Résumé | This study assessed the capacity of non-transgenic (NTG) and growth-hormone transgenic (TG; gene construct EO-1α) Atlantic salmon (. Salmo salar L.), comprised of conventional diploid (DIP) and reproductively-sterile triploid (TRIP) fish, to utilize a diet containing relatively high amounts of plant protein (PP) concomitant with lower levels of fish meal (FM) protein. Triplicate groups of full-sibling NTG/DIP, NTG/TRIP, TG/DIP and TG/TRIP salmon (initial weight, 27-35. g) were held in freshwater and fed two experimental diets until they exceeded 400% growth. Two isonitrogenous (50% crude protein), isolipidic (21% lipid) and isoenergetic (22. MJ/kg gross energy) experimental diets were tested. The control diet (FM) contained 64 and 36%, while PP diet contained 32 and 68% of total dietary protein from FM and PP, respectively. TG and NTG fish achieved the target (>. 150. g) weight in 89 and 206. days, respectively. TG fish exhibited significantly higher specific growth rates (SGR) (2.48 vs 0.7%/day) and thermal growth coefficient (TGC) (3.04 vs 0.79) than NTG, regardless of ploidy or diet. TG/TRIP fish had significantly lower growth rates than DIP due to lower feed intake, while no ploidy effect was observed within the NTG group. Feed conversion ratio (FCR) was significantly better in TG/DIP and TG/TRIP fish having achieved the same target weight with 20-25% less feed due to improved protein utilization and retention efficiency compared to NTG fish. NTG fish had higher digestibility of protein (93% vs 89%), lipid (95% vs 94%) and energy (89% vs 85%) relative to their TG siblings, and was similar between DIP and TRIP fish. Nutrients' digestibility was significantly lower in TG fish fed PP diet than those fed FM diet, regardless of ploidy. At the end of the study, TG fish had significantly lower whole-body protein (56% vs 59%) and higher lipid (36% vs 34%) and energy (2746 vs 2694. kJ/100. g) content than NTG fish. However, as a result of the rapid growth rate and efficient feed utilization, nutrient gain and retention efficiencies were significantly higher in TG than NTG fish. DIP and TRIP TG Atlantic salmon have the ability to maintain accelerated growth even when fed a high PP diet (68% of dietary protein), which may have important benefits for the production of growth hormone transgenic Atlantic salmon. Statement of relevance: The results from the present study are innovative and may have important benefits for the optimization and production of growth hormone transgenic Atlantic salmon using sustainable feed ingredients. |
---|