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SUMMARY

This paper proposes a new immersed boundary (IB) method for solving fluid flow problems in the presence
of rigid objects which are not represented by the mesh. Solving the flow around objects with complex
shapes may involve extensive meshing work that has to be repeated each time a change in the geometry is
needed. Important benefit would be reached if we are able to solve the flow without the need of generating
a mesh that fits the shape of the immersed objects. This work presents a finite element IB method using a
discretization covering the entire domain of interest, including the volume occupied by immersed objects,
and which produces solutions of the flow satisfying accurately the boundary conditions at the surface
of immersed bodies. In other words the finite element solution represents accurately the presence of
immersed bodies while the mesh does not. This is done by including additional degrees of freedom on
interface cut elements which are then eliminated at element level. The boundary of immersed objects is
defined using a level set function. Solutions are shown for various flow problems and the accuracy of
the present approach is measured with respect to solutions obtained on body-fitted meshes. Copyright c©
2010 Crown in the right of Canada.
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1. INTRODUCTION

The numerical solution of partial differential equations describing the fluid flow is usually done by

performing spatial and temporal discretization. While the temporal discretization has only to deal

with a first-order derivative that can be easily discretized, the spatial representation must take into

account for the boundaries of the computational domain and then make use of a discrete representa-

tion via meshing. Most flow solvers are based on body-conforming grids (i.e. the external boundary

and surfaces of immersed bodies are represented by the mesh faces), but there is an increased

interest in solution algorithms for non-body-conforming grids. Such methods are presented under a

variety of names: immersed boundary (IB), immersed interface, embedded mesh, fictitious domain,

all having in common the fact that the spatial discretization is done over a single domain containing

both fluid and solid regions and where mesh points are not necessarily located on the fluid–solid

interface. For simplicity, we will use in the present work the IB term to identify a non-body-fitted

method. IB methods have the main advantage of avoiding costly and sometimes extremely diffi-

cult meshing work on body-fitted geometries. Generally, a regular parallelepiped is meshed with
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in the online and print versions to indicate that both have been corrected [11 February 2010].
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an uniform grid. The IB method can also result in important algorithmic simplifications when

immersed moving bodies are considered. One important drawback of such a method is that the

boundary that has an important influence on the solution is also a place where distorted elements

may be found once regular mesh elements are cut by the solid boundary. The imposition of the

boundary conditions on the IB is also a point of concern as it is either costly in both computational

time and memory if mesh nodes are added/removed dynamically or it is a possible source of errors

if imposed approximately on the closest grid nodes.

The IB method was initially introduced by Peskin [1] for finite differences applied to fluid–

structure interactions. The method received particular attention in recent years and his application

goes from flow in the presence of heart devices [1, 2] to interaction of body movement and fluid

flow [3], modeling anguilliform swimming [4] and 3-D parachute simulation [5]. In the original IB

method, the structure is considered as a region embedded into the fluid and where additional source

terms are imposed in such a way as to take into account for the force applied by the structure to the

fluid. A review of the developments of the IB method can be found in [3]. Two classes of methods

are discussed depending on how the source terms describing the presence of the boundary are

imposed: directly in the continuous equations describing the flow (continuous forcing approach)

or in the resulting system of linear equations (discrete forcing approach). A study on the behavior

of an IB method in unsteady flows over sharp-edged bodies is presented in [6]. Special emphasis

is put on how the no-slip boundary condition at the fictitious boundary wall is recovered in the

startup flow.

A finite element implementation of the IB method which makes use of a Dirac function to

impose the interaction force at the fluid–structure interface was presented by Boffi and Gastaldi [7].
A discussion on the stability of the space–time discretization can be found in [8]. Zhang et al. [9]
present the immersed finite element method for the solution of fluid–structure interactions with

deformable solids. In their method, a Lagrangian solid mesh moves on top of a background Eulerian

fluid mesh which spans over the entire computational domain and a discretized delta function is

used to describe the coupling between the fluid and solid domains.

