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Abstract— Advance knowledge of occupancy in commercial 

buildings facilitates implementation of occupant-centric control 

schemes that reduce energy use and increase comfort. 

However, training and validation of occupancy prediction 

models can be challenging since ground truth data is not always 

easily obtainable. In fact, not only is the collection of ground 

truth costly because of the manual labor involved, it might be 

restricted in time and space for security and privacy reasons. 

As a result, prediction based on semi-supervised learning 

techniques using limited ground truth data can be a promising 

approach with a slight compromise on accuracy. In this paper, 

an innovative method for day-ahead prediction of total building 

occupancy is proposed which leverages the opportunistic 

probing signals from a WiFi network. Using only two days of 

ground truth occupancy data, a model based on a combination 

of linear regression and artificial neural networks is able to 

predict day-ahead occupancy count with 90 percent accuracy.  

I. INTRODUCTION 

Knowledge of the total occupancy count in commercial 

buildings can be used for optimal operation of heating, 

ventilation, and air conditioning (HVAC) systems by 

adjusting temperature set-points and air-flow rates as well as 

operating schedules according to the occupants’ presence [1]. 

In fact, modern intelligent controllers can directly take the 

prediction of building occupancy as an input to adjust 

temperature and air quality for maintaining comfort [2]. Even 

at larger scales, central heating and cooling plants serving 

multiple buildings are reported to employ aggregated 
occupancy data to reduce energy use [3]. These applications 

suggest the importance of developing accurate models for 

real-time estimation as well as prediction of building 

occupancy counts. 

In order to obtain occupancy information, two categories 

of data sources might be used in a building. The first category 

includes specialty sensors for occupancy detection. Examples 

are passive infrared and ultrasonic motion detectors, and the 

more novel imaged-based occupancy counters [4]. The 

second category contains sensors and data streams that were 

not designed to be an occupancy estimation system, but still 

can be employed as a proxy for obtaining such information. 
Examples include electricity meters, WiFi signals (from pre-

existing wireless networks or dedicated sensors), and security 

access-cards [5]. Unexpectedly, studies indicate that the latter 

indirect methods are capable of providing cost-effective and 
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relatively accurate estimation of total building occupancy [6], 

[7]. In fact, since the capital and operating costs for sensors in 

the second category are covered to serve other purposes, 

leveraging these “opportunistic” data streams results in 

reduced overall costs of the occupancy estimation system. 

From the aforementioned opportunistic data, WiFi 

network activity has attracted considerable attention among 

researchers, mainly due to increased popularity of laptops, 

smartphones, and tablets [6]. For example, Balaji et al. [8] 
developed a tool for estimating building occupancy by 

counting the number of connected WiFi devices and used the 

information for actuating the HVAC system and saving 

energy. In other studies, researchers combined WiFi network 

activity with other types of opportunistic data streams to 

estimate real-time building occupancy profiles that can be 

integrated in various tools [9], [10]. While these approaches 

are effective for real-time occupancy estimation, forecasting 

building occupancy count (i.e. predicting ahead of time) is 

not addressed in the literature as often. The main reason 

appears to be scarcity of ground truth data (i.e. the actual 

occupancy) for extended periods of time. In fact, ground truth 
data that is necessary for training and validation of models in 

supervised learning is usually collected by manual counting, 

which is a reliable but expensive approach. Some researchers 

have proposed alternative methods for collecting ground 

truth, for example using infrared images [11] or visually 

inspecting CCTV footage [12]. However, deploying such 

technologies in areas with restricted access such as 

government buildings might be infeasible due to security and 

privacy concerns. There are examples of unsupervised 

occupancy forecasting in the literature, such as Howard and 

Hoff [13] who used time-series analysis, although they 
reported underwhelming prediction accuracies. Another 

alternative is to avoid using historical values of occupancy as 

inputs to the prediction model, as practiced by Sangogboye 

and Kjærgaard [14]. However, the shortcoming of this 

approach is its inability to track changes in the occupancy 

patterns over time. Therefore, we expect that a semi-

supervised occupancy prediction tool that only relies on 

limited ground truth data might be the best alternative. We 

propose a method for day-ahead prediction of building 

occupancy using this approach. 

