 16 $38 (100+) - 400 30
RCA 7 0 CD4006 | 18 bit, static 14 $17.25 - - -
shift register {1000+)
SIGNETICS 42 0 5822R 8 bit content 16 $44.50 100 - -
addressable (1004)
memory
SYLVANIA ELECTRIC 45 0 SMm180 Binary 14 $18.15 (100+) - 220 13
PRODUCTS INC. up-down
counter
TEXAS INSTRUMENTS 46 2 DRA-10011 Digital 156 $500 253 2088 -
differential (25 to 99)
analyset
TRANSITRON 92 0 TMC6464 | 64 bit 16 $30 to $40 - 600 50
ELECTRONIC CORP, bipolar {100+)
. | memory cell

*From Electronics Products, December 1969.

Table II reveals the present state of the art of MSI/LSI circuits and the chart is
specifically limited to off-the-shelf devices. It may be noted from the chart that a
2048-bit ROM could be obtained for as low as $100 and a triple 66-bit shift register
for $30. Projecting this a little further, it will be reasonable to assume that each chip
in our above example will on the average cost a maximum of $100. With this
assumption, we find that 45 chips will cost $4,500 and, putting an estimate of $500
for the A/D and D/A converters, we find that 25 channels of 8th order filters will cost
approximately $4,900. A similar 24-channel filtering system generally used in the
telephone multiplexing system employing electronic active filters, makes use of
24 channel filters, 8 pre-group filters and a few active circuits. Each channel filter
consists of 2 low pass and 2 band pass filters.
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The break-down cost for the above system obtained from a telephone company is
given below.

1 channel filter = 2 LP+ 2 BP = § 100 (Approx.)

Hence 24 channel filters = §2,400
8 pre-group filters = § 800
associated active circuits = $3,200

Total cost of 24 channels $6,500

Hence, it is obvious that digital filters which employ LSI technology are very
promising in terms of accuracy and economics.

7.00 Conclusion

At this time, one foresees increasing application of digital filtering in many signal
processing operations, particularly at frequencies below a few kilohertz. The new
technology of large-scale integration is making an impact on the hardware implementation
of digital filters. The characteristics of digital filtering, namely, high degree of accuracy,
stability, and repeatability, makes it highly competitive with analog filtering in applications
such as speech synthesis and telephone switching communication circuits.

There are various ways to realize the same digital filter transfer function. Practical
techniques for designing both recursive and non-recursive types of digital filters are
fairly well developed. Currently, recursive filters are considered to be more practical for
meeting hardware requirements for many applications. However, both types are finding
wide application in signal processing operations. Fast Fourier transform and high-speed
convolution techniques are being applied extensively in digital filtering operations and
special purpose computers are being made available to perform fast Fourier transforms.
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