Glowinski et al. [10] proposed a Lagrange multiplier-based fictitious domain method which was

further extended to obtain finite element solutions around moving rigid bodies using meshes which

are not boundary fitted [11]. The method consists of filling the moving bodies by the surrounding

fluid and impose rigid body motions to the fluid occupying the regions originally occupied by

the rigid bodies. The rigid body motion constraint is then relaxed by using distributed Lagrange

multipliers and a flow problem over the entire domain is solved.

Löhner et al. [12] present an IB method implemented inside an edge-based finite element solver.

The embedded surfaces are represented by a triangulation, while immersed bodies are given by a

tetrahedral mesh independent of the computational mesh. A discussion on first- and higher-order

treatment for imposing kinematic conditions on the surface of the immersed bodies is made. For

first-order schemes the elements cut by the immersed surface are deactivated and special ‘boundary

contributions’ are added to account for the presence of the boundary. A higher-order treatment of

the embedded surfaces may be achieved by using ghost points or mirrored points to compute the

contribution of elements cut by the boundary. Such a method does not need extensive modification

of the fluid flow solver but on the other hand it requires dynamic structures handling and more

CPU time to perform renumbering/reordering of the degrees of freedom. Various applications are

shown, notably the flow around a shuttle in ascent configuration, the dispersion of a contaminant

cloud in a city and flow past a car. A comparison of body-fitted, embedded and IB techniques

using the same flow solver is presented in [13]. All methods recover the same grid converged

solution and it is observed that there is a need for accurate boundary conditions when the mesh

does not fit on the immersed bodies.

The finite element solution of the flow around immersed objects using a fixed mesh arbitrary

Lagrangian–Eulerian (ALE) approach is presented by Codina et al. [14]. In their work the solid

boundary is represented using a level set function defined on a background fixed mesh, while the

moving boundary is treated by an ALE technique in the region close to the immersed surface.

Boundary conditions on the IB are imposed by a least-squares approximation.

Copyright q 2010 Crown in the right of Canada. Int. J. Numer. Meth. Fluids (2010)
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In this work the flow around immersed bodies is solved using a 3-D finite element IB method.

The solution is interpolated using linear elements and time integration is done by an implicit Euler

scheme. The IB is represented using a level set function. Therefore, the boundary is represented

in the discrete form by the same interpolation functions that are used to solve the flow problem.

Special emphasis is put on the accurate imposition of boundary conditions on the solid boundary.

The proposed approach recovers the accuracy of methods based on the addition of nodes at the

intersection between the mesh edges and the boundary, but without any of the drawbacks of such

methods in terms of increased computational time and dynamic data structure management. The

proposed approach is verified on simple cases against the solution on a body-fitted grid and then

applied to various flow problems. In this paper we consider only problems for which the immersed

bodies are not moving. However, the procedure of imposing the boundary solution on the interface

is general and the extension to moving immersed solids will be the subject of future work.

The paper is organized as follows. First the model problem and the associated finite element

formulation are presented. The IB formulation is discussed in Section 3 and the procedure to

impose the boundary conditions is detailed. Section 4 illustrates the performance of the present

IB method for a selection of 2-D and 3-D test problems. The paper ends with conclusions.

2. THE MODEL PROBLEM

We consider the incompressible fluid flow problem on a bounded computational domain � formed

by the fluid region �f and the solid volume �s as shown in Figure 1. The immersed interface

�i=��f∩��s represents a boundary for the fluid flow and therefore exerts a force on the fluid

contained in �f.

2.1. Model equations and boundary conditions

The equations of motion are the incompressible Navier–Stokes equations:

�

(

�u

�t
+u ·∇u

)

=−∇ p+∇·[�(∇u+(∇u)T)]+ f , (1)

∇ ·u=0, (2)

where � is the density, u the velocity vector, p the pressure, � the dynamic viscosity and f a

volumetric force vector. The interface �i between the fluid and solid regions is specified using a

level set function � which is defined as a signed distance function from the immersed interface:

�(x)=

⎧

⎪

⎨

⎪

⎩

d(x, xi), x in the fluid region,

0, x on the fluid/solid interface,

−d(x, xi), x in the solid region,

(3)

Figure 1. Computational domain formed by fluid region �f and solid region �s.
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where d(x, xi) is the distance between the point P(x) and the fluid/solid interface. Hence, points

in the fluid region will take on positive values of �, whereas � for points in the solid region will

be negative. The definition of the level set function may be more complicated for complex 3-D

geometries. In such a case we may consider that the IB surface is provided in the form of a CAD

file from which we generate a surface mesh with a mesh size sufficiently small to have a correct

representation of the surface. Then, the level set function is simply computed from the shortest

distance between the nodes of the 3-D mesh and those of the surface mesh.

