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We report muon spin rotation ��SR� measurements of single-crystal Ba�Fe1−xCox�2As2 and

Sr�Fe1−xCox�2As2. From measurements of the magnetic field penetration depth � we find that for optimally and

overdoped samples, 1 /��T→0�2 varies monotonically with the superconducting transition temperature TC.

Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating

that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing

doping but is present for all Co concentrations studied.

DOI: 10.1103/PhysRevB.82.094512 PACS number�s�: 76.75.�i, 74.70.Xa, 74.25.N�

I. INTRODUCTION

Of the various families of iron-pnictide superconductors,

the so-called 122 family has been extensively studied due to

their high TC’s and the ability to grow single crystals. This

family includes BaFe2As2 and SrFe2As2. Unlike the cuprates,

these materials are quite robust against in-plane disorder,

brought about by electron doping for Fe atoms either by Co,

Ni or other transition metals. The transition temperatures re-

main fairly high for these substitutions, with TC=22 K for

Ba�Fe0.926Co0.074�2As2,1,2 20.5 K for Ba�Fe0.952Ni0.048�2As2,3

23 K for Ba�Fe0.9Pt0.1�2As2,4 14 K for

Ba�Fe0.961Rh0.039�2As2,5 19.5 K for Sr�Fe0.8Co0.2�2As2,6 and

9.5 K for Sr�Fe0.925Ni0.075�2As2.7

Measurements of the penetration depth and superfluid

density have attempted to address the nature of the supercon-

ducting gap symmetry. NMR has shown the lack of a coher-

ence peak,8,9 indicative of unconventional pairing. Similarly,

tunnel-diode resonator measurements in Ba�Fe1−xCox�2As2

also show power-law temperature dependences for the pen-

etration depth,10,11 which are interpreted in terms of gap

nodes. Other measurements see a constant superfluid density

at low temperatures,12,13 indicating an s-wave gap. Likewise,

the possibility of multiband superconductivity in the pnic-

tides has also been studied by analyzing the temperature de-

pendence of the superfluid density.14,15

II. EXPERIMENTAL

Muon spin rotation ��SR� is a powerful local microscopic

tool for characterizing the magnetic properties of materials,

in superconducting or other states. A thorough description of

the application of �SR to studies of superconductivity can be

found elsewhere.16 In a transverse-field �TF� �SR experi-

ment, spin-polarized positive muons are implanted one at a
time into a sample. Each muon spin precesses around the
local magnetic field until the muon decays into a positron,
which is preferentially ejected along the direction of the
muon spin at the time of decay �as well as two neutrinos

which are not detected�. In the presence of a vortex lattice,

the spatial variation in the magnetic field distribution results

in a dephasing of the muon spin polarization and a relaxation

of the precession signal. A Fourier transform of the spin-

polarization function essentially reveals the field distribution

which exhibits a characteristic Abrikosov line shape. The

line shape �or equivalently the relaxation function in the time

domain� depends on the lattice geometry, magnetic field pen-

etration depth �, coherence length, �, and the amount of

lattice disorder. As a result, careful analysis of the relaxation

function allows these microscopic parameters to be deter-

mined in the vortex state. Such measurements demonstrated

the presence of gap nodes characteristic of d-wave pairing in

high-quality single crystals of YBa2Cu3O6.97.
16 In ceramic

samples this anisotropic lineshape is generally not observed,

rather the broadened line is generally well described by a

Gaussian distribution; however, the width of this distribution

�the Gaussian relaxation rate� � has been shown to be pro-

portional to the superfluid density divided by the effective

mass ��ns /m��1 /�2.17,18 Previous studies of cuprates

found that extrinsic effects in ceramics can result in the cor-

rect temperature dependence of the superfluid density being

masked; for this reason, reliable measurements of the super-

fluid density require the use of single crystals and the obser-

vation of an anisotropic line shape characteristic of a vortex

lattice.

High-quality single crystals of Ba�Fe1−xCox�2As2 with x

=0.061, 0.074, 0.107, and 0.114 were grown at Ames from

self flux as described in detail elsewhere.2 Some measure-
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ments of the x=0.074 sample were reported previously.14 A

single crystal of Sr�Fe1−xCox�2As2 with x=0.13 was grown at

Maryland, also from self-flux.19 The crystals, each of roughly

1 cm2 area, were mounted in a helium gas flow cryostat on

the M20 surface muon beamline at TRIUMF, using a low

background arrangement such that only positrons originating

from muons landing in the specimens were collected in the

experimental spectra. Zero-field �SR measurements of each

sample confirmed that no magnetic order or spin freezing

was present in any of the samples.

