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ABSTRACT 
Data gaps present a crucial challenge in life cycle assessment studies. In the present study, we 

address this challenge by using optimized Artificial Neural Networks (ANNs) in the context of 

fuel life cycle inventory models. We extract emissions data at the fuel/province/unit process level 

from GHGenius (an open-access tool for modelling Canadian fuel pathways). Unit processes are 

ranked according to their contributions to total CO2-eq emissions. Thereafter, we focus on the 

optimal design of ANNs, predicting CO2-eq emissions from each unit process. Since optimizat ion 

is computationally demanding, we propose a tractable hybrid approach using heuristics and 

Genetic Algorithm (GA). Decision variables are categorized into input layer (attributes), topology 

of hidden layers (hidden topology), and parameters affecting learning (hyperparameters). Two 

attributes scenarios are proposed. Hidden topology is optimized through GA for each scenario and 

the resulting impacts are analyzed to find the optimal scenario. We found that attributes scenarios 

can significantly affect the optimal network performance and/or the optimal hidden topology. 

Regarding hyperparameters, we rely on well-known heuristics and validate their optimality. Taken 

altogether, the hybrid optimization proposed herein is a tractable approach to design optimal ANNs 

which not only are accurate in addressing data gaps but also possess shallower hidden topologies.  

 

Keywords: Life Cycle Inventory, Life Cycle Assessment, Greenhouse Gases, Machine 

Learning, Genetic Algorithm, Sustainability, GHGenius  

 

Synopsis. Life cycle inventory data are indispensable for sustainability assessment studies. 

However, missing data is inevitable. This article proposes an approach to estimate missing data, 

facilitating sustainability research 
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1. INTRODUCTION 
Life cycle assessment (LCA) is an ISO-standardized method that can be used to determine the 

amount of greenhouse gases (GHGs) emitted (along with other emissions and related impacts) 

throughout a product’s life cycle1. Fuel consumption is ubiquitous in the life cycles of most 

products, in particular with respect to transportation. According to the International Energy 

Agency, nearly a quarter of global CO2 emissions is attributed to the transportation sector2. Hence, 

detailed understanding and quantification of factors contributing to fuel life cycle GHG emissions 

are important and have attracted interest from numerous research organizations3-6 and government 

agencies7-10.  

To date, three well-established open-access life cycle-based tools have been developed to assess 

the environmental impacts of fuels; namely, BioGrace, GREET, and GHGenius. BioGrace is a 

spreadsheet model used to determine the life cycle GHG emissions associated with biofuels. This 

model has been maintained and updated by the Institute for Energy and Environmental Research 

in Germany8. GREET is a life cycle-based tool developed by Argonne National Laboratory in the 

United States9.  GHGenius is a tool developed to estimate the carbon intensity of fuels for Canadian 

provinces. It is an excel-based spreadsheet tool developed by (S&T)2 Consultants for Natural 

Resources Canada10. 

Several commercial LCA software tools have also been developed, such as SimaPro. In contrast 

to the open-access tools described above, commercial tools can be used to build unique new life  

cycle inventories in order to model specific supply chains. Building such inventories requires time, 

expertise, and access to third-party life cycle inventory (LCI) databases to characterize supply 

chain activities in specific sectors. In response to increasing demand for such data resources, 

several governments and others have already undertaken to build and host databases, hence 
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facilitating quality and timely LCA studies. With respect to data for fuel life cycles,  for example, 

the US Federal LCA commons7 hosts sets of fuel LCI data from the National Renewable Energy 

Laboratory/USLCI and the University of Washington Biofuels and Bioproducts Laboratory. 

Despite such efforts to build exhaustive LCI databases including LCI data pertinent to fuels7-10, 

the lack of representative LCI data (i.e. “data gaps”) for many fuels/contexts remains a common 

challenge11, 12. Such gaps may refer to entire LCI data sets for given processes, or to gaps with 

respect to data for particular input/output data within a given data set13, 14. Limited interoperability 

between data sets from different databases also contributes to the ongoing gaps in reported LCA 

studies11, 15, 16. Furthermore, the mapping between input and output flows in LCI data is nonlinear 

and complex, making the resolution of LCI data gaps difficult13. Given the growing importance of 

having access to quality LCI data along with current challenges in the estimation of missing data, 

the development of a systematic framework to use known data to accurately fill data gaps merits 

consideration.  

