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Abstract

In an atmospheric plasma spray (APS) process, in-flight powder 
particle characteristics, such as the particle velocity and 
temperature, have significant influence on the coating 
formation. The nonlinear relationship between the input process 
parameters and in-flight particle characteristics is thus of 
paramount importance for coating properties design and quality 
control. It is also known that the ageing of torch electrodes 
affects this relationship. In recent years, machine learning 
algorithms have proven to be able to take into account such 
complex nonlinear interactions. This work illustrates the 
application of ensemble methods based on decision tree 
algorithms to evaluate and to predict in-flight particle 
temperature and velocity during an APS process considering 
torch electrodes ageing. Experiments were performed to record 
simultaneously the input process parameters, the in-flight 
powder particle characteristics and the electrodes usage time. 
Various spray durations were considered to emulate industrial
coating spray production settings. Random forest and gradient 
boosting algorithms were used to rank and select the features
for the APS process data recorded as the electrodes aged and 
the corresponding predictive models were compared. The time 
series aspect of the data will be examined.

Introduction

The importance of the in-flight powder particle characteristics, 
such as the particle velocity and temperature, on the coating 
formation in the complex nonlinear atmospheric plasma spray 
(APS) process are long well recognized. Since these 
characteristics cannot be measured during production, there is 
a great interest to predict these parameters to monitor and 
improve the spray process and coating quality. 

Predictive models for in-flight particle characteristics
The recent advancements in machine learning algorithms make 
modeling such complex nonlinear interactions possible.
Guessasma et al. proposed to develop an expert system using 
artificial neural network (ANN) models to predict the average 
spray particle velocity, temperature and diameter for better 
coating quality control [1]. Input parameters, also referred to as 
attributes or predictors, like arc current intensity, argon and 
hydrogen gas flow rate, were considered. Choudhury et al.  also 
applied ANN to predict the in-flight powder particle 
characteristics of an atmospheric plasma spray process [2]. The 
authors proposed to expand the experimental dataset using 
kernel regression to improve the generalization ability of the 
trained ANN. Kanta et al. suggested to develop an expert 
system using ANN and fuzzy logic to better control the in-flight 
particle characteristics under the influences of different 

fluctuations of the APS process [3]. Later, Choudhury et al. 
employed extreme learning machine (ELM), a specific class of 
ANN, to construct a robust single hidden layer feed forward 
neural network for the in-flight particle characteristics of the 
APS process [4]. This approach reduced the training time and 
yielded stable performance with regard to the changes in the 
number of hidden layer neurons. Choudhury et al. further
proposed to implement the ANN using a modular scheme [5]. 
The scheme simplified the model structure and improved the 
generalization of the model overall.

Ensemble methods
In literature, all predictive models proposed for APS in-flight 
particle characteristics are based on ANN. There are however 
many other nonlinear predictive models, e.g. support vector 
machines, ensemble methods, etc. [6]. In particular, decision 
tree based ensemble methods, like random forest and gradient 
boosting, have demonstrated their strong performance, often
comparable to and sometimes even better than ANN [7], [8].

The essential idea behind ensemble methods is to combine the 
outputs from many simple models, referred to as base learners, 
to yield the final prediction. Random forest and gradient 
boosting are two popular ensemble methods; both use decision 
tree as their base learners. The two differs however in how the
individual trees are constructed and added together. Random 
forests generates the trees by training them on subsets of data,
both in terms of the observations and the attributes, randomly 
drawn from the full training set with replacement [9]. The final 
prediction is an average of the results from all the generated 
trees. Since the trees do not depend on each other, the procedure 
is well suited to be executed in parallel. Random forest reduces 
the prediction variance. On the other hand, gradient boosting 
constructs each tree sequentially aiming to reduce the 
prediction error or the residue from the previous trees [10], [11].
Subsampling in observations are generally considered, while 
subsampling in attributes may also be employed [12]. Gradient 
boosting reduces both the prediction variance and bias.

Wolpert argues that without having substantive information 
about the modeling problem, there is no single model that will 
always do better than any other model [13]. Could ensemble 
methods also predict well the in-flight particle characteristics?

