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Abstract 

Minerals play an important role in the oil sands extraction efficiency. It is thus important to 

assess the major mineral abundance in oil sands ores. This paper presents the application of 

tunable quantum cascade lasers for mid-infrared reflectance spectroscopy on oil sands minerals. 

The investigations and results show a new tool to determine oil sands mineral type and to 

determine potentially quartz and clay contents. 
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Introduction 

Oil sands are the most important heavy oil reserves in Canada. Oil sands consist of bitumen, 

water, and solid minerals which are mainly quartz and clays. The production of oil from an open-

pit oil sands mine requires several steps from mining to refining. Prior to bitumen extraction, it is 

critical to know the clay content of the oil sands feedstock because these clays can affect the 

bitumen recovery. Indeed, a high clay content in the feedstock can disrupt the extraction process, 

decrease the recovery rate, and produce a low-quality froth. Moreover, a high clay content can 

generate a deleterious waste product called tailings with a negative ecological impact.  

Several laboratory techniques have been used for the characterization of minerals in oil 

sands. X-ray diffraction (XRD) has been used to determine qualitatively the mineralogy of the 
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bitumen-free oil sands. Quantitative X-ray diffraction (QXRD) has also been used to determine 

crystalline minerals. Reflectance optical spectroscopy and hyperspectral measurements have 

been performed to investigate the mineral abundance in oil sands.1 Combined QXRD and X-ray 

fluorescence have been used to determine both crystalline and non-crystalline phase in oil sands 

minerals. Other techniques such as energy-dispersive X-ray spectroscopy (EDX)2 and laser-

induced breakdown spectroscopy (LIBS) have been used to study the elemental composition.3 

K40 gamma spectroscopy is widely used for on-line measurement of clay content but efforts are 

still needed to provide a reliable quantitative measurement.4 

Recently, the commercialization of tunable external cavity quantum cascade lasers 

(ECQCL) emitting in the mid-infrared (mid-IR) range is enabling laser-based mid-IR 

spectroscopy in many applications5–6 and offers, in some aspects, serious competition to 

traditional Fourier transform infrared (FT-IR) spectroscopy.7 Compared to a broadband light 

source and an FT-IR spectrometer, tunable ECQCL modules provide a larger spectral power 

density, hence a better signal-to-noise ratio for the same acquisition time. Moreover, a laser 

beam can be focused on a smaller spot even at standoff distances, enabling higher spatial 

resolution mapping of a sample. Published work on ECQCL-based spectroscopy are reported for 

absorption spectroscopy in gases,8 in thin liquid layers,9–10 in pharmaceutical products,11 for 

chemical agent detection,12 and more recently for mineral characterization.13 

In this paper, we demonstrate ECQCL-based reflectance spectroscopy applied to predict 

the abundance of quartz and clays in free-bitumen oil sands. We measured each sample at a 

standoff distance and at several locations to mitigate the sample heterogeneity. Then we 

investigate if ECQCL-based reflectance spectroscopy can be used to distinguish between high 

and low quartz to clay ratio oil sands minerals by using the mid-IR spectral signatures. The 

objective of this work was to assess the potential of using an on-line ECQCL-based sensor 

system to monitor the quality of the feedstock oil sands. 

 

Experimental Setup 

The mid-IR reflectance spectroscopy setup is shown in Figure 1. Figures 1a and b show the top 

and side view of the setup schematic, respectively. The mid-IR beam is emitted from a Block 

Engineering LaserTune ECQCL module. The beam is focused on the sample at normal incidence 

angle using a 1-inch (2.54 cm) gold parabolic mirror. The spot diameter at the sample is 300 μm 
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and the working distance is 10 cm. The reflected light is collected at an angle of 20° using 

another 1-inch (2.54 cm) diameter gold parabolic mirror as seen in Figure 1c. The mid-IR light is 

then focused on a 1x1 mm2 Infrared Associate FT-IR-16 MCT detector operated at 77 K using 

liquid nitrogen. The ECQCL module is composed of four tunable lasers in total. Their spectral 

ranges are separated at 970 cm–1, 1344.7 cm–1, and 1632.4 cm–1. To acquire a reflection 

spectrum, the center wavelength of the emitted light is continuously tuned across a wavelength 

range of 5.2 μm to 13.4 μm (745 cm–1 to 1920 cm–1) over 0.5 s. The ECQCL module is emitting 

light pulses of 100 ns duration at a repetition rate of 10 kHz. The peak voltage generated by each 

reflected light pulse is recorded to form a spectrum of 5000 data points. The raw reflection 

spectra are smoothed using an 11-points moving average, which was normalized using the 

diffuse reflection spectrum of slightly pressed KBr powder. 

 

 

Figure 1. (a) Top view schematic of the mid-IR reflectance setup. (b) Side view of the setup. (c) 

Photograph from the sample point-of-view. 

