Téléchargement | - Voir la version finale : An evolutionary variational autoencoder for perovskite discovery (PDF, 4.3 Mio)
- Voir les données supplémentaires : An evolutionary variational autoencoder for perovskite discovery (PDF, 1.4 Mio)
|
---|
DOI | Trouver le DOI : https://doi.org/10.3389/fmats.2023.1233961 |
---|
Auteur | Rechercher : Chenebuah, Ericsson Tetteh1; Rechercher : Nganbe, Michel; Rechercher : Tchagang, Alain Beaudelaire1 |
---|
Affiliation du nom | - Conseil national de recherches du Canada. Technologies numériques
|
---|
Format | Texte, Article |
---|
Sujet | machine learning (ML); deep evolutionary learning; variational autoencoder (VAE); genetic algorithm; inverse design; density functional theory (DFT); perovskite; materials discovery |
---|
Résumé | Machine learning (ML) techniques emerged as viable means for novel materials discovery and target property determination. At the vanguard of discoverable energy materials are perovskite crystalline materials, which are known for their robust design space and multifunctionality. Previous efforts for simulating the discovery of novel perovskites via ML have often been limited to straightforward tabular-dataset models and compositional phase-field representations. Therefore, the present study makes a contribution in expanding ML capability by demonstrating the efficacy of a new deep evolutionary learning framework for discovering stable and functional inorganic materials that adopts the complex A₂BB′X₆ and AA′BB′X₆ double perovskite stoichiometries. The model design is called the Evolutionary Variational Autoencoder for Perovskite Discovery (EVAPD), which is comprised of a semi-supervised variational autoencoder (SS-VAE), an evolutionary-based genetic algorithm, and a one-to-one similarity analytical model. The genetic algorithm performs adaptive metaheuristic search operations for finding the most theoretically stable candidates emerging from a target-learnable latent space of the generative SS-VAE model. The integrated similarity analytical model assesses the deviation in three-dimensional atomic coordination between newly generated perovskites and proven standards, and as such, recommends the most promising and experimentally feasible candidates. Using Density Functional Theory (DFT), the novel perovskites are subjected to thorough variable-cell optimization and property determination. The current study presents 137 new perovskite materials generated by the proposed EVAPD model and identifies potential candidates for photovoltaic and optoelectronic applications. The new materials data are archived at NOMAD repository (doi.org/10.17172/NOMAD/2023.05.31-1) and are made openly available to interested users. |
---|
Date de publication | 2023-09-22 |
---|
Maison d’édition | Frontiers |
---|
Licence | |
---|
Dans | |
---|
Données connexes | |
---|
Langue | anglais |
---|
Publications évaluées par des pairs | Oui |
---|
Exporter la notice | Exporter en format RIS |
---|
Signaler une correction | Signaler une correction (s'ouvre dans un nouvel onglet) |
---|
Identificateur de l’enregistrement | 45581b96-ab71-4e60-9668-126b57729461 |
---|
Enregistrement créé | 2023-09-22 |
---|
Enregistrement modifié | 2023-09-22 |
---|