Time series aspect of APS data
It is well known that the ageing of torch electrodes greatly affect 
the relationship between the APS input parameters and the in-
flight particle characteristics, in a time scale of hours. The same 
set of process inputs would expect to yield different in-flight 
particle characteristics using a brand new electrode pair as 
compared to a used one. Therefore, when modeling the in-flight 
particle characteristics with torch electrodes ageing considered, 
it may be imperative to consider the production data of APS as 



time series; where there is an ordered temporal component in 
the observations of the data. To the authors’ best knowledge, 
this time series aspect of predictive modeling has not ever been 
considered in the predictive models previously proposed for the 
in-flight particle characteristics. Can better predictions be made 
if the production data of APS is considered as time series?

This work aims to explore the applicability of two ensemble 
methods, namely random forest and gradient boosting, to 
predict and forecast the multivariate APS in-flight particle 
characteristics with the consideration of torch electrodes ageing
as time series. In particular, two different time series modeling 
strategies are compared with the baseline approach. The paper 
is organized as follows: First, the electrode wearing experiment 
is described, followed by the data preprocessing. After, the two 
time series modeling strategies are compared and discussed.
The paper concludes with the planned future work.

Electrode wearing experiment

APS experiments were performed to record simultaneously the 
spray process input parameters, the in-flight powder particle 
characteristics and the electrodes usage time. The experiment 
was carried out using a Metco 3MB APS torch with a brand 
new pair of electrodes, and pursued until the torch could no 
longer sustain the plasma. The main process parameters (e.g. 
torch current intensity, voltage) were monitored and recorded 
at a sampling rate of 1 Hertz, using an in-house built console 
equipment integrated in LabVIEW (National Instruments). 
Various spray time durations were considered for the torch 
usage so to emulate industrial coating spray production settings
similar to those employed for thermal barrier coating (TBC) 
production. However, only a single set of spray parameters and 
a single TBC top coat powder (YSZ, Metco 204BN-S) was 
tested throughout the experiment. During the course of the 
experiment, it was aimed to maintain the net power of the torch 
constant by adjusting the torch current. An AccuraSpray
(Tecnar, St-Bruno, Qc, Canada) diagnostic device was used to 
measure the in-flight particle temperature and velocity at 
defined time intervals.

Figure 1: 3MB torch electrode pair used for the experiment

Figure 2: APS coating porosity. Increased porosity is observed 
in the coating when spraying with the electrodes used for 7 
hours (left) as compared to the ones used for 26 hours (right).

The electrodes began to show a weakness in sustaining a 
constant plasma plume and manifested plasma pulsations after 
about 26 hours of usage. At which point, it was decided that the 
electrodes reached their end of life.  Figure 1 shows the 3MB 
torch electrode pair at the beginning and at the end of the 
experiment. Figure 2 shows the porosity of the YSZ coating 
prepared at two different moments corresponding to different 
torch electrodes usage states. As expected, the coating prepared 
with the electrodes closer to the end of their life time (right) is 
more porous.

Predictive modeling with ensemble methods

Data preprocessing
The data acquired from the different devices was first cleaned 
and then integrated based on the time stamp. For the data 
recorded from the APS controller (e.g. torch current intensity, 
voltage), only those observations when the plasma was on were
considered. A total of about 2600 records with 9 attributes and
2 targets (i.e. in-flight particle temperature and velocity) were 
obtained right after the data fusion. Statistics of selected 
parameters are listed in Table 1.

Table 1: Statistics of selected parameters

Parameters Mean
Standard 
deviation

Torch current (�) 487.9 63.8
Torch voltage (�) 78.1 3.5
Raw power (��) 37.9 3.5
Particle temperature (℃) 3297.0 218.4
Particle velocity (m/s) 128.1 3.8

Figure 3: Correlation among some selected parameters

Figure 3 shows the correlation among some selected
parameters. Recall that in the experiment, only a single spray 
condition is considered with the net power maintained constant. 
Therefore, the net power and the flow of nitrogen (and similarly 
for several other parameters not shown) appear to have no 
relation to any other parameters. In particular, the particle 



temperature seems to have stronger correlation with the voltage
as compared to particle velocity.