Past studies have shown that supervised machine learning techniques are capable of addressing 

this challenge (e.g. LCI data estimation) in general13, 14, 17-22. However, further studies are required 

to elucidate the full potential of machine learning techniques in this context19. Feedforward Neural 

Network (FNN) models, which are a data-driven supervised machine learning technique, have 

been shown to perform well even for complex systems in which the input-output mapping is highly 

nonlinear19. FNN models perform well with large-scale data sets. Moreover, FNNs are accurate 

estimators provided that there is a sufficiently large set of known data and the FNN model is 

properly designed17, 18, 23, 24. These capabilities suggest the potential for using FNNs to fill LCI 

data gaps. 
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Currently, there are no consensus best practices for FNN design. However, heuristic-based rules 

of thumb have been proposed for case-specific problems25, 26 or particular design aspects such as 

backpropagation optimizers and activation functions27. In particular, few studies17, 18 discuss  FNN 

design for estimation of LCI data. In addition, prior works made significant assumptions in order 

to simplify and reduce the computational complexity of the FNN design. For example, few pre-

defined values were taken into account for the number of hidden layers and/or the number of 

neurons per hidden layer, making the search domain limited. Also, [17] evaluated and compared 

all permutations of the number of hidden layers and the number of neurons per hidden layer to find 

the optimal design. This approach is practical for a small search domain only, as it is very time-

consuming [17]. This is because, as the search domain is increased, the required computing time 

grows exponentially, thus hindering FNN optimal design25. There are hence substantial challenges 

to optimally designing FNN models to predict LCI data gaps.  

In the present study, we focus on the optimal design of FNN models to estimate CO2-eq 

emissions data to fill data gaps for unit processes in fuel life cycles in Canadian provinces using 

publicly available data. The study is organized as follows. Section 2 (METHODS AND 

MATERIALS) presents our approach to data extraction from GHGenius (section 2.1), descriptions 

of the FNN model used (section 2.2), the two scenarios for arranging the attributes (section 2.3), 

and our proposed hybrid strategy to optimally design FNNs to predict CO2-eq emission data gaps 

(section 2.4).  Section 3 (RESULTS) and 4 (DISCUSSION) describe and discuss the numerical 

results.  
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2. METHODS AND MATERIALS 
2.1. Life cycle inventory database development for fuels. The life cycle GHG emissions data 

reported in Version 5.01 of the  GHGenius model10 is used in this work. GHGenius 5.01 includes 

11 unit processes:  fuel dispensing (i), fuel distribution and storage (ii), fuel production (iii), 

feedstock transmission (iv), feedstock recovery (v), feedstock upgrading (vi), land-use changes 

and cultivation (vii), fertilizer manufacture (viii), gas leaks and flares (ix), CO2 and H2S removed 

from natural gas (NG) (x), and displaced emissions from co-products (xi). In some fuel pathways, 

the actual number of unit processes may be less than eleven. For example, life cycles associated 

with fossil fuels do not include “fertilizer manufacture” unit processes. To reflect the absence of a 

unit process, emission levels are set to zero for that process. It should also be pointed out that the 

first ten unit processes listed above, (i-x), possess either positive or zero values, showing GHG 

emitted to the environment. However, the last unit process, (xi), manifests the amount of GHG 

emissions displacement due to co-products; hence, the emission values are either negative or zero.  

To estimate the Global Warming Potential of each unit process as CO2 equivalent (CO2-eq) 

emissions, we use characterization factors for each greenhouse gas1. Hence, eleven CO2-eq 

emissions values corresponding to the 11 unit processes are obtained for each fuel life cycle. It 

should be further noted that we use “unit process” and “contributor” interchangeably as each unit 

process is a contributor to the total CO2-eq emission. 

The amount of CO2-eq emissions for a given unit process depends on several factors. GHGenius 

5.01 provides location-specific pre-defined values for the parameters to estimate CO2-eq emissions 

for each fuel pathway. We hence consider location and fuel name as key factors and rely on 

assumptions applied in GHGenius 5.01 for other contributing factors. CO2-eq emissions are 

extracted using bidirectional communications based on the “Component Object Model (COM)” 

protocol between Python and Excel (see Supplementary Figure S1 for details). By using the 
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automation algorithm depicted in Supplementary Figure S1, emissions per functional unit of 

energy delivered to the end-user (in KgCO2-eq/GJ) were extracted from GHGenius 5.01 for each 

of 7 of Canada’s provinces and 131 fuel pathways. In total,  emissions estimates for 7×131 or 917 

fuel life cycles are obtained. Since each fuel life cycle is modeled based on eleven unit processes, 

11×917 or 10,087 discrete CO2-eq emissions data points were extracted in total. In other words, 

emission values were extracted per location, fuel, and unit process. Below, cL,F,U  is used to 

represent emission values where L, F, and U are location, fuel, and unit processes, respectively. 

We refer readers to Supplementary Tables S1 and S2 for the complete lists of locations, fuels, and 

unit processes considered in this study. Note that for simplicity and without loss of generality, the 

year was set to 2021. 

 

   2.2. MISO-FNN. Figure 1 shows a representative topology of a Multiple-Input Single-Output 

(MISO) Feedforward Neural Network (FNN) model as used in this study (hereafter MISO-FNN). 

Each MISO-FNN possesses Ni inputs, which are equal to the number of attributes (see section 2.3 

for more details), and one output. In addition, the architecture of hidden layers can generally be 

described by a vector showing the number of neurons in the hidden layers, which reads 

𝐇 = [Nhl=1, Nhl=2, … , Nhl=L ] (1) 

where Nhl=i stands for the number of neurons in the ith hidden layer, therefore, the length of 

vector H also shows the number of hidden layers (see Figure 1). For convenience, we refer to the 

topology of hidden layers, H, as hidden topology. H* is the optimal hidden typology. 
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Figure 1. A generic MISO-FNN topology. 