The rest of the paper is organized as follows. The next 

section describes in detail the different elements of the 
method including sensor data processing and formulation of 

prediction models. Afterwards, the experimental setup and 

the results of a case study carried out in an office building are 

presented. Finally, we conclude by summarizing the benefits 

and limitations of our approach and provide suggestions for 

improvements in future work. 
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II. METHODOLOGY 

A. Sensor data processing 

WiFi networks are the most popular wireless local area 

network currently available. Various WiFi-enabled electronic 

devices such as mobile phones, computers, tablets, and 

peripherals can connect to such a network via a WiFi access 
points (WAP). For a connection to be established and 

maintained, a device sends to a WAP its media access control 

(MAC) address. In this study, we deploy WiFi sensors 

disguised as regular WAPs and use them to identify the 

number of WiFi devices that attempt to connect to them. 

Then we use that information as a proxy to estimate the 

number of occupants in the building. We leverage the fact 

that MAC addresses are included in every packet transmitted 

by a WiFi device. However, the modern smartphones are 

capable of using a random MAC address when probing the 

network and the address is frequently changed for preserving 

privacy [15]. For this study, it is not required to identify the 
real MAC address of any device, although we need to ensure 

that a WiFi device is not counted multiple times during a 

sensing interval. To avoid this issue, first the unique MAC 

addresses are counted every 60 seconds considering that it is 

the minimum lifetime of a random MAC address [16] and 

afterwards the counts are rolled up to the desired time 

interval. As a result, the number of unique MAC addresses 

detected by sensors using the described method should be a 

proper indication of occupancy count in the building. As 

shown in Figure 1, MAC addresses detected by each sensor 

are collected and anonymized to preserve users’ privacy. We 
use a one-to-one anonymization technique that enables us to 

remove any redundant MAC addresses from the list, in case 

the same device is detected by multiple sensors. The number 

of unique detected MAC addresses are summed at certain 

time intervals, creating a time series of WiFi device counts. 

B. Fitting occupancy to WiFi data 

A review of similar studies shows that the relationship 

between the WiFi device counts and the ground truth 

occupancy can be explained by a linear model with 

acceptable accuracy [7]. In general, the linear model that fits 

the WiFi data to ground truth occupancy can be described as: ̂[�] = � [�] ⋅ � �[�] − � [�]  (1) 

where ̂[k] and WiFi[k] correspond to the estimation of 
ground truth occupancy and WiFi device count at time step k, 

respectively. The coefficient �  represents the ratio of 

WiFi devices to occupants, estimating how many WiFi 

devices are associated with a person in the building on 

average. Furthermore, the bias term is added to compensate 

for any stationary WiFi devices that are detected at all times 

regardless of the occupancy state. Obviously, the ratio of 

WiFi devices to occupants is not time invariant. For example, 
it might change if a group of visitors are in the building for a 

certain event, or if an employee obtains a new smartphone. It 

can change even more dramatically if a major IT 

restructuring takes place, for example replacing all desktop 

computers with laptops and tablets. In addition, the bias can 

be time variant in nature, as the number of stationary WiFi 

devices (such as printers and neighbouring WiFi access 

points) can change over time, although perhaps not as 

frequently as �  would change. 

For the reasons mentioned above, it is recommended that 

both �  and bias are re-identified at any given opportunity, 

essentially when collecting ground truth data is possible. For 

the sake of this study, we assume that both �  and bias are 

constant during the tests. Therefore, Equation (1) is 

simplified to: ̂[�] = � ⋅ � �[�] − �  (2) 

In order to identify the two constants of Equation (2), a 

linear least-squares model is fitted to the ground truth 

occupancy and WiFi data. An example of the resulting linear 

model is shown in the case study.  

