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METHOD OF ANALYSIS OF STRUCTURE-GROUND
INTERACTION IN EARTHQUAKES

by

J. H. Rainer

ABSTRACT

A method of analysis is presented for determining elastic
structure-~ground interaction effects of single-storey structures
under earthquake loads. An equivalent single-degree-of-freedom
(S.D. F) model is derived, by means of which relative displacements
and overturning moments can be found directly from response
spectra of known earthquakes or from other derived or assumed
response spectra. The method is illustrated by sample calculations
of responses for the interaction system, the equivalent S,D.F.
model, and an S.D.F., system merely with reduced natural frequency.

A study for a wide range of parameters under earthquake-
type disturbances establishes that, for the interaction systems con-
sidered, inter-storey displacements are reduced but overturning
moments may increase relative to an S,D.F. system with identical
fundamental frequency and inter-storey damping.

Although the results are obtained specifically for circular
bases and frequency-dependent foundation parameters, the method
is shown to be applicable to bases with other geometries and stiffness
properties.,

Comparisons are made of the magnitudes of resonance peaks
for relative displacement from the "exact'" theory employed here and
from approximate theories developed by Balan et al (21). An
approximate expression for finding overturning moments in structures
with ground interaction is derived and numerical comparisons with
the exact theory are conducted. Finally, a numerical comparison is
made between the equivalent damping as obtained from relative dis-
placements and overturning moments., It is found that the approximate
theories give satisfactory results for tall slender structures but are
generally inaccurate for low structures. The equivalent damping
computed from overturning moments compares favourably with that
obtained from relative displacements.




METHOD OF ANALYSIS OF STRUCTURE-GROUND
INTERACTION IN EARTHQUAKES

by

J. H. Rainer

A. INTRODUCTION

The performance of a structure founded on a deformable
medium is of considerable interest in earthquake engineering and
has received some attention. Merritt and Housner (1) have presented
a study for single- and multi-storey buildings subjected to various
earthquakes. Only rocking of the base was considered and no founda-~
tion damping was included. Parmelee (2) studied single-storey
structures under steady-state ground motion; his extension to multi-
storey buildings, however, seems questionable (3). Perelman,
Parmelee and Lee (4) and Parmelee et al (5) have studied, for
limited range of parameters, the response of single-storey buildings
to artificially generated earthquakes. Kobori, Minai and Suzuki (6)
also studied various simple interaction systems under sinusoidal
ground movement., Many specific problems with foundation inter-
action have been investigated by others (see especially Refs. 7 and
8).

Most previous investigations may be grouped into two
categories: those that compute the structural response to specific
base disturbances from which the influences of interaction effects
are deduced; and those for which steady-state conditions are assumed,
To isolate the influence of various parameters on the response of
structures to arbitrary disturbances, however, it seems necessary
to attempt a more fundamental approach to interaction studies. As
there are a large number of parameters that may significantly affect
response, a complete investigation using response studies would be
prohibitive, even with relatively short-duration, artificially-generated
base motions.

The approach taken in this study is to derive an equivalent
single-degree~of-freedom (S.D.F.) model representing relative
displacement and overturning moment for single-storey interaction
systems (a three degree-of-freedom system), It is shown that the
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phenomenon of structure-ground interaction under arbitrary ground
disturbances can be reduced to a relatively simple analytical method
of finding a revised resonance frequency and an equivalent damping
coefficient. The dynamic response of this "interaction system'' when
subjected to a specific ground disturbance can then be found from well-
established procedures for S.D.F. systems, such as numerical
integration and response spectrum techniques.

The use of an equivalent S.D,F, system to represent the
interaction structure overcomes a basic drawback inherent in some
previous interaction studies that used earthquake-type ground distur-
bances, where comparison of the response for the interaction structure
with that of the fixed-based structure showed that sometimes the
response is larger, and sometimes smaller (}). Such results are
explainable in that the frequency change that accompanies structure-
ground interaction may in itself result in a substantial change in
response - either a reduction or an increase, depending on the locations
of the spectral peaks of the particular disturbance relative to the natural
frequency of the interaction system. Certain aspects of the interaction
phenomenon can therefore be masked by the characteristics of the
specific ground disturbance chosen.

With the equivalent S.D.F. approach, the properties of the
structure are separated from the influence of specific random -type
disturbances. A study of the system itself can thus be conducted
without the results being influenced by the properties of the particular
earthquake chosen. Furthermore, the significant parameters in the
interaction process can be readily identified and evaluated.

B. INTERACTION MODEL

The interaction system under consideration is shown in Figure 1.
This model was also used by previous investigators (2, 6). The initial
formulation of the problem follows closely that of Parmelee (2).
Additional interpretations of expressions are given, however, and the
present derivation is extended beyond that in Ref. 2.

For purposes of this derivation both the masses m, and m, are
circular in plan with radius r. The corresponding differential equations
of motion under any arbitrary base disturbance are:

horizontal translation of base mass

myUy + moUg + P = 0 (1)
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horizontal translation of top mass
mIUH + cUm + kUm =0 (2)

rotation about point b

11§ + Io§ + mthH +M =0 (3)
2 2
r r
where Io =m_ 7 + m; 7
e 2
I1 = mlh d

and dots above a variable represent differentiation with respect to time.
The remaining symbols are defined in Figure 1* Under the influence of
a steady-state ground displacement u_ = WelPt , the resulting complex
amplifications X, Y, and Z of the dis&acement components UB' % and
U, are given by

_ ipt _ :
U, = We X-ug(X1+1X2)

o By ipt , _ .
¢ =We Y-ug (Y1+1Y2) > (4)

N
0

ug (Zl + 122)

-

The forces between the base and the half-space are given by
P =P oFF =u, (X-1) A (5)

M =M e =u YB (6)

A and B are dynamic stiffness coefficients which relate the generalized
forces and the corresponding displacements under sinusoidal excitation.
For a circular base

i

A Gr (KH + ia Cp) (7)

B

Gr3(KR +ia Cp) (8)

*A list of symbols is also given under "Nomenclature,'" p. 30.
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where G = shear modulus of ground
r = radius
a = non-dimensional frequency = pr/VS
p = circular frequency, rad/sec
vy = shear wave velocity of ground
i =T
KH’ KR = horizontal and rotational stiffness factors
CH, CR = horizontal and rotational damping factors

Substitution of the above relations in Egs. (1) to (3) and
simplification gives:
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where Yy Ky R Kr
- , - (10)
2 2 2 2
P a B P a Bn
Cy . Cy
Ay = —— ' hg T (1)
2(BK. )2 2(BnK, ) 2
g m, R\ 2 k
pud amgmos B=—3, n= (3) .0 = o
1 pr 1

A = relative inter-storey damping ratio,

p = density of ground

It should be noted that, in general, wHZ k wR » Ay and AR in Egs.
(10) and (11) are frequency-dependent quant1t1es. Wy can be inter-
preted as the horizontal resonant frequency of the base alone, wgp as
the rocking frequency of the mass m; with moment of inertia I, = mlhz.
Ay and AR are the corresponding relative damping ratios for horizontal
and rocking motions, respectively.