 

Data are randomly split into three categories: training (60%), validation (20%), and testing 

(20%). Note that although the distribution percentages are flexible, the ratios used here correspond 

to common practice in the literature (for example, see [18, 28]). The training set is employed to 

train the MISO-FNNs through which the model parameters (i.e. weights and biases) are optimized. 

In the present study, the training of MISO-FNNs is performed in Keras library29. Although the 

validation set is not used during the training phase, validation errors are monitored to avoid 

overfitting. Specifically, we applied the early stopping heuristic based on crossed validation , 

meaning that the training process is terminated before the maximum epoch is reached if the 

validation error increases for a certain number of consecutive epochs30.  Here, the training is 

automatically stopped if the validation error increases in three epochs in a row. In addition, the 

validation error is used as a fitness function that is required to be minimized using GA.  As 

described in sections 2.4.1 and 3.2, this helps to obtain the optimal or near-optimal hidden 

topology. The testing set was not incorporated in the network training and the optimization of the 

hidden topology. Since the test set is not used in network training, nor in finding optimal hidden 

topology, test sets are called “unseen data”. Therefore, the test error is considered as a yardstick to 
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evaluate the generality of the trained network. Note that the Root Mean Square Error defined by 

RMSE = √
∑ (yi−ŷi)2N

i

N
 is used as a standard measure of error throughout this study.  

 

2.3. Attributes Scenarios.  We assume that data gaps may originate from each unit process. We 

then use available data, including emissions from other unit processes, to fill the data gaps. As 

shown in Figure 2, two distinct scenarios are identified to arrange the attributes to feed the MISO-

FNNs.  

 Scenario I. As discussed above, there are 11 unit processes for each fuel life cycle. The 

CO2-eq emission for a unit process is considered as the neural net output (labeled as 

“Target Process” in Figure 2) and the CO2-eq emissions of the ten remaining unit 

processes are then fed to the neural net as inputs (labeled as “Input Processes” in Figure 

2). The underlying idea behind Scenario I is that the CO2-eq emission of a unit process 

depends on several independent variables, as described in equation (2) 

yk = fk(𝐱), k ∈ unit processes  (2) 

where x, yk, and fk respectively refer to a vector of independent variables, the amount of 

CO2-eq emission corresponding to the unit process k, and a nonlinear mapping between 

independent and dependent variables. Although the CO2-eq emissions are fed to the 

network, the network can implicitly benefit from independent variables. Indeed, the CO2-

eq emissions fed to the network are also affected in theory by the independent variables, 

see equation (2). Furthermore, Scenario I presents an advantage as the independent 

variables are not required to be fed to the network explicitly.  Thus, Scenario I does not 

suffer from uncertainty nor a lack of independent variables. 
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 Scenario II. In each fuel life cycle, location and fuel are readily accessible information.   

In Scenario II, these two pieces of information, locations and fuels, are augmented with 

Scenario I by which the number of attributes fed to the network increases. In other words, 

unlike Scenario I, in which the network inputs are exclusively based on dependent 

variables (CO2-eq emissions), Scenario II obeys a hybrid approach by incorporating both 

dependent variables (CO2-eq emissions) and independent variables (locations and fuels).   

Owing to the fact that locations and fuels possess non-numeric values, the one-hot 

encoder approach is applied to make these non-numeric values suitable for the MISO-

FNNs’ input. 
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Figure 2. General data structure showing two possible scenarios for the networks’ input layer. See 

Supplementary Table S1 for abbreviations used for Canadian provinces.  

 

2.4. Optimal network exploration. In general, MISO-FNNs are capable of estimating any 

nonlinear multivariable function provided that the network topology and the hyperparameters are 

properly tuned. To reveal the best performance, both network topology and hyperparameters  

should be optimized. The MISO-FNN topology is defined by Ni and H, and the network 

hyperparameters are parameters associated with learning such as learning rate, epoch, batch size, 

activation function types in hidden neurons, optimization methods for obtaining weights and biases 

(known as model parameters), etc. In practice, simultaneous optimization of both network 
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topology and hyperparameters require significant computational resources (e.g. powerful 

hardware requirements and long running time) when using data sets with moderate to large sizes. 

Besides computation requirements, training a given data set is often challenging. As a 

consequence, trade-offs are used to address the intractability of finding the optimal MISO-FNN. 

The trade-off approach is described in detail in sections 2.4.1 and 2.4.2. 