Eleven oil sands samples classified as high quartz to clay ratio (Q/C) and low quartz to 

clay ratio samples are used in this work. The oil sands samples were extracted using the standard 

Soxhlet–Dean and Stark extraction methods with toluene as the solvent. After drying, the 
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quantitative mineralogy of the bitumen-free oil sands samples was obtained by QXRD analysis. 

The material is then homogenized for the mid-IR measurements. The total clay content shown in 

Table I refers to the summation of kaolinite, illite and chlorite contents, and of the content of a 

mixture of illite–smectite and kaolinite–smectite mixed layers. 

 

Table I. Mineral abundance and quartz to clay ratio (Q/C). 

Sample Quartz 

(%) 

Total Clay 

(%) 

Other Minerals 

(%) 

Quartz to Clay 

(Q/C) Ratio 

Category 

1 65.7 24.9 9.4 2.6 Low Q/C 

2 69.6 22.5 7.9 3.1 Low Q/C  

3 66.6 18.0 15.4 3.7 Low Q/C  

4 78.2 14.9 6.9 5.3 Low Q/C  

5 81.9 12.3 5.8 6.7 Low Q/C  

6 81.7 11.5 6.8 7.1 Low Q/C  

7 93.2 3.5 3.3 26.8 High Q/C  

8 94.0 2.5 3.5 37.0 High Q/C  

9 86.8 2.3 10.9 38.0 High Q/C  

10 92.7 2.4 4.9 39.4 High Q/C  

11 88.1 2.0 9.9 44.3 High Q/C 

 

 Figure 2 shows one of the bitumen-free oil sands sample under the mid-IR reflectance 

setup. The green and red circles indicate the center and the border of the probed region by the 

mid-IR beam, respectively. For each oil sands sample, approximately 100 mg of homogenized 

material is put in a circular holder and is slightly pressed down to obtain a uniform surface as 

seen in Figure 2. This procedure was repeated five times to obtain five subsamples. Reflection 

spectra are measured at 36 locations separated by 0.5 mm. The average of 36 reflection spectra is 

then used to obtain a representative sampling. Figure 3 shows normalized reflection spectra for 

low Q/C and high Q/C samples. The mid-IR spectra data set consisted of 55 averaged reflection 

spectra, one for each subsample, belonging to the 11 samples. These measurements were used to 

evaluate variability of such heterogeneous samples. 



DOI: 10.1177/0003702820906489 

 

 

Figure 2. Image of a typical bitumen-free oil sands sample under the mid-IR reflectance setup. 

The green and red circles indicate the center and the border of the probed region by the mid-IR 

beam respectively. 
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Figure 3. Averaged spectra of low Q/C and high Q/C samples. 

 The spectral features of the bitumen-free samples are shown in Figure 3. The spectra 

exhibit two reflection peaks at 780 cm–1 and 800 cm–1, respectively. These peaks are attributed to 

the Si–O band.14–15 The reflection peak at 1015 cm–1 associated to kaolinite, which is a clay, is 

also shown. The reflection dip at 1120 cm–1 is a feature associated to clays.1 A reflection dip 

around 1160 cm–1 and a strong peak at 1220 cm–1, attributed to the Si–O band of quartz,15 are 

also seen in the spectra. The peaks located at 1554 cm–1, 1650 cm–1, 1750 cm–1, and 1834 cm–1 

are observed in quartz samples with particles of size in the tens of microns range,16 indicating the 

particulate nature of the sample. 

At first, a qualitative study using principal component analysis (PCA) was performed to 

identify significant spectral features of quartz and clays in each sample type. This work is 

focused on the assessment of quartz and clays because they are the most abundant minerals in oil 

sands ores, but also because the impact of clays on bitumen recovery is significant. PCA is an 

unsupervised chemometric method used to reduce a set of data of possibly correlated variables 

into a set of uncorrelated variables called principal components (PC). This method decomposes 

the dataset matrix into two smaller matrices of scores and loadings which were used to find 

correlation between the samples. The acquired spectra were preprocessed applying a Savitzky–

Golay derivative17 (first derivative order, 15-point window, and a second-order polynomial). 
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Then, the data were mean centered. These common pretreatments are used to correct the spectra 

by changing the scale and the offset, and to highlight the relevant signatures in the spectral 

dataset. PLS_Toolbox software (Eigenvector) was used to perform the pretreatment and the 

chemometric modelling. As mentioned in the experimental setup description, the spectra exhibit 

spectral hopping at 970 cm–1, 1344.7 cm–1, and 1632.4 cm–1 caused by the laser diodes 

switching. The spectral region around these hops usually exhibit low signal-to-noise. Therefore, 

the 960–980 cm–1, 1330–1350 cm–1, and 1630–1650 cm–1 regions were removed before 

multivariate data analysis. 