Solution for the steady-state amplification vector yields

— - - ~ -‘1 r i
Z1 0
Z2 02
W
x _H
1 pZ
_ 6 x 6 matrix - Td (12)
from Eq. 9 u
2\, . g
x HH
2 P
hY1 0
hY2 0
\ J \ - L J

where the matrix inversion indicated may be carried out numerically
in a computer.
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T:il represents the displacement response vector of the
g
interaction system to a steady-state ground displacement u_ at any
frequency and is commonly called the transfer function for the system
(9). From the definition of frequency response curve (10) it may be
seen that for a continuous range of frequencies the frequency response
curves representing displacement ratios may be evaluated from Eq. (12).

The transfer function as well as the frequency response curves
for other time derivatives may be obtained if Eq. (12) is multiplied by
the proper power of ip corresponding to the order of time derivatives
represented by the variables. For example, the transfer function
Tg for the displacement vector subjected to base accelerations is given

g
by
TS= 1 ¢ =(-1>Td

5 (13)
g (ip) g P g

The description of the dynamic foundation behaviour is contained
in the terms A and B in Eqs. (7) and (8). For a spring and dashpot
assembly, the terms GrKy and Gr3KR represent the spring stiffness,
and GrCyy and Gr Cp the damping coefficient. For a circular disc on
an elastic half-space, the steady-state dynamic flexibility is given in
Ref, 11,

r R

f - if
H
a - Gr__ - ar |1H 2 (14)
fim v ¥on (f >2+ (f )2
1H 2H
3 f - if
1 o
A= C::r = & iG] e - ZRZ (15)
IR, 2 i (f1R> - (fZR ) J
from which, in conjunction with Eqgs. (7) and (8),
£ fZH
1H a

K. = ,“1C; & (16)
N (le>2 h (fZH)Z . (f1H>2 * (fZH>2




f
£ _ _2R

K = L . €. g a (17)
: (flR)z * (f2R>2 c (flR)z - (fZR>2

A similar derivation was originally presented by Hsieh (12). The
values for f; and f; used in this study are those obtained by Bycroft

for a circular disc on an elastic halfspace (11). The variations of

K1, KR, Cyy and CR for the circular base as a function of the frequency
parameter a are shown in Figure 2 by solid lines. The dash~dotted
line indicates constant magnitude approximations, which will be
discussed later.

Having defined the properties of the structure and the foundation
under steady-state base motions, one may compute the dynamic response
to any arbitrary base disturbance by means of a superposition of Fourier
components.

C. RESPONSE CALCULATIONS BY FAST FOURIER TRANSFORM

Interaction Systems - The response calculations for the inter-
action systems were performed by means of the discrete Fourier
transform method given by Eqs. (18) and (19).

N-1
2mikr
Ar = At 2 q) exp (-—N-—), r =0, .. N-1 (18)
k=0
N
2
2Tirk
Re(X,) = 24f Z AT exp () k= 0, ... N1 (19)

r 0

where

9 = discrete record, with duration td = NAt
N = total number of discrete points in the record
Tr = transfer function at discrete frequency variable r
Af = frequency increment in Hz, Af = L
d

and Re(xk) = real part of Xk = response at discrete time variable k.
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A_ as given in Eq. (18) is the discrete Fourier transform of the
disturbance, and X of Eq. (19) is the inverse discrete Fourier
transform of ArTr'

The computations indicated in Egs. (18) and (19) were carried
out with the aid of the fast Fourier transform computational algorithm
(13, 14, 15). This algorithm requires a digitized input at equal time
intervals and a total number of points equal to 2™, where n is an
integer.

The accuracy of the method was checked by performing response
calculations using the transfer function for an S.D.F. oscillator (9) and
comparing it with the results of a numerical integration procedure (16).
For both methods, 27.3 sec of the E1 Centro, 1940 Earthquake, N-S
component (Figure 3) was digitized into 4096 points. The velocity and
displacement response comparisons show deviations of less than 1 per
cent over the whole 27 sec of the record. The procedure, however,
requires that sufficient damping be present in the system to reduce
the free oscillations to acceptable magnitude by the end of the real
time computations. If the free oscillations are not damped out, they
will reappear at the beginning of the computations.

D. EQUIVALENT S.,D.F. MODEL FOR RELATIVE DISPLACEMENT

With the introduction of rocking and relative horizontal motion
of the base, the original S.D.F. system has become a three-degree-
of-freedom system. Three modal shapes can therefore be expected,
but in this study only the effects due to the lowest mode are considered.
For the range of structural parameters considered herein, the con-
tribution of the second and third modes to the total response of single-
storey structures can be assumed negligible in most earthquake
disturbances.

1. Properties of Frequency Response Curves

The dynamic characteristics of a linear system are completely
determined by the frequency response curves. For a particular
response parameter, e.g. relative displacement, the frequency response
curve is defined as the ratio of response to disturbance under steady-
state conditions as a function of frequency. Although, in general, both
a real and an imaginary component are present, for small amounts of
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damping it is satisfactory to consider merely the vectorial sum of
the real and imaginary components, i.e. the amplitude frequency
response curve, The latter will be used exclusively henceforth.

Because of superposition, two dynamical systems with the
same frequency response curve will have the same response when
subjected to identical random disturbances. For the problem at hand
it is therefore necessary to transform the response curves of a
component of the interaction system into a response curve of an
equivalent S,D.F, model with identical resonant frequency and good
agreement of amplitudes over the entire frequency range,

2. Determination of Fundamental Resonant Frequency

The fundamental resonance frequency for the interaction
system may be computed by determining the eigenvalues of the
system once a standard eigenvalue problem has been formulated.
This is accomplished by using only first, third and fifth rows and
columns of the matrix in Eq. (9), corresponding to the real terms
in the displacement vector; the right hand vector is set to zero
because free vibrations are implied.