 

2.4.1. Optimal MISO-FNN topology. The optimal network topology is achieved by finding the 

optimal attributes scenario and the optimal hidden topology H*. For the former, the search domain 

is small as there are only two scenarios, hence we rely on the grid search approach. This means 

that we separately evaluate the performances of each scenario discussed in Section 2.3, and 

thereafter the best scenario is identified. As detailed in Section 3.2, for each attributes scenario, 

the optimal hidden topology is obtained for each unit process (i.e. contributor), and then the 

attributes impacts are compared. Regarding hidden topology optimization,  the search domain is 

wide, often leading to the failure of approaches such as random walk and grid search due to 

exponential time complexity18, 25. However, the GA approach has demonstrated successful 

performance in finding the hidden topology18. We thus use the GA to simultaneously find both the 

number of hidden layers and the number of neurons per hidden layer in a wide search domain in 

order to find the optimal hidden topology, H*, hence overcoming assumptions made in previous 

studies17, 18. The general schema for finding H* through GA is shown in Figure 3. 
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Figure 3. The workflow for optimization of the hidden topology, H. As an initial population, a 
number of random H is generated. Each individual, H, is trained and results in a validation error. 
Then, in GA fitness evaluation, individuals are ranked according to validation errors. If any GA 
stopping criteria (e.g. the maximum number of generations) is not satisfied, based on the current 

generation and their fitness (i.e. validation error), the next generation is then created using GA 
operators.  

 

Using the GA approach to obtain the optimal hidden topology gives rise to two main challenges, 

which are explained and addressed in detail as follows.  

 The varying length of H through evolutionary optimization. Following the GA 

terminology, for a given generation, H and H* are the individual and the best individua l 

in the population, respectively. The first challenge is that the length of individuals H (i.e. 

the number of hidden layers) can vary through evolution. We found that this challenge 

has been well-addressed in [31]. On this basis, we considered a constant length for H. 

Specifically, H is assumed to have 5 elements, showing the upper limit for the length of 

H. Additionally, zero and negative values are allowed in the GA search space except for 

the first hidden layer. However, zero or negative values are used as an indicator that the 

rest of the layers are not added. For instance, 𝐇 = [5 4 3 −1 10] represents a 
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three-hidden-layer network with 5, 4, and 3 neurons, respectively; thus, the first presence 

of zero or negative indicates where the hidden layers are terminated.  

 Uncertainty of fitness function. From a mathematical standpoint, the training of a neural 

network is a minimization problem, in which the loss function is high-dimensional and 

non-convex in general32. Even though a robust algorithm for finding the global extrema 

of non-convex functions has not been found to date, gradient methods are still practical 

in finding local extrema depending on the initialization of model parameters32. Indeed, 

the model parameters obtained through the training stage and the resulting validation 

errors (i.e. fitness function) are often sensitive to the initialization of model parameters 

(see Figure 3). This unavoidable numerical uncertainty may lead to confusion of the GA 

decision-making approach because the next generation is created based on the 

individuals’ fitness (i.e. validation errors) in the current generation; therefore, the 

uncertainty related to validation errors likely affects the effectiveness of the next 

generation. This challenge is illustrated in Figure 3 where the “GA fitness evaluation”  

and “Creation of Next Generation” stages are performed after the training stage. To 

address this challenge, the model parameters are randomly initialized with different sets 

of values to significantly improve the probability of finding optimal solutions. Afterward, 

based on the comparison of the results obtained for different model initializations, the 

best one is selected and reported for use in GA. The number of initializations per 

individual in the training stage was chosen as 15. In short, the multi-initialization method 

allows finding the optimal or near-optimal trained networks at expense of computational 

costs. 
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Regarding the implementation of GA, we used a package developed by one of the authors33 with 

the following assumptions: GA operators are mutation (0.1), crossover (0.8), and migration (0.1); 

the search domain considered for the number of neurons is [1, 200] for the first layer and [-50, 

200] for the rest of the layers; and the population size is 25. Furthermore, the evolutionary process 

continues for 150 generations. We used an in-house high-performance computer (16 processors 

with 2.5 to 1.5 GHz and 256 GB memory) and observed that such optimizations are more 

processor-intensive than memory-intensive as all 16 available processors were engaged whereas 

approximately 12 GB memory was required. In view of the computational power used, the running 

time of each GA optimization was nearly 1.5 days and 2.5 days for scenarios I and II, respectively. 

 

2.4.2. Optimal Hyperparameters. We incorporate a heuristic approach to select optimal 

hyperparameters because there are viable practices by which certain hyperparameter values can be 

efficiently selected27. As indicated in [17], we also found that it may be unnecessary to involve 

each hyperparameter in the optimal FNNs design. This stems from the fact that the default 

recommendations in certain hyperparameter tunings often lead to good performance. Hence, 

relying on a heuristic approach for selecting certain hyperparameters allows us to find at least near-

optimal hyperparameters without involving a rigorous optimization algorithm.  

Although there is no consensus on a single optimal activation function, it has been suggested 

that the rectified linear activation function, relu, can outperform other activation functions such as 

sigmoid and hyperbolic tangent when using feedforward networks. The reason lies in the fact that 

relu is nearly linear and, in consequence, optimization of model parameters can be easier27, 34.  