III. PENETRATION DEPTH

Fourier transforms of the TF-�SR spectra �a representa-

tive set are shown in Fig. 1� exhibit the anisotropic line

shape characteristic of an Abrikosov lattice, indicating the

presence of a least locally well-ordered vortices in the super-

conducting state. All of the Fourier transform line shapes are

consistent with a triangular vortex lattice; for example, a

square lattice would have the frequency corresponding to the

most likely field �the peak of the line shape� much more

separated from the minimum field in the field distribution.

We analyzed the data by fitting the spectra to an analytical

Ginzburg-Landau model which allows us to calculate theo-

retical �SR time spectra as a function of the vortex lattice

geometry, magnetic field penetration depth ���, and coher-

ence length ���. We included the effects of vortex lattice

disorder in our analysis via an additional Gaussian broaden-

ing of our �SR spectrum,17,20 where we assumed that this

broadening was proportional to 1 /�2 as observed in previous

studies of cuprates and other high-� superconductors.16 The

errors quoted in various fit parameters included the correla-

tions between the various parameters. The fit parameters

were fairly weakly correlated since the effect of each param-

eter on the relaxation function is reasonably unique: the pen-

etration depth affects the overall linewidth, the coherence

length affects the high field cutoff while disorder gives an

overall broadening of the various van Hove singularities in

the line shape. Consistent with our previous measurements of

Ba�Fe0.926Co0.074�2As2,14 we found that the rms deviation of

the vortex positions ��s2�1/2� relative to the vortex separation

was greatest in lower fields �up to 30% in 0.02 T at low

temperature� and smallest at the highest fields �about 2% in

0.1 T� and decreased with increasing temperature. The disor-

der was greatest for the samples with the highest TC.

Results of this analysis for 1 /�2 are shown in Fig. 2 for

applied fields of 0.1 and 0.02 T. In conventional weak-

coupling BCS theory, the low-temperature behavior of 1 /�2

should be exponentially flat while the presence of gap nodes

would be reflected in low-temperature power-law behavior.

We see in Fig. 2 that the low-temperature behavior varies

more rapidly than standard BCS predictions and also note

that recent specific-heat measurements have observed the

possibility of gap nodes.21 Following our earlier work on the

Ba�Fe0.926Co0.074�2As2 �Ref. 14� we fit the superfluid density

to a phenomenological two-gap model22,23 which has been

employed in previous �SR studies of LaFeAs�O,F�, Ca�F-

e,Co�AsO, and �Ba,K�Fe2As2,24

ns�T� = ns�0� − w · 	ns�
1,T� − �1 − w� · 	ns�
2,T� , �1�

where w is the relative weight for the first gap, 
1. Here, the

gap functions are given by
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FIG. 1. �Color online� Fourier transforms of TF-�SR spectra for

Ba�Fe1−xCox�2As2, showing anisotropic line shapes characteristic of

an Abrikosov vortex lattice.
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FIG. 2. �Color online� Measured 1 /�2 for Ba�Fe1−xCox�2As2 and

Sr�Fe1−xCox�2As2 measured in TF=0.02 T �filled symbols� and 0.1

T �open symbols�.
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	n�
,T� =
2ns�0�

kBT
�

0

�

f��,T��1 − f��,T��d� , �2�

where f�� ,T� is the Fermi distribution given by

f��,T� = �1 + e
��2+
�T�2

/kBT�−1. �3�

Here, 
i �i=1 and 2� are the energy gaps at T=0, and 
i�T�
were taken to follow the standard weak-coupled BCS tem-

perature dependence. This model reduces to a single-gap

BCS model when w=1. The size of the gaps, 
1 and 
2, and

TC were fit globally, while ns�0� and the weighting factor, w,

were allowed to be field-dependent. The fit values of 1 /�2

are shown by the fit lines on Fig. 2. We see that this two gap

model fits the observed temperature dependence of 1 /�2 for

each of the samples and fields measured. Single gap fits did

not give satisfactory results �when the BCS gap function was

used�. For most of the samples we obtained the larger gap

value 2
 /kBTc	3.7 which is close to the weak coupled BCS

value of 3.5. For the Sr�Fe0.87Co0.13�2As2 the larger gap was

2
 /kBTc	2.7, less than the BCS value. For the

Ba�Fe1−xCox�2As2 samples with x=0.107 and 0.114 most of

the weight was on the smaller gap. The results for these three

samples give a stronger low-temperature dependence to the

superfluid density than for a single-gap weak-coupled BCS

system, as can be seen on Fig. 2. This steeper temperature

dependence may possibly reflect a non-s-wave gap as has

been interpreted by tunnel diode resonator

measurements.10,11 We do not have enough data points, espe-

cially at temperatures below 2 K, to make a definitive state-

ment regarding the presence of gap nodes. We are able, how-

ever, to reliably extrapolate the superfluid density to obtain a

good estimate of the magnitude of 1 /�2�T→0�. Examining

the behavior of 1 /�2 for the different samples in Fig. 2 we

see that there is considerable variation in 1 /�2�T→0�. Over

the range of dopings and fields studied, the value of

1 /�2�T→0� varies from 5 �m−2 to nearly 30 �m−2, more

than half an order of magnitude.