If frequency-dependent stiffness parameters are present,
as in the case considered, they can be introduced by successively
approximating the stiffness parameters corresponding to the eigenvalue
computed in the previous cycle, Having thus obtained the fundamental
frequency w;, one may substitute it in the transfer function, Eq. (9},
to obtain the real and imaginary part of the response parameter.
Because the computation is very sensitive to small frequency variations,
a few trial calculations with small positive and negative excursions
from the resonance frequency may be necessary to obtain the true
resonance peak values.

Alternately, a numerical search of the response curves may be
employed to detect the peak amplitude located at the resonance
frequency of the fundamental mode, 'wl. This latter method was used
to obtain the numerical results presented here.

3. Egquivalent S.D.F. Model

Agreement of the amplitudes of the frequency response curve
is obtained as follows. Examination of the equations of motion for
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relative displacement of the interaction system shows that at zero
frequency the ratio of relative displacement of the top mass mj to
the imposed ground acceleration, U, ﬁg, is equal tomy/k = L/w, .
As, however, the displacement response curve of an S,D,F. system
with a resonance frequency W, will have a zero frequency displacement
amplitude of l/wlz, the equivalent 5.D.F. model with frequency w;

is obtained by multiplying the amplitudes for the interaction system by
(wo/w))2 (See Figure 4). Agreement of the response curves at
resonance is achieved by computing an equivalent damping coefficient
Ae from the relation

A, =

1
— 0
e = M’ (20)

where W 2
o\
(
e 1 U.)l

S
]

peak amplitude of frequency response
curve for the interaction parameter.

B
]

It should be noted that M _ and M; are dimensionless, i.e. they do not
correspond to the dimensions shown in Figure 4. Because all arnphtudes
of the frequency response curve have been increased by (w; wo) , the
response computed with the above equivalent S.D.F. is thus too large

by the factor (wl/wo)

With these three parameters,,i. e. fundamental resonance
frequency, multiplication factor (wg wl) , and equivalent damping,
the dis lacement response curves of the interaction system multiplied
by (wo wl) and the equivalent S.D.F. model agree closely over the
complete frequency range, even when the frequency-dependent founda -
tion parameters are considered.

4. Specific Response Calculations

Figures 5 and 6 present relative displacement responses for
two specific structures, Nos. 1 and 2, with parameters as given in
Table I. The base disturbance consists of the record of the El Centro,
California, 1940 earthquake, N-S component shown in Figure 3. For
Structure No. 1 the solid line in Figure 5 represents the response of
the interaction system, as obtained by the Fourier transform method,
whereas the dotted line represents the response of an S.D.F. system
with natural frequency Q = 7. 59 radj'sec and damping ratio A = 2 per
cent. The interaction response using the equivalent S.D.F. with
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(w]/wo)?‘ = (7. 59/10.0)2 = 0.576, A, = 1.37 per cent and W, = 7. 59
rad/sec gives results that are indistinguishable from the true inter-
action response throughout the full 27 sec.

Similar calculations for Structure No. 2 are presented in Figure
6. The solid line (Figure 6(a)} represents the interaction response
obtained by numerical integration (16) using the equivalent S.D.F.
model shown in Table I. The dotted curve again represents the
relative displacement for the S.D.F., with A = 2 per cent and O = 7, 60
rad/sec. For this structure the Fourier transform calculation was
not successful because the small amount of damping in the system
did not reduce the free oscillations sufficiently before the calculations
were terminated. For illustrative purposes, however, and to obtain
at least a qualitative picture of the interaction response obtained by
the Fourier transform method, the curve is presented in Figure 6(b).
The undamped oscillations may be observed at the beginning of the
calculated response.

E. PARAMETER STUDY

To examine the behaviour of the interaction system a parameter
study has been carried out with the following ranges of parameters:

wy, = 5to 20 rad/sec

m; = 1,000 to 4,000 Ib secz/in.
m, = 1,0001b sec’/in.

h = 20 to 80 ft

r = 15and 20 ft

A = 1, 2 and 5 per cent

V_ = 300, 500, and 800 fps.

S

Poisson!s ratio v and density of the ground p have been kept constant
at zero and 120 1b/ft3, respectively. A variation in the two parameters
would be reflected primarily in changes in the shear wave velocity Vs
and the rocking stiffness kg, both of which are considered as variables
in this study. The types of structure covered by these parameters
would include elevated water towers and other tall slender structures
that can be idealized as S.D.F. systems. Although the assumed

values for shear wave velocity of the ground are low for the usual type
of formulation materials, the method of analysis is applicable for all
higher values of shear wave velocity.




-12 -

1, Reduction of Resonance Frequency

For the range of parameters shown above, the reduction of
resonant frequency for the interaction systems is shown in Figure 7.
The ordinates indicate the reduction in resonant frequency relative
to the fixed base frequency, whereas the abscissa is the ratio of
static rocking frequency to the fixed base natural frequency, UJ@/KDO .

k
2 )
Here w§ = T
8Gr3 . : .
kg ———— = rocking stiffness of circular plate
3(1-v) . -
under static conditions,
2 r r2
and I = total moment of inertia=m, h”" +m)F +m =
for the circular configuration of top and bottom
mass.

The lower, heavier curve in Figure 7 corresponds to the
theoretical relation of frequency reduction for a single-storey building,
considering only rocking and relative displacement, as derived by
Merritt and Housner (1). This curve also establishes the theoretical
lower bound for frequency reduction of the three-degree-of-freedom
interaction system., Values of frequency reduction for the above
ranges of parameters fall within the region bounded by the two curves.

Because the ratio of frequency reduction wo/wl is central to
the derivation of the equivalent S.D.F, model and the determination
of interaction response, the results presented in Figure 7 have the
following implications. Through the ratio of rocking frequency to
fixed-based natural frequency, wg/w,, the quantitative dependence
of ground-structure interaction effects under random-type ground
disturbances is established as a function of major parameters such
as ground stiffness, geometry of the base, geometry and mass .
distribution of the structure, and lateral stiffness of the structure.

2. Comparison of Magnitudes of Resonance Peaks

The factor (wo/u)l)z having been established, the other
parameter required for a complete quantitative description of the
equivalent S.D.F. model is the equivalent damping ratio A,. For
the particular structural parameters and foundation properties
shown, )‘e may be found from Figures 8 to 12 and Eq. (20). Detailed
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results are presented for the Bycroft foundation model, the Bycroft
foundation with zero damping, and a foundation having constant
stiffness and damping coefficients. The curves in Figures 8 to 12
represent envelopes of the resonance peaks My of the frequency
response curves for the particular structural parameters given.