Similarly, there is no single model-parameter optimizer, however “adam”  is considered to be a 

fairly robust optimizer, in general27. We observed that the MISO-FNNs used in this study 
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confirmed the utility of these well-known practices. Readers are referred to Supplementary Note 

S1 for details, showing the optimality of relu and adam in the present study. Regarding the 

“learning rate” and the “maximum epoch”, we performed optimization tests and were able to 

obtain near-optimal values. Interestingly, for predicting global warming impact, [17] has also 

reported the same activation function and learning rate, and a similar maximum epoch as the 

optimal hyperparameter values. Finally, owing to having sufficient computational power available, 

the networks are trained using all data in one batch to enable fast network training. The optimal or 

near-optimal hyperparameters used in the present study are summarized in Table 1. 

 

Table 1. The optimal hyperparameters used in the present study.  

Hyperparameter 
Near-optimal 

values/method 
activation function relu 
optimizer adam 
learning rate 0.001 

maximum epoch 750 
batch size 550 

 

 

3. RESULTS 
We focus on determination of contribution of each unit process and optimal design for MISO-

FNNs to predict CO2-eq emissions from each unit process (also referred to as contributors) in fuel 

life cycles. To this end, three key steps are taken, as illustrated in Figure 4. 

Step (1). As explained in section 2.1, data are collected from GHGenius10  for CO2-eq emissions 

from all of the unit processes of fuel life cycles for each Canadian province. 

Step (2). The extracted data are analyzed to determine the contribution of each unit process, see 

section 3.1. 
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Step (3). The optimal design for FNNs is performed in order to accurately estimate CO2-eq 

emissions for the contributors in face of data gaps. Regarding the optimal design of FNNs, we 

propose a hybrid approach using both heuristics and GA algorithm. We categorize all decision 

variables (i.e. parameters required to be optimized) into three primary sets (highlighted in green in 

Figure 4) comprising (1) the input layer, (2) hidden topology, and (3) hyperparameters. Based on 

the extracted data, two attributes scenarios are proposed for the input layer, see sections 2.2 and 

2.3. According to strategies elaborated in sections 2.4.1 and 2.4.2, the hidden topology is optimized 

with optimal hyperparameters (Table 1) for each attributes scenario. To find the optimal attributes 

scenario, the impacts of two attributes scenarios are then assessed separately for each contributor, 

see section 3.2. 

 

Figure 4. Three main steps for determination of the contribution of each unit process and for the 
optimal design of FNNs to predict missing CO2-eq emissions for filling data gaps in fuel life cycle 

inventories. The three steps are delineated by the thick border. Green highlights signify 
determination of optimal decision variables. 
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3.1. Contribution of unit processes to fuel life cycles in Canada. Using the inventory database 

for fuel life cycles described in Section 2.1, we ranked unit processes according to their 

contributions to net GHG emissions. For this purpose, we first categorize fuel pathways into two 

prime sets; fossil-based and renewable. Of 917 fuel pathways, 273 and 546 pathways fall into the 

fossil-based and renewable categories, respectively. Thereafter, we quantify the average 

contribution of the unit process P to the total CO2-eq emissions, C̅P, by averaging the emissions 

from the unit process P with respect to locations and fuels in each fuel category. The average 

contribution of the unit process P thus reads as 

C̅P =
∑ ∑ ci,j,P ji

∑ ∑ ∑ ci,j,k kji
× 100%  

i ∈ Canada’s  Provinces 

j ∈ Fuels 

k ∈ Unit processes 

(3) 

where ci,j,k indicates CO2-eq emissions corresponding to location i, fuel j, and unit process k. It 

is worth mentioning that the database associated with each fuel category was obtained from 

GHGenius 5.01 under settings reflecting fuel life cycles in Canada’s provinces for the year 202110.  

Figure 5(a) and Figure 5(b) show the average contribution of each unit process to the total CO2-eq 

emissions in the fossil and renewable fuel life cycles, respectively.  
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Figure 5. Average contributions, C̅P, of the unit processes to total CO2-eq emissions in fuel life 
cycles for (a) fossil fuel pathways and (b) renewable fuel pathways. 

 



 21 

To determine the major contributors for each fuel category, we apply a cumulative cut-off of 

95%, which is a reasonable cut-off for LCA. Doing so, the major contributors are summarized in 

Table 2. 

Table 2. The top unit processes, accounting for 95% or larger cumulative contributions to Canadian 

fuel pathway GHG emissions.  

Fossil Fuel Pathways Renewable Fuel Pathways 

Unit Process Contribution (%) Unit Process Contribution (%) 

Fuel production 66 Fuel production 36 

Feedstock recovery 19 Land-use changes, cultivation 19 

Fuel distribution and storage 5 Feedstock recovery 17 

Fuel dispensing 3 Fertilizer manufacture 9.5 

Feedstock transmission OR 

Gas leaks and flares 
2 Feedstock upgrading 9 

   Fuel distribution and storage 4 

   Feedstock transmission 3 

Cumulative Contribution 95 Cumulative Contribution 97.5 

 

As can be concluded from Figure 5 and Table 2, for fossil fuel pathways, Feedstock upgrading 

(1%), Land-use changes, cultivation (1%), CO2, H2S removed from NG (1%), and Fertilizer 

manufacture (0%)  can be reasonably ignored. Additionally, between Feedstock transmission (2%) 

and Gas leaks and flares (2%), only one is required to be considered in the LCA to meet the 95% 

cumulative contribution. The individual cut-off applied for fossil fuel life cycles is thus 2%. In a 

similar vein, Fuel dispensing (2%), Gas leaks and flares (1%), and CO2, H2S removed from NG 

(0%) contribute negligibly to the net emissions of renewable fuel pathways and, in consequence, 

can be ignored. Therefore, 2% is also the individual cut-off applied for the renewable fuel life 

cycles. 