There is considerable field dependence in 1 /�2�T→0� for

the Ba�Fe1−xCox�2As2 samples with x=0.061 and x=0.074

which is essentially absent for the higher doped samples with

the smaller superfluid density. We first noted this large field

dependence in our study of Ba�Fe0.926Co0.074�2As2;14 subse-

quent studies on other pnictides have seen similar behavior.25

The field dependence in the density of states in a multiband

superconductor has been calculated by Ichioka et al.26 who

noted that a strong field dependence is expected for fields on

the order of the smaller gap size. Results of previous �SR

measurements of a variety of multigap superconductors are

described in Ref. 16. In those materials �such as NbSe2� the

origin of the field dependence is the loosely bound core

states associated with the smaller gap. With increasing field

these states become more delocalized and affect the field

distribution seen by the muon ensemble. The field depen-

dence we observe in this study is larger than we would ex-

pect to be due to the smaller gap 
2 and may possibly indi-

cate that an anisotropic gap �perhaps with nodes� might be

more appropriate for the smaller gap than the uniform gap

model used to fit the temperature dependence of the super-

fluid density. We note that different gap symmetries on dif-
ferent parts of the Fermi surface might resolve the apparent

discrepancies between different techniques that probe the

normal state carrier concentration �e.g., tunnel diode oscilla-

tor, microwave� and superfluid carrier concentrations ��SR�.
To estimate the zero applied field values of �0 we have per-

formed a linear extrapolation of the fit values of 1 /�0
2 mea-

sured in 0.02 and 0.1 T and included the resulting �0�B
→0� values in Table I.

Figure 3 shows the extrapolated values of 1 /�2�T→0�
and the fit values of TC as a function of the level of Co

doping x for Ba�Fe1−xCox�2As2 and Sr�Fe1−xCox�2As2. We

see that above x=0.06 in Ba�Fe1−xCox�2As2 the supercon-

ducting TC decreases with increasing Co substitution, in

agreement with previous work. Additionally, the TC for

Sr�Fe1−xCox�2As2 does not lie on the same curve as for the

Ba�Fe1−xCox�2As2 family; the location of the superconduct-

ing phase dome within the phase diagram is different for the

two families. The lower panel of Fig. 3 shows the evolution

of the extrapolated 1 /�2�T→0�. Within the

Ba�Fe1−xCox�2As2 family, there is a monotonic decrease in

1 /�2�T→0� and again, the point for Sr�Fe1−xCox�2As2 does

not lie on the same curve.

Muon spin rotation measurements on a wide variety of

cuprate and other exotic superconductors have revealed a

TABLE I. Results of fitting 1 /�2�T� to Eq. �1� for TC�K�,
�0�nm� in fields of 0.02 and 0.1 T. Also shown are values of �0�nm�
extrapolated to zero field.

TC �0�0.02T� �0�0.1T� �0�B=0�

Ba�Fe0.939Co0.061�2As2 23.6 189.4
1.1 240.5
2.0 182.6
1.4

Ba�Fe0.926Co0.074�2As2 22.1 224.2
0.6 277.4
1.0 216.8
0.7

Ba�Fe0.899Co0.101�2As2 14.1 332.2
2.2 348.3
4.6 329.3
3.4

Ba�Fe0.89Co0.11�2As2 10.3 453.8
2.6 448.0
2.4 454.9
3.6

Sr�Fe0.87Co0.13�2As2 16.2 325.5
0.5 339.8
0.6 322.8
0.7
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FIG. 3. �Color online� Superconducting TC’s and 1 /�2�T→0�
for Ba�Fe1−xCox�2As2 and Sr�Fe1−xCox�2As2 as a function of Co