(a) Bycroft Foundation Model

For the foundation properties presented in Figure 2, Figures
8 and 9 show the ratio of peak amplitudes Mj of the frequency response
curve for the interaction system to the peak amplitudes Mg of the
S.D.F. system. The abscissa is ag = u)or/Vs,
1
k K
where w, = (?1) = natural frequency of fixed-based structure.
With small values of a, it may be seen that for tall structures the peak
amplitude of the frequency response curve exceeds that of an S.D.F.
system with the same amount of structural damping.

In order to interpret some influences of the foundation properties,
it is useful to refer to the S.D.F. stiffness and damping terms presented
in Figure 2. It may be observed that in the rocking mode the foundation
damping coefficient for small values of a is practically zero; hence the
large values of peak resonance amplitudes are not unexpected.

The effects of varying inter-storey damping are demonstrated
in Figure 10 for A = 1 per cent and A = 5 per cent, using the foundation
parameters of Figure 2. The general variation of peak amplitudes is
similar, although the closer coupling of the top mass with increased
inter-storey damping is reflected in larger amplification ratios than
for structures with less damping. Further results of M;/Mg for
my = 1000 Ib seczfin. and A = 5 per cent are presented in Figures
11 and 12. The curves for r = 15 ft in Figure 11 are seen to exceed
those of the S.D.F. oscillator, i.e. the fixed based structure, by
substantial amounts, whereas the curves for r = 20 ft in Figure 12
remain approximately equal to the S.D.F, for a large variation of ag,.

(b) Bycroft Foundation with Zero Foundation Dampin
y g

In order to assess the influence of foundation damping on the
amplitudes of the frequency-response curves, this particular founda-
tion model is chosen as one extreme condition. Figure 13 shows the
same ratio MI/MS of the peaks of the response curves for the case
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where the foundation stiffness terms K;; and Kp are those shown in
Figure 2 and Eqs. (14) and (15), but the damping terms Cgy and CR
in Figure 2 and Eqs. (16) and (17) are set equal to zero. All peak
response amplitudes may be seen to exceed those of the correspond-
ing S.D.F. oscillator.

(c) Constant Foundation Parameters

In investigating the effects of foundation flexibility it is
frequently assumed that stiffness and damping properties are
independent of frequency. Such an approximation is shown in
Figure 2 by the dash-dotted lines. The parameter study for the
ratio Mj/Mg, using the constant foundation parameters, is shown
in Figure 14, It may be seen that the peak values in the range of
small a_'s have been substantially reduced compared with those in
Figure 9 with the frequency-dependent foundation parameters,

This would be expected because with smaller values of a
more damping is present under the constant approximation than for
the frequency-dependent case. The effect of the approximation on
the reduction of natural frequency, however, is quite small. For
the parameter range studied, the largest increase in the fundamental
resonant frequency over the case,with frequency-dependent parameters
is 4 per cent and occurs for w;r/V, = 0.35. The deviations decrease
for smaller values of uﬁlr/VS. For this approximation of constant
foundation properties the bounds for frequency reduction in Figure 7
are therefore still valid.

(d) Bycroft Foundation with Additional Rocking Damping

In addition to the three types of foundations dealt with above,
namely the Bycroft foundation, Bycroft foundation with zero founda-
tion damping, and a foundation with constant spring stiffness and
constant viscous damping magnitude, the foundation-type that results
from adding a constant amount of damping to the geometric damping
of the Bycroft foundation will be investigated here. Such additional
amounts of damping may arise from hysteretic energy loss in the
foundation material, or from an artificially introduced damping
mechanism in the foundation. The theoretical basis for such damping
models may be found in Ref, 17. Only additional damping in the
rocking mode will be considered since rocking was seen to exert the
dominant influence on the response of the interaction system for the




- 15 -

parameters investigated. For the horizontal base motion, the
standard Bycroft curves shown in Figure 2(a) have been used. The
variation of foundation damping in the rocking mode is shown in
Figure 2(c). The solid line represents the variation of Cr in Eq. (17)
for the circular Bycroft foundation, whereas the dotted lines signify
the values for Cp with additional rocking damping of 0.1 and 0. 3.

Using the various damping values, a parameter study was
conducted for the peak values Mj of the frequency response curves for
relative displacements U, and for overturning moments M/mh.

The results are presented as the ratio of Mj/Mg, the ratio of the

peak values of the interaction system to the single-degree-of-freedom,
fixed-based system. Figure 15 and 16 show the variation of MI/MS
for relative displacement as a function of the frequency ratio ay for
the Bycroft foundation and the structural parameters given on the
diagrams. On the same diagram the variation of relative displacement
for damping of CR + 0.1 and CR + 0.3 are given by the dashed and
dashed-dotted lines, respectively.

It may be seen that for the relative displacements, substantial
reductions occur in the amplitudes of resonance peaks. This implies
a reduction of the equivalent damping factor A, which in turn means
that substantial reductions in displacements can be computed by the
method of the equivalent S.D,F. described in a previous section, The
resonance frequencies are affected only slightly by the relatively
small amounts of damping considered here, and for practical purposes
they may be assumed to remain constant.

It should be emphasized that the peak amplitudes of the frequency
response curves for relative displacement do not, by themselves, give
any measure of the response that may be expected from a random-type
base input,

F. DETERMINATION OF MAXIMUM RESPONSE FROM SPECTRA

With the aid of the equivalent S.D.F. model, the maximum
response for an interaction system may be determined from established
response spectra of known earthquakes or other disturbances. The
procedure is illustrated below with Structure No. 2, Table I, for the
response spectrum (18) of the El Centro, 1940 earthquake, N-S
component shown in Figure 17,
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(1) Find reduced fundamental frequency W, (either from
computations outlined above or from the graph in Figure 7):
wy = 7.60 rad/sec.

{2) Determine peak amplitude MI/MS of frequency response
curve from Figure 9: M;/Mg = 1.51.

(3) Multiply amplitude M /Mg by (wo{wl)z = 6.95 and determine
effective damping ratio from Eq. {20). By direct proportionality
with A = 2 per cent,

1
he = (0-02) 75Ty (6.95)

= 0.00192 = 0.192 per cent.