C. Prediction methods 

The main objective of this study is to predict building 

occupancy 24 hours in advance. For this purpose, two 

methods with different complexity are tested and their 
performance is evaluated; namely multiple linear regressions 

(MLR) and artificial neural networks (ANN). 

Multiple Linear Regressions. The MLR is a deterministic 

approach that is intuitive and has a short training time. The 

MLR model is formulated as: ̂ �[�] =∑ [�]= +  (3) 

where ̂ �[�] is the day-ahead prediction of total building 

occupancy using MLR, while X is the vector of I different 

inputs (also called predictors) for the model. The parameters 

 and  are identified by minimising least-squares error.  

Artificial Neural Networks. Although being more 

complex and less intuitive than MLR, the main advantage of 

ANN is its capability to capture nonlinear relationships 

between the inputs and outputs of the model with an arbitrary 

Figure 1 Detection of WiFi devices using anonymous MAC addresses. 

 



  

degree of complexity. Furthermore, ANN is proven to show a 

robust performance when facing noisy datasets. The ANN 

architecture used in this study is a fully-connected feed-

forward ANN with backpropagation and a single layer of 

hidden neurons. A sigmoid activation function is chosen for 

the hidden neurons and a linear activation function is applied 
to the output neuron. The ANN model can be described with 

two generalized equations. First, the output of each hidden 

neuron is presented as a nonlinear transformation of a linear 

combination of the input neuron values:  ℎ [�] = �� � (∑ [�]= + ) (4) 

Here, ℎ  is the output of neuron j at time step k,  is the 

weight of the connection between input neuron i and hidden 

neuron j,  is the bias at hidden neuron j, and �� � is a 

sigmoid transformation function. The inputs  are the same 
as Equation (3). The output of the ANN model, which in this 

case is a single neuron with linear activation function, can be 

formulated as: 

�̂ [�] =∑ ℎ [�]= +  (5) 

where �̂  is the predicted occupancy using ANN,  is the 

weight of the connection between hidden neuron j and the 

output neuron, and  is the bias for the output neuron. A total 

of H hidden neurons may exist in the model which can be 

changed to create various architectures of ANN. The weights 

and biases are identified during the supervised training 

process with the same data used for training the MLR model. 

D. Model inputs 

For a day-ahead prediction of the building occupancy, all 

model inputs have to be available 24 hours in advance. This 
means that historical occupancy values more recent than 24 

hours (such as 1 hour before) cannot be selected as inputs. 

Therefore, the following inputs are chosen for this study: 

1) Hour of Day. Since most occupants follow a daily 

work schedule, the hour of day (HoD) is employed to capture 

the cyclic daily behaviour of occupants. An issue with the 

raw HoD is that it is not seen by the model as a continuous 

cyclical variable because it iterates from 0h to 23h (in a 24-

hour time format) and then jumps back to 0h. In order to 

convert HoD to a cyclical format, we use the following 

sinusoidal encodings: �� [�] = . ⋅ sin ( ⋅ � ⋅ �� [�]) + .  

�� [�] = . ⋅ cos ( ⋅ � ⋅ �� [�])+ .  

(6) 

The resulting HoD1 and HoD2 are sinusoidal waves 

oscillating between 0 and 1. A combination of these variables 
can serve as a cyclical hour of day input to the model. For 

further explanation and a visualisation of this conversion the 

reader is referred to [17]. 

2) Day of Week. Occupancy patterns in commercial 

buildings are also correlated with the type of day, i.e. 

weekdays versus weekends and holidays. As result, day of 

week (DoW) is a meaningful input to the model. In this 

study, weekends and public holidays are treated the same, 

hence giving the DoW a binary format, described as � [�] = { Day ∈ W��kdaysDay ∈ {W��k�nds, Holidays} (7) 

For a day-ahead prediction, DoW must be known in 

advance. It is therefore important to pay attention to 

unexpected changes in DoW, such as a heavy snowfall event 

that might change a working day to a non-working day. It is 

therefore suggested that the value of DoW is updated early in 

the morning to be able to adjust the short-term predictions 
according to unexpected events.  