The boundary conditions associated with the momentum–continuity equations are

u=UD(x), for x∈�D, (4)

�(∇u+∇uT)· n̂− pn̂= t(x), for x∈�t , (5)

where �D is the portion of the fluid boundary ��f where Dirichlet conditions are imposed, and t is

the traction imposed on the remaining fluid boundary �t =��f\�D. Dirichlet boundary conditions

are imposed at the interface between the fluid and solid regions, i.e. �i⊂�D. Because �i is not

represented by the finite element discretization, a special procedure is used to enforce velocity

boundary conditions on this surface. This approach will be described in details in Section 3.

2.2. The finite element formulation

In this work we discretize both velocity and pressure using linear continuous interpolants. It is well

known that the P1-P1 element used in conjunction with the Galerkin finite element formulation

produces spurious oscillations and some form of stabilization is needed. We use the Galerkin

least-squares (GLS) method that leads to the following weak formulation:
∫

�

�

(

�u

�t
+u ·∇u

)

Nu
i d�+

∫

�

�(∇u+∇uT)·∇Nu
i d�−

∫

�

p∇Nu
i d�−

∫

�

f Nu
i d�

+
∑

K

∫

�K

{

�

(

�u

�t
+u ·∇u

)

+∇ p−∇·[�(∇u+∇uT)]− f

}

�u ·∇Nu
i d�K=

∫

�t

tNu
i d�, (6)

∫

�

∇ ·uN
p
i d�+

∑

K

∫

�K

{

�

(

�u

�t
+u ·∇u

)

+∇ p−∇·[�(∇u+∇uT)]− f

}

�∇N
p
i d�K =0, (7)

where Nu
i , N

p

i are continuous, piecewise linear test functions associated with the velocity and

pressure equations. The first four integrals in the right-hand side of Equation (6) and the first

integral in Equation (7) correspond to the Galerkin formulation whereas the integrals over the

elements interior are the GLS stabilization terms. The stabilization parameter � is computed as

from Reference [15, 16]:

�=

⎡

⎣

(

2�|u|

hK

)2

+

(

4�

mkh
2
K

)2
⎤

⎦

−1/2

(8)

Here hK is the size of the element K and mk is a coefficient set to 1
3
for linear elements

(see [15, 17]).
The velocity (u,v,w) and pressure p are discretized as

u≈uh =
∑

j=1,Nn

u jN
u
j (x), (9)

v≈vh =
∑

j=1,Nn

v jN
u
j (x), (10)

w≈wh =
∑

j=1,Nn

w jN
u
j (x), (11)

p≈ ph =
∑

j=1,Nn

p jN
p

j (x), (12)
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where Nu
j , N

p
j are nodal shape functions that, in the present case, are the same as the test functions

and Nn is the number of nodes in the mesh.

To alleviate the writing we regroup the four nodal unknowns into the vector s j=(u j ,v j ,w j , p j )
T=

(u j , p j )
T. Using this notation Equations (6) and (7) lead to the following system of

equations:

∑

j=1,Nn

Aijs j = bi for i =1,Nn, (13)

Aij=

(

Auu
ij A

up
ij

A
pu
ij A

pp
ij

)

, s j =

(

u j

p j

)

, bi =

(

bui

b
p
i

)

, (14)

whose unknowns are the nodal values of the velocity and pressure.