(4) Enter response spectrum with damping ratio A, and natural
frequency ®; (or the corresponding period T = 1.21 sec) and
read maximum spectral response: SD =~ 7 in,

(5) Divide spectral value by (wo/wl)z to obtain true maximum
interaction response: maximum relative displacement = 1 in,
This value agrees with the response calculation shown in
Figure 6 and for which results are tabulated in Table IL.

The procedure is only slightly more complex than that using
the response spectrum for S.D.F. systems. With the aid of the
equivalent S.D.F. model, it is thus possible to construct a modified
response spectrum for a particular structure to account for influence
of structure-ground interaction.

1. Response for Different Types of Foundation Damping

It is of interest to compare the responses of a particular
structure for two assumptions of foundation damping: (1) Bycroft
foundation, as represented by the solid lines in Figure 2; and (2)
Bycroft foundation with damping coefficients Ci; and Cg in Egs.
(16) and (17) set to zero. Such a comparison for Structures No. 1
and 2 is indicated in Table II. The magnitudes of the peak frequency
response amplitudes have been expressed in terms of equivalent
damping A for the equivalent S.D.F., model, This provides a
uniform basis of comparison for the different foundation models and
permits the evaluation of the maximum response directly from a
response spectrum. The values of Sy are the relative displacements
for the interaction system as obtained from Figure 17 by means of
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the equivalent S.D.F. model and the multiplication factor (¥, wo)z.
Umnax represents the maximum displacement obtained from response
calculations. The interpolation between adjacent spectral curves to
find Spy is subject to considerable uncertainty, but for practical
purposes the error involved can be ignored.

A useful approximation in the application of the response
spectrum follows. For structures with small amounts of inter-storey
damping (say up to 5 per cent) the equivalent damping A, will be small
for reasonably large reductions of frequency, as is evident from
Eq. (20). Consequently, one can use the spectrum curve for zero
damping and divide the response by (1, /wl)z. This will give a
conservative estimate of spectral response for all cases, The
approximation will improve with smaller inter-storey damping and
larger frequency reduction ratio (4, wl)z.

2. Generalization of Maximum Response Comparisons

A general conclusion regarding the response magnitude of
interaction systems can be obtained from an examination of Figures 8
to 14, which indicate that over a considerable range of values of a,
the peaks of the frequency response curves are smaller than those
of the S.D.F. oscillator with the same natural frequency. For these
cases the maximum response of the interaction system is a priori
less than that of the S.D.F. case., Where the resonance peaks
exceed those of the S.D.F. case, the response of the interaction
system may exceed that of the S.D.F. oscillator, particularly under
steady-state excitations with frequency close to the resonance
frequency of the structure. Considering, however, the random
nature of the earthquake excitation, the contributions over the whole
frequency response curve have to be included. If the earthquake
and the resulting response are idealized as weakly stationary
processes, the mean square response is given in Ref. 19.

2 @ >
% = [ | |? pe) ap (21)
o
where
IH(p) l = amplitude of transfer function, and
D(p) = power spectral density of the excitation.
As lH(p) IZ is highly peaked at the resonant frequency W,,

D(p) may be approximated by D(®;) = constant. Consequently, the
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comparison of the response of two structures can be made on the
basis of the ratio of the areas under their respective frequency
response curves,

HH(P)1| o J |H(PJSI dp (22)

For the parameter ranges considered, such a comparison of
areas has been carried out for the interaction system with zero
foundation damping relative to an S,D.F. oscillator with the same
inter-storey damping. This represents the most unfavourable case
as far as magnitude of relative displacement response is concerned.
For all cases, the ratio has been equal to or smaller than 1,00; for
structures with a high aspect ratio h/r, the ratio of the areas is of the
order of 0,1,

On the basis of random vibration theory it is demonstrated that
the mean relative displacement response for an interaction system
may be expected to be less than or equal to the response of an S.D. F.
oscillator with the same natural frequency, irrespective of the
particular viscous damping magnitudes in the foundation. For any
particular interaction structure and a given base motion, this state-
ment can be verified with the aid of the equivalent S.D.F. model and
the response spectrum.,

G. OVERTURNING MOMENTS

The overturning moment M acting on the elastic half-space
resulting from the dynamic response of the structure may be obtained
from Eq. (3):

M = -(1,8+1; & + mnly) (23)

Upon substitution of steady-state amplification factors (Eq. 4)
and appropriate structural constants, the frequency response {or
transfer function) for overturning moment relative to groundaccel-
eration is given by

M 1+ a
n—llﬁ;-- (1+ - )hY+x+z (24)
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For a rigidly based structure, Y =0, X = 1;

M
thus I-I_llTiJ.g = =[1+ 2] (25)

X, Y and Z may be computed from Eq. (12), where the addition has to
be carried out with due regard to signs and real and imaginary
components. A typical amplitude frequency response curve for the
overturning moment of Structure No, 1l is presented in Figure 18,

1. Equivalent S.D.F. for Overturning Moment.

At zero frequency the frequency response curve may be seen to
have an amplitude of 1,0, since Y= 2 = 0, and X = 1 in Eq. (24). An
S.D.F. system with the same natural frequency as the interaction
system would have amplitude 1 wlz. Consequently, the equivalent
S.D,F., system is obtained by multiplying the overturning moment
curve by 1 wlz; the equivalent damping is determined from a com-
parison of the magnitude of resonance peaks from Eq. (24) relative
to Eq. (25) at the resonance frequency Wy, The value for the over-
turning moment ratio M/mh obtained from response calculations
is then too small by the factor w;".

For the particular set of parameters shown, the variation of
the peak amplitudes of the overturning moment response curves are

presented in Figure 19 for the Bycroft foundation.

2. Maximum Overturning Moment from Response Spectra

Determination of the maximum overturning moment under a
particular base motion may be obtained directly from the response
spectrum in a manner similar to that described for relative displacement:

(1) Following a determination of the fundamental resonant
frequency, wj, the amplitudes of the oyverturning moment
response curve are multiplied by l,/w1 and the equivalent
damping >‘e is determined.