98 out of 917 fuel pathways cannot be definitively categorized in the fossil-based or renewable 

categories because it depends on the source of fuels; for example, electricity and hydrogen 
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pathways. Applying equation (3) to the entire database yields the overall distribution shown in 

Figure 6. 

 

Figure 6. Overall contributions of the unit processes to total CO2-eq emissions in fuel life cycles. 

 

3.2. Attributes impacts on topologically optimal networks. To accurately compare the impact 

of the attributes scenarios described in Section 2.3 on the capacity of the MISO-FFNs to predict 

the CO2-eq emissions, it is imperative to eliminate impacts from other factors. Thus, care should 

be taken about the hyperparameters and hidden topology as they can also affect the network 

performance. For this reason, identical hyperparameters are used throughout all comparisons. The 

optimal hyperparameters used in this study are listed in Table 1. Regarding the hidden topology, 

H, there are two reasonable approaches. First, H is evolutionarily optimized using GA in order to 

reveal the best network performance for each attributes scenario. Second, H also remains identical 

for each contributor. The former is the primary objective of the present study and is elaborated in 

this section, and the latter is also discussed in Supplementary Note S2. To assess the capability of 

MISO-FNNs, we focus on the design of optimal MISO-FNNs to predict CO2-eq emissions of all 
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eleven unit processes in fuel life cycles regardless of the fuel type (i.e. fossil-based or renewable). 

Hence, we incorporate all data extracted from GHGenius through training, validation, and testing 

of MISO-FNNs. 

Figure 7 demonstrates the impacts of the attributes scenarios (i.e. Scenario I and Scenario II) on 

the network performance whose hidden topologies are optimized through GA.  Supplementary 

Figure S2 illustrates the corresponding fitness evolution for the unit processes under study. As 

explained earlier in section 2.4.1, the upper boundaries for the number of neurons per hidden layer 

and the number of hidden layers are assumed to be 200 and 5, respectively. Figure 7 confirms the 

validity of our a posteriori approach concerning the upper boundaries because the maximum 

number of hidden layers and the maximum number of neurons per hidden layer are 4 and 100, 

respectively, which are less than the upper boundaries. 

Based on the data shown in Figure 7, we found that the attributes scenarios can affect not only 

the optimal network performance (i.e. training, validation, and testing errors) but also the optimal 

hidden topology (i.e. H*). In the rest of this section, the impacts of the attributes scenarios on the 

optimal networks are discussed in order of their overall contributions to the net emissions as 

illustrated in Figure 6. Note, as a convention, the network performance is shown by a triplet whose 

elements depict the RMSE for training, validation, and testing sets, respectively. 
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Figure 7. (a-k) Attributes impacts on the performance of MISO-FNNs whose hidden topologies 
and hyperparameters are optimal. (l) shows the legend for all panels. 

 

Fuel production. Figure 7(a) shows that the network performance of Scenario I and Scenario II 

are (19.01, 36.50, 51.04) and (14.73, 23.06, 23.53), respectively. Furthermore, the optimal 

topology of hidden layers obtained by GA for Scenario I and Scenario II are [50, 94, 88, 89] and 

[7, 95, 67], respectively. Consequently, in comparison to Scenario I, Scenario II leads to more 

accurate performance and a shallower optimal hidden topology for the prediction of CO2-eq 

emissions for the “Fuel production” unit process. This finding is of particular importance because 

“Fuel production” is by far the largest contributor among unit processes, accounting for, on 

average, 58% of overall contributions to the total emissions in a fuel life cycle (Figure 6). 
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Specifically, the unit process “Fuel production” gives rise to 66% and 36% average contributions 

in fossil and renewable fuel life pathways (Figure 5). 

Feedstock recovery. As shown in Figure 7(b), in the case of Scenario I, the optimal performance 

is (1.61, 3.34, 3.5) with H*=[36, 85, 85, 36] and, in the case of  Scenario II, the optimal 

performance is (1.37, 2.31, 3.45) with H*=[9]. For “Feedstock recovery” Scenario II requires a 

remarkably shallower network compared to Scenario I in order to perform optimally. Moreover, 

Scenario II outperforms Scenario I to some extent in terms of network performance. “Feedstock 

recovery” is the second-largest contributor to CO2-eq emissions in fuel lifecycles, with a 14% 

overall contribution (Figure 6). The contribution of this unit process is significant in both fossil 

and renewable fuel pathway, with 19% and 17% average contributions, respectively (Figure 5).  