Most machine learning predictive models, including random 
forest and gradient boosting, assume that the observations of the 
data are independent of each other, i.e. the data does not have
any particular order. To forecast a time series using these 
machine learning models, it is necessary to capture the temporal 
order information properly as new attributes in each 
observation itself. There are two general approaches [14]. The 
first approach simply appends all the information from the 
considered previous time segments into the observation [15]. 
The time series may also be normalized [16], stationarized [17], 
or decomposed [18] a priori. The second approach only 
supplements the observation with specifically engineered and 
selected statistical features from the time series for the learning 
[14]. The first approach will be adopted here due to its 
simplicity. One disadvantage of this approach, however, is that 
the number of the attributes increases rather quickly as longer 
histories are desired, resulting in a higher model training cost. 
Therefore, it is desirable to include only the relevant parameters
for the attribute augmentation.

Feature selection
Both random forest and gradient boosting provide a ranking of 
variable importance as the regression models are developed. 
They will be used to guide the useful attribute selection. 

The present prediction problem belongs to that of multi-targets 
regression, having two outputs: the particle temperature and 
velocity. The development of multi-target regression for 
random forest is more advanced [19]. There are already several 
implementations available from popular machine learning 
platforms [20], [21]. Such models also take into consideration 
the correlation among the targets. As for gradient boosting, 
multi-target regression is still under active development. A 
simple workaround is to build a separate predictive model per 
target. The correlation among the outputs are, however, 
ignored. Alternatively one may build a set of chained dependent 
models: Suppose that there are two outputs �� and ��. One first 
builds a model to predict �� with attributes �; and then one 
builds another model to predict �� with ��� (the predicted ��

from the first model) as well as the attributes �. The 
performance of such approach depends upon the model 
construction order and the correlation among the targets. The 
benefit of the added complexity is not always apparent.

Both ensemble methods will be used here to compare the 
features. The dataset is first randomly separated into two parts: 
70% for training and 30% for testing.

Figure 4: Top 5 features ranked using random forest

The testing set is used to ensure the decent performance of the 
predictive model. The hyper-tuning parameters of the two 
models are set based on previous experience as follows: for 
random forest, the maximum number of features per tree is set 
to 2 and the depth of tree is left as maximum; for gradient 
boosting, the depth of tree is set to 2, with a learning rate of 0.1. 
The simpler separate model per target approach is employed. 
For both methods, a minimal leaf node size of 5 is considered.

The top 5 features ranked using random forest and gradient 
boosting are shown in Error! Reference source not found.
and Figure 5 respectively. The two sets of ranking are not 
identical, and both do not follow exactly the Pearson correlation 
(Figure 3). The ranking of gradient boosting seems to have 
better agreements with the Pearson correlations than those of
random forest.

Figure 5: Top 5 features ranked using gradient boosting. One 
separated model is trained per target.

The ranking from the gradient boosting model for the in-flight 
particle velocity, though reasonable, according to the Pearson 
correlation, is counterintuitive, since the net power is 
purposefully maintained constant throughout the experiment. 
This underlines the importance of having the interaction among 
the targets considered. Therefore, in the following, only random 
forest will be studied with the top 5 features ranked in Figure 4.

Time series attribute augmentation
To incorporate the temporal order of the data in each 
observation, it is necessary to add the information of the 
previous observations into the present observation as new 
attributes. Suppose that there are two attributes: �� and �� in 
the original dataset for a target �. The embedding procedure for 
a lag order of 3 results in the following data form:

��

��

��

  ⇐   

��� ��� ��

��� ��� ��

��� ��� ��

     

��� ���

��� ���
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�� ��� ���

�� ��� ���

where the numbers represent the ascending temporal order in 
the dataset. The original dataset is shown in bold. Note that the 
target values for the previous observations are also embedded
here. For example, �� can be the torch current intensity � and 



�� can be the torch voltage � with � being the in-flight particle
temperature �. The embedded dataset will become as follows:

��

��

��
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�� �� ��
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�� �� ��

     
�� ��

�� ��

�� ��
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For a given dataset, a higher lag order can introduce more 
temporal information into the present observation. However, 
this will also reduce the total number of embedded observations
for modeling. The tradeoff is far from trivial. For the present 
exploration, a lag order of 5 is considered. All the top 5 ranked 
features are included, resulting in 33 attributes in total in the 
embedded dataset, referred to as the simple embedded dataset 
in the following.