concentration x, measured in TF=0.02 T and 0.1 T, and extrapo-

lated to B=0. The open points and dashed lines are the measured

TC’s and the superconducting dome taken from Ref. 2 for

Ba�Fe,Co�2As2 and Refs. 7 and 27 for Sr�Fe,Co�2As2.
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strong, roughly linear correlation between the superconduct-
ing transition temperature and the extrapolated zero-
temperature superfluid density divided by the effective
mass.28 This relation is not expected in standard BCS theory,
implying that a different mechanism is responsible for
superconductivity in these systems. We plot our fit values of
TC vs 1 /�2�T→0� in Fig. 4 for Ba�Fe1−xCox�2As2 and
Sr�Fe0.87Co0.13As2�2. In contrast to the plots on Fig. 3, the

points for all of the samples lie close to common curves for

both 20 and 100 mT. We see that in single crystals of

Ba�Fe1−xCox�2As2 and Sr�Fe1−xCox�2As2, the superconduct-

ing TC is apparently determined by the carrier density di-

vided by the effective mass.

Specific-heat measurements29 of the superconducting

transition found that the specific heat jump at TC divided by

TC was correlated with TC as 
CP /Tc�Tc
2. Our results for

1 /��T→0�2 are shown, along with specific-heat jump for

Sr�Fe0.87Co0.13�2As2 and the results of Bud’ko et al.29 in Fig.

5. In agreement with the specific heat, we find that 1 /��T
→0�2 can be well described by a straight line with slope n

	2 as indicated by the dashed line. The common variation in

the superfluid density30 and the specific-heat jump 
CP /Tc

and TC,31 as a function of carrier doping was first noted in

overdoped Tl2Ba2CuO6+	 cuprates.32 The present case of the

FeAs superconductors, shown in Fig. 5, exhibits commonali-

ties to the cuprates in this regard.

There are two contributions to the measured penetration

depth with chemical substitution. First, doping changes the

carrier concentration which directly changes the London

penetration depth �L via 1 /�L
2 �ns /m�. If a system is in the

dirty limit, the measured penetration depth is actually an ef-

fective penetration depth �ef f =�L�1+�0 / l�1/2, where �0 is the

coherence length and l is the mean-free path.33 The upper

critical field is quite large in these systems, taking Hc2

	50 T gives an estimate of �0=2.5 nm. In order to estimate

the mean-free path, a reasonable value of the Fermi velocity

is needed. Due to the unclear situation of the nature of the

Fermi surface in the pnictides, an estimate of the pair-

breaking effect is unlikely to be accurate. Optical conductiv-

ity measurements have directly detected the opening of the

superconducting gap in Ba�Fe1−xCox�2As2 with x=0.1,34 x

=0.07,35 and x=0.065.36 Broadening of the normal-state

zero-frequency Drude conductivity indicates the presence of

significant normal-state scattering. Some authors have ar-

gued that strong pair breaking can account for a number of

effects, including the specific-heat jump at TC and the behav-

ior of dHc2 /dT.37 Assuming strong pair breaking, Kogan38

has found that 1 /��0��TC, in agreement with our results in

Fig. 5. However, the existence of such strong pair breaking is

not yet proven. Although scattering is clearly present in these

systems, it is unlikely that reasonably modest changes in the

dopant concentration �of a few percent� could cause such a

dramatic change in the scattering so as to dominate the pen-

etration depth and as such, substantial changes in the super-

fluid density are apparently occurring with chemical substi-

tution.

Hall-effect measurements show that the normal-state car-

rier concentration increases monotonically with increased

chemical substitution.39 If in fact the superfluid density de-

creases with increasing doping above the maximum TC, then

this implies that not all of the carriers join the condensate

below TC. This segregation into superconducting and normal

fluids could be in reciprocal space, if superconductivity oc-

curs on only some parts of the Fermi surface. This could also

occur in real space with phase separation into normal and

superconducting regions. Previous �SR measurements of

overdoped Tl2Ba2CuO6+	 �Refs. 30 and 40� exhibited similar

behavior with increased normal state doping and a loss of

superconducting carrier density. Real-space phase separation

has been seen in other �SR measurements of both hole-41,42

and electron-doped43 pnictide superconductors.

Phase separation �either in real space or reciprocal space�
should leave a residual normal fluid whose spectral weight

should increase with Co substitution and which should be

apparent in measurements of optical conductivity. Recent op-

tical measurements by Gorshunov et al., in

Ba�Fe1−xCox�2As2 with x=0.1 do in fact show appreciable

residual conductivity well within the superconducting state

which may be evidence of this residual normal fluid.34 Ad-
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ditional measurements at low frequencies for a range of dop-

ing are needed to further test this hypothesis. Gofryk et al.44

reported specific-heat measurements of Ba�Fe1−xCox�2As2 for

a range of Co concentrations. They found a substantial nor-

mal fluid response �residual linear specific-heat contribution�
which increased with Co concentration for x�0.08.