3) Occupancy 24-hour before. Historical values are 

traditionally used as inputs to prediction models, due to their 

usual high correlation with future values. Therefore, another 

useful input for the prediction model is the occupancy count 

(or the estimation of it) at the same time one day before. In 

summary, the vector of inputs (that is identical for MLR and 

ANN models) is compiled as: 

[�] = ( 
�� [�]�� [�]� [�]̂[� − ])  (8) 

E. Evaluation metrics 

In order to evaluate the performance of prediction 

methods and investigate the effects of changing model 

parameters, three metrics are employed for this study: 

Coefficient of Determination (R2), Root Mean Square Error 

(RMSE), and Coefficient of Variation for RMSE (CVRMSE). 

These are defined as: = − ∑ ( [�] − ̂[�])=∑ [�] − ̅=  

= √ ∑ ( [�] − ̂[�])=  

= ̅  

(9) 

where k iterates the time steps with a maximum of N,  

denotes the vector of actual occupancy, ̂ is the vector of 
estimated occupancy (in real time) or predicted occupancy 

(for time ahead), and ̅ represents the mean of actual 
occupancy for the N observations. While many studies rely 

on R
2 as an indication of prediction accuracy, we prefer to 

use the following definition of accuracy instead, which is 

based on CVRMSE: � = × −  (10) 

where ACC is the accuracy in percentage. 

III. RESULTS 

The case study of this paper is based on a three-storey 

office building located in Ottawa, Canada. The building has 

80 employees with assigned desks. In the next sections, we 



  

describe the experimental setup and discuss the results at 

each stage of the algorithm. 

A. Algorithm and experimental setup 

As shown in Figure 2, three WiFi sensors are placed at 

each floor of the studied building to ensure that the entire 

occupied area in the building is covered. Furthermore, in 
order to collect the ground truth occupancy data, the three 

building entrances (two on the first floor and one on the 

second floor) were manually monitored by volunteer 

employees for the duration of the test. This practice resulted 

in high-accuracy ground truth data aggregated at 15-minute 

time intervals. However, due to the cost involved with 

engaging manual labour, the ground truth data collection had 

to be limited to only two days within the working hours, 

which was between 7:00 AM and 5:00 PM on the first day 

and between 7:30 AM and 4:30 PM on the second day. In 

total, we obtained 78 instances of ground truth data that were 

used for fitting the occupancy to WiFi data, which is to 
identify the parameters of the model shown in Equation (2). 

Furthermore, the collected WiFi data is truncated to match 

the daily schedule of the building employees and availability 

of ground truth data. This implies that only data within the 

time span of 7 AM to 5 PM is kept and the rest is discarded. 

In fact, this is a more conservative approach for the sake of 

model accuracy. If the after-hour data (corresponding to night 

time and weekend hours) was kept, the model would simply 

predict zero occupancy during those on-occupied hours and it 

would create a misleading interpretation of high precision 

[12]. A summary of the algorithm including the available 
datasets is shown in Figure 3. The data collection process at 

the studied building consists of three time-separated tests 

carried out between May 2018 and October 2018. In the first 

test, fitting data (blue lines in Figure 3) consisting of WiFi 

device counts and ground truth occupancy data were 

collected, with the purpose of identifying the ratio of WiFi 

devices to occupants. In the second extended test, WiFi 

counts (green lines in Figure 3) were collected but no ground 

truth data was available. This set of data is used to train and 

validate the two prediction methods based on MLR and ANN 

models. Finally, a third test was carried out by collecting both 

WiFi counts and ground truth data during two days of normal 

building operation, with the aim of testing the performance of 

prediction models. As a result, only 10% of the dataset 

contains ground truth data. The results of these tests are 

discussed in the following sections. 