Land-use changes, cultivation. As can be seen in Figure 7(c), the network performances are 

(1.53, 3.84, 4.12) and (1.57, 3.53, 4.34) for Scenario I and Scenario II, respectively. Moreover, the 

optimal hidden topologies are H*= [95, 20, 41] and H*= [28, 58] for Scenario I and Scenario II, 

respectively. As a result, Scenario II also shows superiority for “Land-use changes, cultivation”  

because Scenario II makes the optimal hidden topology shallower compared to Scenario I. 

Nonetheless, Scenarios I and II result in roughly similar network performances. The overall 

contribution of “Land-use changes, cultivation” is, on average, 9% in the fuel life cycles (Figure 

6), and is the third-largest contributor to CO2-eq emissions in fuel life cycles. As shown in Figure 

5, “Land-use changes, cultivation” primarily contributes to renewable fuel pathways (19%) 

compared to fossil fuel pathways (1%). 

Feedstock upgrading, and Fertilizer manufacture. Figure 6 show that “Feedstock upgrading”  

and “Fertilizer manufacture” contributions are 5% overall and are the fourth-largest contributor to 

the net emissions in fuel life cycles. These unit processes predominantly contribute to renewable 
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fuel pathways compared to fossil fuel pathways because, as shown in Figure 5, “Feedstock 

upgrading” and “Fertilizer manufacture” contributions in fossil fuel pathways are 1% and 0% 

respectively, which are negligible. In contrast, these unit processes each contribute 9% in 

renewable fuel pathways, which are considerable. In terms of the optimal attributes scenario, 

Scenario II is superior to Scenario I for both unit processes (see Figure 7(d, e)). For “Feedstock 

upgrading”, the network performances of Scenarios I and II are (1.30, 2.65, 3.03) and (0.88, 2.01, 

2.89) respectively. Moreover, the resulting optimal hidden topologies are H*=[92, 72, 49, 45] and 

H*=[2, 86], respectively. Therefore, Scenario II yields a slightly more accurate network 

performance and shallower hidden topology. For “Fertilizer manufacture”, Scenario II is 

performed more accurately with noticeably simpler hidden topology. The network performances 

and optimal hidden topologies of Scenario I and II are respectively (0.34, 0.88, 1.29) and (0.39, 

0.42, 0.46), H*=[61, 64, 74] and H*=[5].  

Fuel distribution and storage. This unit process approximately contributes equally to fossil 

and renewable fuel life cycles, resulting in 5% and 4% average contributions in fossil and 

renewable fuel pathways, respectively (see Figure 5), and a 4% overall contribution (see Figure 

6). The results of GA optimization demonstrate that, for this unit process, Scenario II with the 

shallower hidden topology, H*=[8, 36], leads to more accurate performance, (0.15, 0.63, 0.66).  

Scenario I results in H*=[70, 49, 34] and (0.49, 1.03, 0.68) (see Figure 7(f)). 

Feedstock transmission, and Fuel dispensing. As displayed in Figure 5 and Figure 6, these 

two unit processes have 2-3% contribution in fuel pathways, whether fossil-based or renewable. 

For “Feedstock transmission”, both attributes scenarios lead to a two-layer hidden topology while 

Scenario II still outperforms Scenario I in terms of prediction capabilities. The network 

performances and optimal hidden topologies for Scenario I and Scenario II are (0.39, 0.89, 0.60), 
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H*=[75, 89] and (0.27, 0.62, 0.50), H*=[5, 43], respectively (see Figure 7(g)). For “Fuel 

dispensing”, Scenario II performs more accurately with a shallower hidden topology. As illustrated 

in Figure 7(h), for Scenarios I and II, the network performances and the optimal hidden topologies 

are (0.47, 1.11, 0.84), H*=[12, 94, 81], and (0.18, 0.60, 0.56), H*=[10, 50]. 

Gas leaks and flares, and CO2, H2S removed from NG. As depicted in Figure 5 and Figure 6, 

these two unit processes have equal or less than 2% contribution in fuel pathways, whether fossil-

based or renewable. Figure 7(i) shows that Scenario II causes a shallower optimal hidden topology, 

predicting the emission from the “Gas leaks and flares” unit process more accurately in comparison 

to Scenario I. Scenario I and II leads to (0.41, 1.00, 0.88), H*=[45, 41, 31], and (0.17, 0.46, 0.38), 

H*=[15]. For “CO2, H2S removed from NG”, Scenarios I and II lead to nearly similar network 

performance, but Scenario II requires a shallower optimal hidden topology compared to Scenario 

I, see  Figure 7(j). The network performances and the optimal hidden topologies are (0.039, 0.077, 

0.073), H*=[45, 29, 68] and (0.038, 0.075, 0.059), H*=[14, 55] for Scenarios I and II, respectively.  

Emissions displaced - co-products. This unit process reflects the system expansion, and thus 

emission values are zero or negative. For this reason, this unit process is not included in unit 

processes’ contributions as represented in Figure 5 and Figure 6. Regarding network design for 

this unit process, as can be seen in Figure 7(k), Scenario II causes that the shallower hidden 

topology H*=[8, 6] performs more accurately (2.41, 4.33, 4.75) compared to Scenario I in which 

the network performance and optimal hidden topology are (2.67, 5.11, 4.76) and H*=[93, 100, 73], 

respectively. 