Our �SR results in Co-substituted BaFe2As2 and

SrFe2As2 indicate that the vortex lattice exists throughout the

samples which indicates that any phase separation is either in

real space with a characteristic length scale much less than

the penetration depth �perhaps the coherence length� or in

reciprocal space. A model for real-space phase separation for

overdoped cuprates has been discussed in Ref. 45. If the

phase separation occurs in momentum space, it could origi-

nate perhaps from only some of the multiple bands in these

systems participating in the pairing. Angle-resolved photo-

emission measurements46 have shown that above x	0.08

overdoped electrons fill the hole Fermi surface at the Bril-

louin zone center, resulting in a loss of interband scattering.

If this scattering is responsible for pairing, then the loss of

the hole states with substitution could reduce the superfluid

density, even though the normal state carrier concentration

increases with doping.

IV. PARAMAGNETIC FREQUENCY SHIFT

When fitting the �SR time spectra to our analytical

Ginzburg-Landau model, one of the fitted parameters is the

average muon precession frequency ��. In the normal state,

this precession frequency is given by ��= �1+K����Bext,

where Bext is the externally applied magnetic field, �� is the

muon gyromagnetic ratio, and K� is the Knight shift. In the

superconducting state the muon precession frequency is gen-

erally slightly reduced from the normal state value due to

flux expulsion; for thin platelike samples this reduction is

generally quite small due to the demagnetizing factor. We

show the fitted values of the fractional shift in the precession

frequency relative to its normal state value ��N in Fig. 6. We

see that except for a negative shift right below TC for some

samples due to bulk screening, all samples have increasing

frequency shifts with decreasing temperature in the super-

conducting state. A similar positive frequency shift has also

been reported by Khasanov et al.47 in SrFe1.75Co0.25As2. A

positive value of �� /��N−1 indicates that the field at the

muon site is actually greater than the applied field. Since

bulk screening can only contribute a negative frequency

shift, we need to find a different explanation for our observed

positive shifts.

The fractional shift within the superconducting state is

considerably larger in the 0.02 T data than in the 0.1 T runs

as shown in Fig. 6. In fact, the absolute value of the shifts

���−��N� is roughly the same for the two fields. The shifts

are also largest for the samples with the highest TC and high-

est superfluid density ns /m��1 /�2. Previous �SR studies of

the electron-doped cuprate superconductor Pr2−xCexCuO4

also exhibited a positive frequency shift below TC which was

interpreted as evidence of field-induced magnetism.48 In that

case, the absolute shift decreased with increasing field �not

just the fractional shift�, indicating that the induced fields

were perpendicular to the applied field. In the present case,

the fact that the absolute shift is roughly field-independent

indicates that the induced moments must be parallel to the

applied field and have a ferromagnetic character �antiferro-

magnetic fields would split the precession line, rather than

shift it�. We note that these field-induced ferromagnetic fields

would not be apparent in bulk susceptibility measurements,

since they would be screened by supercurrents on the surface

of the sample. In each sample the paramagnetic frequency

shift sets in at the superconducting TC of each particular

sample, implying that it is a property of the superconducting

state. One possible source of such a field could be a spin

triplet pair state, where the Cooper pairs possess a nonzero

angular momentum. However, other explanations are also

possible and further experiments will be required to deter-

mine the microscopic origin of these internal fields.

V. CONCLUSIONS

We have measured the London penetration depth in single

crystals of Ba�Fe1−xCox�2As2 �with x�0.061�and

Sr�Fe0.87Co0.13�2As2 using muon spin rotation. The tempera-

ture dependence of 1 /�2 can be fit by a two-band model,

where the gaps follow the BCS temperature dependence. In

the more highly doped samples we find that dominant gap

magnitude is considerably smaller than the weak-coupled

BCS result, implying that the gap must be highly anisotropic

and could possess nodes in this doping regime. Our results

demonstrate that 1 /�2�T→0� varies roughly quadratically

with the superconducting transition temperature TC. We find

that the superfluid density divided by the effective mass

ns /m��1 /�s decreases as normal state charge carriers are

added. This implies that a form of electronic phase separa-

tion �either in real or reciprocal space� occurs in these sys-

tems. We observe a paramagnetic frequency shift in all speci-

mens below TC, the magnitude of which is roughly

independent of field but decreases with increasing doping.
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FIG. 6. �Color online� Fractional shift of muon precession fre-

quency �� /��N−1 relative to the normal state frequency ��N. Su-

perconducting transition temperatures indicated by triangle

symbols.
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