During data exploration, it is observed that both the targets and 
the attributes contain trending patterns. Hence, they are non-
stationary. Traditional time series forecasting techniques will 
typically first use differencing to stationarize the time series
data before model tuning [22]. The benefits of such data 
preparation for random forest is however not well reported.
Therefore, a second embedded dataset, where the time series is
first differenced before embedding, is prepared for comparison.
This is referred to as the differenced embedded dataset below.
Note that the prediction of any regression model, which is 
trained upon a differenced embedded dataset, requires reverse
differencing to convert itself back to the original unit scale.

Methodology for forecasting experiment
A random forest regression model is developed from each 
embedded dataset. They are compared with a baseline random 
forest model developed from the original dataset, without
embedding nor differencing. Since the number of attributes (�) 
of these datasets are different, the number of features included 
per tree is set based on the rule of thumb recommended (�/3)
[23], whereas the depth of tree is left as maximum as before 
with the minimum leaf node size of 5.

Again, the dataset is separated into two parts, according to each 
Accuraspray measurement record: the beginning 70% for 
training and the remaining 30% for testing. This arrangement 
emphasizes the prediction of future values.

Figure 6: The out-of-sample mean squared error versus the 
number of trees in the ensemble of the three random forest
models

In this exploratory work, only the one-step prediction, which 
predicts the immediate next target value, is considered. The 
performance is compared using the mean square error (MSE) in 
the original unit scale.

Results and discussions

General performance and ensemble sizing
For each dataset, a set of random forest regression models is 
first constructed, with an increasing number of trees from 5 to 
500. The corresponding out-of-sample MSE (i.e. against the 
testing data) versus the number of trees considered for the three 
random forest model sets are shown in Figure 6. The MSE of 
the simple embedded random forest model is much smaller than 
that of the baseline model; whereas that of the differenced 
embedded random forest model is substantially further reduced. 
For all three cases, the MSE reduces as the number of trees 
increases from the beginning. After certain point, a further 
increase in the number of trees does not reduce the MSE 
anymore. This transition to the error plateau provides a 
guideline of the required number of trees for the ensemble as 
per the selected hyper-tuning parameters. From Figure 6, it is 
indicated that the baseline random forest model needs about 300 
trees. Both the simple embedded and differenced embedded 
random forest models (upon zoomed in) need about 200 trees.

Table 2: In-sample and out-of-sample errors for the three 
random forest models.

MSE In-sample Out-of-sample
Baseline 0.00056 0.01324
Simple Embed. 0.00150 0.00543
Diff. Embed. 0.00048 0.00042

Table 2 lists the in-sample MSE (i.e. against the training data) 
together with the out-of-sample MSE (i.e. against the testing 
data) for the three random forest models. When the out-of-
sample error is much higher than those of in-sample, it is an 
indication of model over-fitting (i.e. when the model starts to 
capture also the noisy patterns in the training dataset, besides
the overall trends as originally intended). The results from 
Table 2 suggest that the embedding procedure helps to reduce 
model over-fitting. In particular, the differencing preprocessing 
essentially “eliminates” model over-fitting with respect to the 
present choice of hyper-tuning parameters.