(2) The corresponding value of maximum relative displacement is
read from the response spectrum and multiplied by w,"” to
obtain the value of the ratio for overturning moment, M/mlh.
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Figure 19 shows that the peak amplitudes of the frequency
response curves for a wide range of parameters are greater than those
for a rigidly based structure. Unlike the case for relative top-storey
displacement, the magnitudes of the resonance peaks for overturning
moment give a qualitative indication of the magnitude of the overturning
moment response under an arbitrary base disturbance. This may be
concluded because the frequency response curves for the interaction
system and the rigidly based structure have very nearly the same
amplitudes except near the resonance frequency. Thus under a steady-
state or random~type disturbance, the response of the structure with
the smaller resonance peak represents a lower bound to the response
of the structure with the larger resonance peak. It may therefore be
deduced from Figure 19 that for some tall structures with foundation
interaction the overturning moment will be larger than that for a
rigidly based S.D.F, structure with the same natural frequency and
inter-storey damping.

Again, an approximation of the maximum overturning moments
of tall structures is obtained by taking the undamped spectral displace-
ment S and multiplying it by u)lz to get M/mlh; this gives a
conservative estimate,

3. Response Calculations for Overturning Moments

Figure 20 shows response calculations for overturning moments
for Structures No. 1 and 2 of Table I. For both interaction systems
the overturning moment, shown by solid lines, is larger than for a
rigidly based structure of the same natural frequency, as represented
by the dotted curve. The responses obtained for Structure No. 1
from the equivalent S.D.F. model and the "exact" one by Fourier
transform with transfer function of Eq. (24) differ by no more than
6 per cent. As already described for relative displacement, the
Fourier transform method was unsuccessful in calculating the response
for Structure No. 2; thus only the results for the equivalent S.D. F.
model are presented.

Agreement of the equivalent S.D.F. model with the actual
overturning response curve is not as good as for relative displace-
ment. An examination of the mode shapes of the interaction system
indicates that above the fundamental resonance frequency the relative
base displacement has phase opposite that of the rocking and relative
displacement, whereas below that frequency all are in phase. Because
the magnitude of the relative base displacement is small compared
with the relative top mass and rocking displacements, the deviation
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between the equivalent S.D.F. model and the true overturning frequency
response curves can be neglected for most random -type motions.

H. EXTENSION OF METHOD

Although the results presented herein apply specifically to
circular bases on an elastic half space and to the range of structural
parameters investigated, the method of obtaining equivalent S,D.F.
models for relative displacement and overturning moment is quite
generally applicable for linear interaction systems. The curves for
frequency reduction apply to other geometrical shapes as well as to
circular ones provided (1) that the static stiffness of the foundation on
the elastic ground is known, and (2) that frequency dependent stiffness
and damping properties do not differ drastically from those of the
circular ones. For example, the results apply closely to square and
rectangular bases, whose S.D.F, stiffness and damping properties
are presented in Ref. 20.

Flexural Type Structures - The detailed derivation and specific
results presented pertain to structures that undergo a shear-type
deformation. The results, however, are applicable also in a general
way to structures that deflect primarily in the flexural mode, such as
cantilever tower structures with substantial top masses provided the
moment of inertia I of the top mass about its own horizontal centroidal
axis is small compared to the term mlh . It is also understood that in
a flexural-type structure lateral excursions remain small so that linear
vibration theory remains valid.

J. COMPARISONS WITH APPROXIMATE ANALYSES

Approximate methods of analyses are important for the following
reasons! first, approximations frequently provide a simple and quick
answer to the solution of complex problems and secondly, since they
are simpler than the more "exact" solutions, approximations often
enable one to get a better conceptual grasp of the essential features of
a problem. Often, however, approximations are limited by the degree
of accuracy in which they are able to describe the real situation.
Furthermore, the range of applicability of approximations may be
limited.

The ground-structure interaction model used by Parmelee (2)
and described above under "Interaction Model" is chosen as the standard
for purposes of evaluating the approximate theoretical formulations.
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This ground-interaction model contains all the essential features which
appear to play important roles under earthquake-type disturbances.
These features are: (1) the necessary number of degrees of freedom
for an interaction structure - relative interstorey displacement,
relative base displacement, and rocking; (2) interstorey damping, and
(3) frequency dependent foundation parameters as given by the Bycroft
coefficients. The above model is also referred to herein as the "exact"
theory.

Two approximate theories for structure-ground interaction are
investigated here: the first is the case of the undamped system, treated
by Balan et al. (21) and, for a simpler case, by Merritt and Housner (1).
The second is an approximate treatment of overturning moments that
results from simplifications in the derivation of the "exact'" theory.

1. Validity of Undamped Interaction Relations

Balan et al (21) have investigated the relationship among the
relative displacement U, rocking displacement h$ and translational
displacement u for the model shown in Figure 1. The result is valid
for the undamped case or for the case with proportional damping:

2w 3 (ol 2
W = (hé) wé = Umwo o (26)
where 2 kT
(l)T = —
My
& 2 _K§
@ ml
2 k
w =—
k
and K, = e
h

k. is the horizontal translational stiffness of the base on the half-space,
and Kj is the rocking stiffness of the base on the half-space. For the
interaction model shown in Figure 1, w§2 becomes

W,

2 _ %
R |
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where I=1 + I1 +tm h2 = total amount of inertia. Since,
however, foundation damping constitutes an essential part of the
dynamic behaviour of the interaction system, and since the damping
matrix is in general nonproportional, the validity of Eq. (26) needs

to be verified for its applicability to the realistic, damped, structural
model. Such a check was carried out from the parameter study of
the magnitudes of resonance peaks.

For steady state conditions, Eq. (26) can be re-written as

2 2 2
u u)T = hYu)é =7 wo (27)
so that mo 2
hyY = — A (28)
Y3

B Y =t (2B
(ﬁ) - (wl ey 25}
Eq. (28) becomes L
- [l
= SENE o

The numerical comparisons between approximate and exact
theoretical relationships are performed on structures with the parameters
given in Table III, All structures are circular in plan and the dynamic
behaviour of the base on the elastic half-space is described by Bycroft's
curves (l1l), which are shown by the solid lines in Figure 2.

A numerical search for the peak quantities of relative dis-
placement Z, rocking displacement hY, and overturning moment M
was conducted. The amplification vectors for the above quantities
were evaluated from Egs. (9) and (24) as a function of frequency for
the above three quantities. The comparisons between the accurate
values hY and the approximations given by Eq. (26) are presented in
Tables V and VII for the Structures No. 3 and No. 4, whose parameters
are given in Table III. The agreement between these quantities is
expressed as a per cent difference in columns (11) of Tables V and VIIL.
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Another possible approximation as given by Eq. (28) is compared
with the theoretically exact values in Tables V and VII. Again the

discrepancy is represented by a per cent difference in column (14).