B. WiFi to Occupant Ratio 

In the first data collection effort, WiFi and ground truth 

data were collected at 15-minute intervals to identify the 

parameters of Equation (2). The bias is interpreted as the 

effect of static WiFi devices such as printers and other 

peripherals which transmit WiFi packets even if there are no 

occupants present in the building. Therefore, we identify the 

bias by calculating the average value of WiFi[k] during the 

night, when occupancy count ̂[�] is expected to be equal to 

Figure 3 Schematic of the algorithm and datasets. 

 

Figure 2 Location of sensors and manual counting (at the entrances) for the 

three floors of the studied building. 

 



  

TABLE I.  PERFORMANCE OF OCCUPANCY PREDICTION MODELS 

Method Model Model parameters 
Performance (Training set) Performance (Testing set) 

R
2
 RMSE Accuracy R

2
 RMSE Accuracy 

MLR 
 

̂[�] = �� + �� + � + ̂[� − ] +  

= − . , = − . , = − . , = .  ,  = .  

0.86 7.0 78.6 % 0.88 5.0 83.1 % 

ANN 

 

̂[�] = ∑ ℎ [�]�= +  

� =  0.84 7.4 77.1 % 0.69 8.0 72.8 % � =  0.86 6.8 79.0 % 0.93 3.9 86.9 % � =  0.86 6.8 78.9 % 0.95 3.3 88.9 % � =  0.87 6.5 79.7 % 0.90 4.6 84.6 % � =  0.88 6.4 80.3 % 0.88 4.9 83.4 % � =  0.90 5.8 82.0 % 0.96 2.9 90.1 % � =  0.88 6.3 80.3 % 0.89 4.8 83.8 % � =  0.89 6.2 80.7 % 0.90 4.5 84.7 % � =  0.88 6.3 80.5 % 0.89 5.0 83.3 % � =  0.87 6.8 79.0 % 0.91 4.4 85.3 % 

 

zero. For the studied building, the bias is equal to 27. One the 

bias is calculated, it is subtracted from the WiFi device count 

data. The resulted unbiased WiFi count is used together with 

the ground truth data to identify the ratio of WiFi devices to 

occupants. As shown in Figure 4, a linear least-squares model 

was fitted to 78 pairs of measurement to identify the ratio of 

WiFi devices to occupants, � . The model fits the data 

with R2
 0.9 and identifies �  to be 1.27. This implies that 

in average 1.27 WiFi devices are associated with each 

occupant in the building. It is worth mentioning that the 

linear fit shows an over-average correlation between WiFi 

device counts and ground truth occupancy in the studied 

building, based on a comparison to a similar linear model in 

[10] with R2
 0.7.  

C. Occupancy prediction 

Supervised prediction models required a relatively large 

training dataset to avoid overfitting. This is especially 

important for more complex models such as ANN where a 
higher number of internal model parameters need to be 

identified. In this study, ground truth occupancy data serve as 

labels for the supervised training, hence scarcity of such data 

creates a challenge. As a solution to this problem, we propose 

a semi-supervised training approach using an estimation of 

occupancy count (calculated using the linear model 

developed in the previous step) instead of the ground truth 

occupancy. As seen in Figure 3, several weeks of WiFi 

device counts collected at the building during working hours 

are used for creating the training set. These WiFi counts are 

multiplied by the WiFi-to-occupant ratio � , creating a 

times series of estimated occupancy as an input for training 

the prediction models. The testing dataset, however, is 

comprised of both WiFi and ground truth data that were 

collected during the third test (depicted as red lines in Figure 

3). This setup facilitates the training process of the prediction 

model by avoiding over training, with the compromise of 
reducing the accuracy of predictions as a result of not 

exposing the model to ground truth data. Therefore, to ensure 

that final performance comparisons are credible, we compare 

the models based on errors calculated with the ground truth 

occupancy data from the testing set. Table I shows the 

performance of occupancy prediction models for both 

training and testing sets as well as the corresponding model 

parameters. For the classic deterministic MLR model used in 

this study, only a single set of parameters can minimize the 

objective function (in this case being the least squares). 