In partial conclusion, for all contributing unit processes, regardless of the amount of their 

contribution to the net emissions, Scenario II is superior to Scenario I in terms of more accurate 
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network performance (training, validation, and testing errors) and/or less structural complexity 

associated with the hidden layers (see Figure 7). 

Figure 8(e-k) illustrates the performance of the optimal networks in which both the attributes 

scenario and hidden topology are optimal. Moreover, Figure 8(e-k) confirms the excellence of the 

optimal network in terms of generalization since the performance of test sets, which are unseen 

data, is highly acceptable. It should be noted that with a different distribution of datasets the 

optimal networks (i.e. Scenario II and H*) result in similar performances, confirming their 

capability in the accurate prediction of CO2-eq emissions.   
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Figure 8. (a-k) The scatter plots depicting the optimal performance, as obtained through nets whose 
hidden topologies and hyperparameters are optimal and fed by the optimal attributes scenario (i.e. 
Scenario II). (l) shows the legend for all panels.  

 

4. DISCUSSION 
When using non-parametric algorithms such as MISO-FNNs, the number of required samples in 

the database (i.e. CO2-eq emissions) often grows exponentially with the dimension of input (i.e. 

the number of attributes), provided the estimation errors are kept relatively unchanged. This is  

known as the “curse of dimensionality”35-38. Consequently, for a given dataset with a fixed number 

of samples, learning may worsen if the number of attributes increases. As shown in Figure 2, the 

number of attributes in Scenario I and II are 148 and 10, respectively; hence, the attributes in 
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Scenario II significantly outnumber those in Scenario I. This might increase the risk of facing the 

“curse of dimensionality”. What might reinforce this risk is the fact that location and fuel could 

already be introduced to the networks implicitly through other CO2-eq emissions since the CO2-

eq emissions fed to the networks are dependent on location and fuel. Nonetheless, Scenario II does 

not give rise to any adverse impact on network performance; instead, surprisingly, Scenario II 

enhances the accuracy of prediction. Assessment of the attributes scenarios under optimal hidden 

topologies revealed that Scenario II noticeably enhances the network performance (see Figure 7(a, 

e-i)), slightly improves the network performance (see Figure 7(b, d, k)), or does not significant ly 

impact the network performance (see Figure 7(c, j)). The improvement achieved through Scenario 

II in predicting emissions of the “Fuel production” unit process is of particular interest since this 

unit process is the dominant contributor in fuel life cycles in Canada (see Figure 5 and Figure 6). 

Since the network performance is generally improved by increasing the number of attributes, 

two conclusions can be drawn.  First, the given number of samples in the training set is sufficiently 

large so that the network does not suffer from the “curse of dimensionality”. Second, the prediction 

of the CO2-eq emissions for the unit processes under study is complicated from a mapping 

standpoint because the presence of more attributes (i.e. further information as networks inputs) is 

required to enhance the accuracy of network prediction.  

Scenario II requires a shallower hidden topology compared to Scenario I to perform optimally, 

especially for the prediction of emissions from the “Feedstock recovery”, “Fertilizer manufacture”, 

and “Gas leaks and flares” unit processes (see Figure 7(b, e, i)). We thus conclude that 

augmentation of readily available features (i.e. fuel and location) as one-hot data with the 

numerical data (i.e. known CO2-eq emissions) can lead to simplifying the optimal hidden topology. 

This finding is of importance owing to recently published results about the connection of network 
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depth with loss function non-convexity. It has been shown32 that deeper networks (i.e. increase in 

the number of hidden layers) result in amplifying the non-convexity of loss function, and in 

consequence, the trainability and the generality of networks become more difficult. As a result, 

shallower optimal hidden topology is another salient impact induced by Scenario II, leading to 

enhancement of trainability and generality.  

All in all, the hybrid optimization framework proposed in this study is a tractable approach by 

which optimal MISO-FNNs can be systematically designed. The optimal MISO-FNNs can then 

be employed to estimate data gaps existing in LCI datasets, thereby addressing a common 

challenge in the LCA community. In particular, we found that, for each unit process, augmentation 

of categorical data (i.e. location and fuel) with numerical data (i.e. known CO2-eq emissions of 

other unit processes) as network inputs can significantly simplify the optimal hidden topology 

and/or improve the performance of the optimal network. Hence, future studies should explore the 

impacts of different attributes scenarios, leading to more accurate data gaps estimators. In 

particular, further research is required to reveal the role of other categorical inputs (e.g. fuel type) 

as we found that large impacts are  induced by categorical inputs. Lastly, the primary objective of 

the present study is to estimate the CO2-eq emission of one unit process in face of data gaps. 

However, simultaneous data gaps in multiple unit processes can also be expected in practice. For 

this reason, the optimal design of Multiple-Input Multiple-Output Feedforward Neural Networks 

(MIMO-FNNs) will be necessary in order to accurately estimate data for data gaps in multiple unit 

processes. 
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