2. Overturning Moments

The quantity which is of particular interest to the foundation
engineer is the overturning moment, which arises from the moment
of the inertia forces of the structure about the base. The complete
transfer function for overturning moment is given by Eq. (24).

In an attempt to simplify the treatment of overturning moments,
the approximate relationship between the relative displacement Z and
overturning moment M is investigated. Substitution of Eq. (30) into
Eq. (24), and letting X = 1, gives

s [ (€ ) zez]
“on%/ liay lta
=1+z[(312) (” an )' an ] gl
LS iy mal for large 1= (2) 5 thus the term [(.‘;j_f- ] ELE)

becomes negligible. Therefore

& 2
M =4z —-°—> (32)
rnlhu W
g 1

and the equivalent S.D,F, model for this approximate overturning

moment is 2
. ' wo 1
e ) 14 =
1 wl

This follows the procedure described previously under ""Overturning
Moments."

The displacement magnification factor for relative displacement
is given by

Z

i
u 2 2
w
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U
since Z = -Em by definition. Thus the equivalent S.D.F. for relative
g
5ol p
displacement is 1 wo 2
7= 2 g Yl
w 1

as was described under "Equivalent S.D.F. Model for Relative Dis~
placement." If amplitudes of resonance peaks (which occur at the
frequency UJl) are compared, Eq. (34) becomes

'Lz ke (%3') el
wy 1

The expressions for the equivalent S.D.F. for overturning moment and
relative displacement, Eqs. (33) and (35) respectively, are seen to
differ by the constant 1.0 within the parentheses. This constant can in
most cases be assumed negligible in comparison with Z (which equals
25 for A\ = 2 per cent for a S.D,.F. system, for example). It may
therefore be concluded that the equivalent damping A, for relative
displacement and overturning moment are approximately equal. Thus
it is only necessary to perform a parameter study of resonance peaks
for relative displacement, as the results for overturning moments can
be computed therefrom. For a quantitative comparison of agreement
between equivalent damping obtained from relative displacement and
overturning moments see Tables IV and VI,

3. Discussion of Results of Approximate Analyses

The comparison of results for Balan®s approximate relationships
between the displacement components and the numerical results of the
theoretical interaction model shows that in all cases investigated Eq.
(30) gives poorer agreement with the exact rocking amplitude hY than
Eq. (28). Equation (30) is arrived at from Eq. (28) by substituting
Eq. (29) and is consequently subject to two sets of approximations.
Thus a larger discrepancy is not surprising. The per cent errors for
Eq. (30) are seen to be unacceptably large for low structures, whereas
results for tall structures are quite accurate. A similar trend is
evident for the results of Eq. (28), although the agreement with the
theoretical results is much better. The per cent error is still large,
however, for "soft", low structures. The large discrepancies are
due mainly to the neglect of the relative base displacement in the
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approximate expressions, i.e. X was set equal to 1.0. This base
displacement becomes relatively more important for low structures
and hence the errors may be expected to be large.

The approximation of Eq. (31) for the amplitudes of resonance
peaks of overturning moments is seen to give reasonable agreement
for the structures investigated, as is shown in Column (8) of Tables
IV and VI. The agreement is excellent for the structures with the
2 per cent structural damping. For the 5 per cent structural damping,
greater deviations are evident for the low soft structures, although even
these may give acceptable magnitudes for some structural design or
analysis purposes.

The comparison of equivalent damping factors in Tables V and
VII shows that A, as obtained from relative displacements is smaller
than or equal to the A, from overturning moments for all cases
investigated. The largest deviation is obtained for stiff structures.
Use of the equivalent damping for relative displacements as an
approximation for the equivalent damping of overturning moments seems
to give acceptable answers since variations in equivalent damping of 10
to 15 per cent produce only small differences in maximum response.

K. CONCLUSION

A method of analysis is presented that permits the response
determination of single-storey structure-ground interaction systems
under earthquake-type disturbances. The procedure is based on the
derivation of an equivalent S.D.F, model which permits the use of
well -known numerical integration and response spectrum techniques
in determining relative displacement and overturning moments. This
approach has the advantage over previously used methods that the
properties of the interaction structure can be studied separately from
the response characteristics of particular random-type base disturbances.

For the range of parameters investigated it is shown that the
most important interaction parameter is the ratio of rocking frequency
of the structure to its fixed-base natural frequency. Thus the quantitative
dependence of dynamic interaction effects on ground stiffness, base and
structural geometry, distribution of mass, and lateral stiffness of the
structure is established.
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It is also demonstrated that under random type motions the
relative displacement for a single-storey interaction system can be
expected to be equal to or less than that for an S.D.F. oscillator
with the same natural frequency and inter-storey damping. Maximum
overturning moments, however, are generally larger than those for a
rigidly based structure of the same natural frequency.

Using the concepts of the equivalent S.D.F. model and the
transfer function for the interaction structure a study is presented
of quantitative comparisons with approximate methods of determining
rocking amplitudes, overturning moments and equivalent damping
factors for single-storey dynamic structure-ground interaction effects.
The approximate relationships for overturning moments as well as
equivalent damping are derived here.

The results show that the approximate calculation of rocking
amplitude using the relationships of Balan et al (20) gives good
agreement with the theoretical model for relatively tall structures,
but gives poor agreement for low, "soft" structures.

The approximate relationship for overturning moments gives
satisfactory agreement throughout the range of structures investigated.
The use of the equivalent damping factor of relative displacement for
the computation of overturning moments also gives satisfactory
results.

Graphical results of peak amplitudes of the frequency response
curves for relative displacements and overturning moments show that
additional foundation damping decreases the resonance peaks sub-
stantially, which means that the resulting response in relative
displacement and overturning moments also decreases markedly.