Therefore, the parameters of the MLR model cannot be 

adjusted. On the contrary, ANN might be created in various 
architectures characterized by the number of hidden layer 

neurons. We examined the performance of ANN models as a 

function of the number of hidden neurons, H, as defined in 

equation (5). The results suggest that the best performance 

metrics are obtained with the ANN model when � = , 

achieving an accuracy of 82% for the training set (using 

estimated occupancy) and 90% for the testing set (using 

ground truth occupancy). Furthermore, almost all ANN 

models perform better than the MLR model, implying that 

the ANN is successful in capturing nonlinear relationships 
between the input set and the occupancy count. That being 

said, even the MLR model has a promising performance 

when compared to similar studies. For example, the best 

prediction models in [13] achieved accuracies of less than 

50% for a horizon of 10 time steps (compare to 24 time steps 

in our case). One explanation is that office buildings show a 

more regular occupancy pattern compared to institutional 

buildings (such as universities). Another reason might be the 

relatively short length of training and testing sets in this 

study, as both R
2 and RMSE are sensitive to the length of 

data. A visual comparison of the predictions based on the 

training dataset achieved with MLR model and the best-
performing ANN model is shown in Figure 5 for five 

weekdays in August 2018. The difference in predictions is 

negligible, as both models are able to capture the hourly 

dynamics of the occupancy very well. However, it is 

observed that the MLR predictions are rather uniform among 

the days, implying that the dominant predictors are the 

Figure 4 Fitting the WiFi device count to ground truth occupancy. 

 



  

temporal features. The same conclusion can be made by 

comparing the value of the weight  (corresponding to ̂[� − ]) with values of  and  (corresponding to HoD 
inputs). On the contrary, the ANN predictions are more 

correlated with the values on the day before, showing the 

capability of ANN model in following changes in the 

occupancy pattern. For the same reason, the ANN model 

achieves an advantage of 1.2 (5.8 versus 7.0) in RMSE. While 

the performance of presented prediction models is acceptable, 

higher accuracies might be required for certain applications. 

In that case, it is recommended that the more recent historical 

values (such as 1 hour before) are chosen as input to the 

prediction models. A downside to this approach is the 

requirement for the prediction model to be called at every 

hour, which might not always be feasible.  

IV. CONCLUSIONS 

In this paper, methods for real-time estimation and day-

ahead prediction of total building occupancy count were 

presented. The ratio of WiFi devices to occupants in the 

building was identified with a linear regression model. This 

ratio is a characteristic of the building and its occupants and 

is assumed to be time-invariant for the duration of our tests. 

Two different prediction models based on multiple linear 
regressions and artificial neural networks were calibrated 

with an estimation of occupancy counts. The day-ahead 

prediction results suggested that ANN has superiority with 

regard to accuracy, although MLR showed competitive 

performance making it a better solution for situations where 

implementation of ANN is computationally not feasible, or in 

case the model intuitiveness is important to the building 

operators. A key advantage of the proposed approach is its 

limited dependency on availability of ground truth occupancy 

data that might prove to be challenging or costly to collect 

according to the building type and tenants. Furthermore, the 
use of WiFi device counts as a proxy for building occupancy 

counts makes the method widely applicable since most 

commercial buildings today are equipped with a WiFi 

network. However, there are certain limitations to the 

proposed method. For example, if the access points cannot be 

interfaced to obtain the list of MAC addresses, dedicated 

WiFi sensors are needed instead, which will add to the capital 

costs of the project. Also, in case the security policy of the 

building does not allow the collection of un-encrypted MAC 

addresses, it will be impossible to remove redundant 

addresses form the populated list. It is expected that such a 

scenario would dramatically reduce prediction accuracy.  

For future work, the authors intend to apply the proposed 

prediction method to data from other buildings with different 
utilisation types. This would allow us to compare the value of �  for each building as well as identifying the longest 

period of time for which the ratio can be considered as 

constant. Also, there will be a focus on alternative prediction 

targets, such as peak daily occupancy, as well as the earliest 

arrival and latest departure of occupants.  
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