| DOI | Trouver le DOI : https://doi.org/10.1109/GridEdge54130.2023.10102751 |
|---|
| Auteur | Rechercher : Crain, Alexander1; Rechercher : Rebello, Eldrich; Rechercher : Sherwood, Adam1; Rechercher : Jang, Darren2 |
|---|
| Affiliation | - Conseil national de recherches du Canada. Aérospatiale
- Conseil national de recherches du Canada. Énergie, les mines et l'environnement
|
|---|
| Bailleur de fonds | Rechercher : Research and Development |
|---|
| Format | Texte, Article |
|---|
| Conférence | 2023 IEEE PES Grid Edge Technologies Conference & Exposition (Grid Edge), April 10-13, 2023, San Diego, California, United States |
|---|
| Sujet | energy storage system; machine learning; modelling; NARX; neural network; state-of-charge prediction |
|---|
| Résumé | A simple neural network state-of-charge predictor trained on one-year of energy storage system data is presented. The model uses the active power command and the state-of-charge for the current time-step, and implements a nonlinear auto-regressive network with exogenous inputs to predict the state-of-charge at the subsequent time-step. The neural network training algorithm is written in the Julia programming language, independent of any existing machine learning platforms; the resulting model is compared to one developed using Python/TensorFlow. The simulation performance was validated with data collected from the energy storage system that was dispatched to follow a standard frequency regulation duty cycle not used as part of the training data. The mean-absolute-error between the predicted state of charge and the validation data is shown to be less then 1%, despite the limited data and lack of physical information about the system. |
|---|
| Date de publication | 2023-04-18 |
|---|
| Maison d’édition | IEEE |
|---|
| Dans | |
|---|
| Langue | anglais |
|---|
| Publications évaluées par des pairs | Oui |
|---|
| Exporter la notice | Exporter en format RIS |
|---|
| Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
|---|
| Identificateur de l’enregistrement | c65ef39d-c353-416c-b532-5b201c13aa40 |
|---|
| Enregistrement créé | 2023-06-23 |
|---|
| Enregistrement modifié | 2023-06-23 |
|---|