Important features 
As mentioned above, random forest model provides a ranking 
of variable importance as the models are developed. The feature 
ranking order of the baseline random forest model is the same 
as Figure 4. Whereas the top 12 features for the simple 
embedded and the differenced embedded random forests are 
shown in Figure 7. The differenced embedded random forest 
model ranks the previous targets (i.e. the previous particle 
temperatures and velocities) to be the most important attribute 
group, with a mixed order. After the previous targets, the model 
neatly ranks the torch currents, followed by the cooling rates, 
then the voltages, the raw powers and finally the electrode 
usage times. Whereas, the simple embedded random forest 



model neatly ranks the previous particle temperature first, 
followed by particle velocity and the rest of the attributes in a 
mixed manner. The rankings from both embedded random 
forest models underline the importance of the consideration of 
the previous target as attributes. Such consideration is not 
possible using the baseline random forest model. 

Figure 7: Rankings of features for simple embedded and
differenced embedded random forest models

Performance comparison 
The performance of a baseline random forest model with 300 
trees is then compared with two embedded random forest 
models with 200 trees. Here, the tree depth is limited to 3 for all 
three random forest models to better contrast their performance.

The comparison of the in-flight particle temperature prediction 
is shown in Figure 8. The predictions are plotted against the 
actual values. The better the predictions are, the closer will they 
be with respect to the blue diagonal line. The scattering of the 
prediction reduces progressively from the baseline model 
(�� = 0.928), then with the simple embedded random forest 
model (�� = 0.950), and finally becomes the smallest with the 
differenced embedded random forest model (�� = 0.999).

Figure 8: Comparison of the in-flight particle temperature 
predictions of the baseline, the simple embedded and the 
differenced embedded random forest models.

Figure 9 shows the comparison of the in-flight particle velocity 
prediction. Similar improvement trend can be observed, starting 
from the prediction of the baseline model (�� = 0.822), then 
better with the simple embedded random forest model (�� =
0.965), and the best with the differenced embedded random 
forest model (�� = 0.999).

Selected predictions of the in-flight particle temperatures and 
velocities are shown in Figure 10. Interestingly, a few 
predictions of the baseline model are better than those of the 
simple embedded random forest model here, e.g. the first
velocity prediction on the left.



Figure 9: Comparison of the in-flight particle velocity 
predictions of the baseline, the simple embedded and the 
differenced embedded random forest models

The overall improvement due to the embedding procedure and 
differencing for one-step prediction is evident. The excellent 
performance underlines the benefits to consider the APS data as 
time series when modeling the in-flight particle characteristics 
if electrode ageing is also of concern. In particular, it is highly 
beneficial to first make the time series stationary using the
differencing technique. Investigations are currently under way 
to evaluate other multivariate predictive models applicable for 
time series, as well as to compare the performance of the 
alternative time series enrichment strategy, which performs
feature engineering and selection from the statistics of the time 
series (e.g. mean, standard deviation) for the learning. The 
corresponding findings will be communicated in future work.
Although there are still knowledge and technological gaps
before deploying a production ready predictive model for the 
in-flight particle characteristics, the present study lays down a 
solid foundation to advance towards such goal. 

Figure 10: Selected predictions of the in-flight particle 
temperatures and velocities with the three random forest
models

Ultimately, it is desired to develop a predictive model for 
coating characteristics and performance, which can serve as a 
guiding tool for effective torch usage and coating quality 
control.

Conclusions

This work explored the applicability of two ensemble methods, 
namely random forest and gradient boosting, to predict and 
forecast the multivariate APS in-flight particle characteristics 
with the consideration of torch electrodes ageing as time series.
Two strategies of time series embedding manipulation are 
considered. The first one simply stacks up the attributes and the 
targets from the previous � time segments considered without 
any modification, while the second strategy first performs
differencing to make the time series stationary before the 
embedding procedure. The feature selection process indicates 
the advantages to be able to consider the inter-target correlation 
for the multivariate regression modeling. Hence, for these
applications, random forest is more suitable than gradient 
boosting. The superior prediction performances and the feature 
rankings of both embedded random forest models show that it 
is better to consider the APS data as time series for the in-flight 
particle characteristic prediction. In particular, it is also 
advantageous to first make the time series stationary using the 
traditional differencing technique, even when modeling using 
random forest. Comparison with other multivariate regression 
modeling techniques for time series is currently under way and 
the findings will be communicated in future work.
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