Principal component analysis was performed on the 55 reflection spectra. Figure 4 shows 

the PCA score projection of 55 observations and 5000 variables (wavenumber values). The 

analysis has been performed blindly and the classification of each sample (low and high Q/C) 

has been disclosed after the chemometric model construction. One can observe a cluster of 

samples with low quartz to clay ratio which are grouped together as green squares. However, 

samples with high quartz to clay ratios are scattered on the negative side of the first principal 

component (PC1) as red diamonds. PC1 has the maximum variance and represents more than 

59% of the information. Hence, this component can be used to discriminate the sample spectra 
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mostly by their quartz to clay ratio. 

 

Figure 4. Score plot of PCA. PC1 versus PC3 for mid-IR spectra based on 750–1900 cm−1. 

 

To understand the meaning of the first principal component, the loadings plot was used. 

Figure 5 shows the loadings of PC1 as well as the first derivative averaged spectra of samples #1 

and #11 which have the lowest and highest quartz to clay ratio respectively. The PC1 loadings 

show that the feature associated to clays at around 1015 cm–1 and 1120 cm–1 are anti-correlated 

with features around 780 cm–1, 800 cm–1, 1160 cm–1 and 1220 cm–1, which are associated to 

quartz. Comparing the PC1 loadings to the averaged spectrum of Sample 1, the features located 

around 1015 cm–1 and 1120 cm–1 have the same sign in both spectra. Similarly, the features 

associated to quartz are inverted compared to the mean. Comparing the PC1 loadings to the mean 

spectrum of Sample 11 that has the highest quartz to clay ratio, the features located around 



DOI: 10.1177/0003702820906489 

1015 cm–1 and 1120 cm–1 are weak while the features associated to quartz in both spectra are 

anti-correlated. This pattern exhibited negative scores for the high Q/C ratio samples in the PCA 

scores plot of Figure 4. This result agrees with the QXRD results in Table I. Samples with 

positive PC1 scores contain a low quartz to clay ratio while samples with negative PC1 scores 

contain a high quartz to clay ratio. Moreover, the observed dispersion of the score data points on 

the negative side of PC1 can be attributed to spectral variability induced by the large grain size 

distribution in the high Q/C content samples. Inversely, the scores of the high Q/C samples are 

less dispersed in the score plot of Figure 4 because these samples are made mostly of 

homogeneous fines, thanks to the high clay content. 

 

 

Figure 5. Loadings of PC1, as well as the first derivative averaged spectra of Samples 1 and 11. 

 Quantification of quartz and total clay content has been performed using a partial least 

squares (PLS) regression. The PLS regression creates a model linking spectral features to 

mineralogical content. Five averaged spectra of each sample were used for the quantification in 

order to assess the precision. The spectra were preprocessed and scaled using Savitzky–Golay 

derivative and unit variance before building the PLS model. Cross-validation of the model was 

performed with the venetian blind method18 and three samples (15 averaged spectra) were used 

as a test set to evaluate the prediction error. The sample #4 was removed from the calibration set 

of quartz PLS model. This sample was classified as an outlier because it displayed a value 

outside the Hotelling’s ellipse representing a 95% confidence level for the given PLS model. 
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PLS regression validation results between QXRD and mid-IR predictions are shown in Figure 6. 

The model was developed for quartz content and total clay content using four and five latent 

variables respectively. The root mean square errors of cross-validation (RMSECV) were 3.5% 

and 3.3% for the quartz content and the total clay content respectively. The root mean square 

errors of prediction test (RMSEP) were 2.1% and 2.6% for the quartz content and the total clay 

content respectively. The averaged standard deviations within five measurements were 1.8% and 

1.1% for the quartz and the total clay contents respectively. This new approach using a tunable 

ECQCL source shows a good predictive capability for mineral abundance. However, more 

samples with a larger variability of quartz and total clay contents are needed. This would 

improve the quantitative prediction of the technique. The use of such a laser-based approach 

provides a larger signal to noise ratio thanks to the optical power density of the laser source and 

offers the capability to do measurements at standoff distances. These conditions are critical for 
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on-line applications. 

 

 

Figure 6. Comparison of (a) quartz content and (b) total clay content to values predicted 

from mid-IR data. Dashed line represents 1:1 parity between reference and predicted values. 

Error bars represent the standard deviation within the five measurements. 
  

 

Conclusion 

The objective of this work was to assess the feasibility of using a tunable ECQCL as a mid–

infrared source for mid-IR reflectance spectroscopy of bitumen-free oil sands, and to predict the 

abundance of quartz and clays in the samples. Results show good correlations with QXRD 

measurements. The use of a mid-infrared laser-based technique may enable measurements of oil 
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sands for applications where standoff working distances are necessary such as on-line 

monitoring. This study is a starting point for developing a real-time technique for the 

determination of the major mineral contents in oil sands feedstock to monitor and optimize the 

bitumen recovery process.  
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