The curves may be used to evaluate these reduced responses from
response spectra by the method of the equivalent S.D.F. model.
These results suggest the possible use of artificial damping
mechanisms to reduce both relative displacements and overturning
moments under earthquake loadings.
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NOMENCLATURE

1H' "2H
IR’ "2R

=h

~
=

H’ "R

o
o

£ 8 B

g

non-dimensional frequency = pr/Vs
non-dimensional S.D.F. resonance frequency = wor/VS

dynamic stiffness for horizontal displacement on a
half-space

dynamic rocking stiffness on a half-space
inter -storey damping coefficient

S.D.F. damping coefficients for horizontal and rocking
displacements, respectively

power spectral density of a random excitation

variables for steady-~state dynamic behaviour of
weightless disc on an elastic half-space for horizontal
and rocking motion

frequency, Hz

shear modulus of ground
subscript denoting "ground"
storey height

total moment of inertia = Io + Il; subscript designating
interaction system
moment of inertia of top and bottom mass

2
second moment of mass m, about the base = mlh

storey stiffness; discrete time variable in discrete
Fourier transform

S.D.F. stiffness coefficients for horizontal and rocking
displacements, respectively

static rocking stiffness
base mass
top mass

moment on base under arbitrary and steady-state
motion, respectively

peak magnitude of frequency response for equivalent
S.D.F. model
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peak magnitude of frequency response for interaction
system and S.D.F,. oscillator, respectively
frequency, rad/sec

horizontal force on base under arbitrary and steady-
state motion, respectively

radius of base; discrete frequency variable in discrete
Fourier transform

subscript designating S.D.F. system

spectral displacement

time variable

duration of discrete base disturbance

period, sec.

transfer function for displacement vector d and ground
displacement ug

transfer function at discrete frequency variable r

steady-state ground displacement and acceleration,
respectively

relative horizontal displacement of base mass with
respect to free-field ground motion

maximum displacement from response calculations
total base displacement of interaction system
total displacement of top mass of interaction system

relative inter-storey displacement of interaction system
or S.D.F. system

shear wave velocity of ground
amplitude of steady-state ground disturbance

complex amplification factors for base displacement,
rocking and inter-storey displacement, respectively
mass ratio = mO/ml
non~dimensional top mass = ml/pr

small increment of a variable
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aspect ratio squared = (lrJr)2
relative inter-storey damping ratio
equivalent S.D.F. damping ratio

equivalent S.D.F. damping ratio computed from over-
turning moments

relative damping ratios for horizontal and rocking
motion, respectively, of base mass

Poisson®s ratio of ground
angular variable, radians
mass density of ground

natural frequency of S.D.F., rad/sec

(WL

natural frequency of fixed-based structure, rad/sec = (k/m)
fundamental frequency of interaction system, rad/sec

resonant frequencies of disc on elastic half-space for
horizontal motion, rad/ sec

resonant rocking frequency for circular structure with
moment of inertia I1 lh’ rad/sec

1
rocking frequency = (kQ/I)2

=m




TABLE 1

PARAMETERS FOR SAMPLE CALCULATIONS

Parameter Unit

Structure No, 1

Structure No.

2

(a) Structural Parameters

m, 1b sec?/in. 1000 4000
m_ 1b secZ/in. 1000 1000
h ft 40 80
r ft 15 15
v fps 300 800
W, rad/sec 10 20
Wy rad/sec 7.59 7.60
X 70 2. 0 2. o
(b) Equivalent S.D.F. Model for Relative Displacement
wq rad/sec 7.59 7.60
w \2
(—) » 576 . 144
w
o
Ae % 1,37 .192
(c) Equivalent S.D,F. Model for Overturning Moment
Wy rad/sec 7.59 7. 60
w,? 57.6 57.7
Ae % 1.39 0.20




TABLE II

COMPARISONS OF RELATIVE DISPLACEMENTS FOR
DIFFERENT FOUNDATION MODELS

Equivalent Spectral Computed
Damping Ratio Displacement | Maximum Relative
Displacement

Foundation Aes o SD’ in. Umax’ in,
Structure No, 1
(1) Bycroft

Model 1,37 3.2 3.05
(2) Bycroft

Model

with zero

foundation

damping 0.68 3.7 3.32
Structure No, 2
(1) Bycroft

Model 0.192 1.0 0.92
(2) Bycroft

Model

with zero

foundation

damping 0.104 1.0 0.96




TABLE III

PARAMETERS OF STRUCTURES USED FOR

COMPARISON STUDIES

Parameter Units Structure No. 3 Structure No, 4
Base mass m_ 1b secZ/in. 1000 1000
Top mass my 1b secZ/in. 4000 1000
Base radius r ft 20 15
Interstorey damping A % 2 5
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FOR INTERACTION SYSTEMS



2.0

mgqug

T T I I ! |
ek m, = 1000 LB SECZ/IN.  —

[}

—_r = 20!
- —— 1 - 15 m, = 1000 LB SECZ/IN. |
A=2%
-~
g N 1Y A
S.D.F.
\ Fi

h = 20
>
STRUCTURE #1777~

dy

it 2
VS
FIGURE 8

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENTS, my=1000LB SEC2/IN., BYCROFT FOUNDATION
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FIGURE 9

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENTS, m;=4000 LB SECZ/IN., BYCROFT FOUNDATION
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FIGURE 10

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENTS, my = 4000 LB SEC2/IN., W=1 PER CENT
AND 5 PER CENT, BYCROFT FOUNDATION
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FIGURE 11

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENT, m) = 1000 LB SECZ/IN., X =5%,
r=15FT., BYCROFT FOUNDATION
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MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENT, mj = 1000 LB SECZ2/IN., X =5%,
r = 20FT., BYCROFT FOUNDATION
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FIGURE 13

MAGNITUDES OF RESONANCE PEAKS _FOR RELATIVE
DISPLACEMENTS, my - 4000 LB SEC2/IN., BYCROFT FOUNDATION
WITH ZERO FOUNDA*ION DAMPING
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MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE
DISPLACEMENTS, mj = 4000 LB SEC2/IN., CONSTANT S.D.F.
FOUNDATION STIFFNESS AND DAMPING




2.0 1 T T T T 1

M|/MS

i, my 1000 ]
mg - 1000
r 15"

o X 2 2% —

Bycroft foundation
—:— Bycroft foundation
i with odditional
damping Cp .3

—=———Bycroft foundation—j
with aodditional
domping Cr .1

.0

FIGURE 15

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE DISPLACEMENT
WITH ADDITIONAL ROCKING DAMPING, my = 1000 LB SEC2/IN

OR 4729 -2
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FIGURE 16

MAGNITUDES OF RESONANCE PEAKS FOR RELATIVE DISPLACEMENT
WITH ADDITIONAL ROCKING DAMPING, my = 4000 LB SEC2/IN
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FIGURE 19

MAGNITUDES OF RESONANCE PEAKS FOR OVERTURNING MOMENTS,
my = 4000 LB SECZ/IN., BYCROFT FOUNDATION
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