DOI | Trouver le DOI : https://doi.org/10.1007/978-3-031-06086-1_17 |
---|
Auteur | Rechercher : Vinson, Norman G.1Identifiant ORCID : https://orcid.org/0000-0003-4369-3612; Rechercher : Lapointe, Jean-François1Identifiant ORCID : https://orcid.org/0000-0003-2373-8035; Rechercher : Lemaire, Noémie |
---|
Affiliation du nom | - Conseil national de recherches du Canada. Technologies numériques
|
---|
Format | Texte, Article |
---|
Conférence | 19th International Conference, EPCE 2022 Held as Part of the 24th HCI International Conference, HCII 2022 June 26 – July 1, 2022, Virtual Event |
---|
Sujet | emergency call centre; 911 call taking; task analysis; next generation 911; NG911 |
---|
Résumé | In the context of a project on the roll-out of the Next Generation 911 (NG911) emergency call system, we conducted a task analysis of call takers at an emergency call centre. Much of the emergency response literature focuses on disaster response. In contrast, our article is focused on day-to-day emergencies. To map out the call takers’ tasks, we analyzed training documents and conducted semi-structured interviews. We found that call takers send high priority incidents to dispatch with just enough information for dispatchers to send first responders to the incident. Call takers then enter the remaining required information. Regarding the roll-out of NG911, we identified risks relating to the operational impact of multimedia with disturbing content, and the localization of smart phones. We also touch on artificial intelligence approaches that could be employed to increase call taker efficiency and protect centre staff from disturbing multimedia content. |
---|
Date de publication | 2022-06-16 |
---|
Maison d’édition | Springer International Publishing |
---|
Dans | |
---|
Série | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | bb209959-0031-471f-be0f-c1237760e1c3 |
---|
Enregistrement créé | 2022-06-14 |
---|
Enregistrement modifié | 2022-06-15 |
---|