3. THE IB METHOD

In the present work we discretize the entire domain �=�f∪�s, but a special treatment is applied

when solving for nodes in the solid region. The mesh is intersected by the interface �i at points

located along element edges and we consider those points as additional degrees of freedom in

the finite element formulation. In Figure 2 the mesh is shown by the black continuous lines, the

interface is indicated by the discontinuous line and the additional interface nodes are indicated

by the filled square symbols. The proposed technique was implemented for 3-D meshes but for

the ease of the presentation only a 2-D case is illustrated in Figure 2. The fluid/solid interface is

defined by a level set function and therefore the additional nodes are easily determined as being

those for which �=0. Moreover, because the level set function is interpolated using linear shape

functions, the intersection between �i and a tetrahedral element is a plane, either a triangle or a

quadrilateral (some exceptions are cases in which the interface intersects with one or more grid

nodes). Elements cut by �i are therefore decomposed into sub-elements which are either entirely

in the fluid or entirely in the solid regions. The addition of degrees of freedom associated with

the nodes on the interface would normally result in a modification of the global matrix resulting

from the finite element equations. In such a case, the implementation is more challenging and the

increase in computational cost is inherent as dynamic data structures and renumbering are needed.

The present approach does not need the explicit addition of the degrees of freedom associated

with those nodes. The procedure is described in detail in this section.

Eif

Eis

Es

N
f

N

Ns

sf

Ni

Immersed
boundary

Ef
Fluid region

Solid region

Figure 2. Treatment of elements cut by the immersed boundary.
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3.1. Classification of grid nodes and elements

As a first step we introduce a nomenclature that will ease the understanding of the proposed

approach. Mesh nodes are separated depending on their relative location with respect to the IB, as

follows:

• nodes in the fluid region (Nf): identified by the filled circles in Figure 2;

• additional nodes on the interface (Ni): filled squares in Figure 2;

• nodes in the solid region, but connected with nodes in the fluid region (Nsf): open circles in

Figure 2;

• nodes in the solid region which are not connected with nodes in the fluid region (Ns):

gray-filled circles in Figure 2.

Mesh elements are also separated depending on their relative location with respect to the IB:

• elements in the fluid region (Ef);

• elements cut by the IB (Ei). Those elements have nodes in both fluid and solid regions.

However, the addition of nodes on the interface and the decomposition of elements cut by �i

yields to the formation of elements which are either entirely in the fluid region (Eif) or in the

solid region (Eis);

• elements in the solid region (Es).

3.2. Imposition of boundary conditions at the interface

We consider here that the solid embedded in the mesh has a prescribed velocity us. In the present

work only applications for us=0 are considered and therefore the finite element formulation does

not take into account for moving immersed interfaces. Velocity boundary conditions are imposed

as follows:

• the velocity at nodes (Nf) is an unknown of the global system of equations (no boundary

condition), except for nodes located on �D for which a standard Dirichlet boundary condition

is imposed;

• the velocity us is imposed on nodes in the solid, i.e. for nodes (Ns), (Nsf) and (Ni).

By construction the additional nodes (Ni) have a prescribed velocity. Therefore, there are no

additional equations associated with the velocity of those nodes. Only the right-hand side of the

fluid nodes connected to them will change and by these means take into account for the boundary

as being located on �i.

The pressure degrees of freedom are associated with the continuity equations. In order to enforce

mass conservation in the entire fluid region the continuity equations are solved on all fluid elements,

i.e. in (Ef) and (Eif). The continuity equations are not solved in the solid elements (Es) and (Eis)

and the pressure is set to a constant (say zero for simplicity) on solid nodes (Ns). On nodes (Nsf)

a mean pressure from the fluid nodes to which the solid node is connected is determined in order

to improve the visual representation of the solution. Those values are not affecting the solution in

the fluid region.

This approach has the advantage of enforcing mass conservation on the entire fluid region

because the continuity equation is solved inside all (Ef) and (Eif) elements. One drawback is that

it introduces additional pressure degrees of freedom associated with the nodes on the interface

(Ni). These nodal pressures are unknown and should be included in the global system matrix. One

way to avoid this issue is to consider that the pressure discretization is discontinuous on element

faces containing interface nodes. The pressure at a node (Ni) is therefore different on the interface

elements containing the respective node and the additional degree of freedom can be eliminated

by static condensation. Figure 3 illustrates the 2-D case where the interface elements e1 (formed

by the fluid node P f 1 and the solid nodes Ps1, Ps2) and e2 (formed by the fluid nodes P f 1, P f 2

and the solid node Ps2) are decomposed into sub-elements. The pressure on the interface nodes is

different on different elements of the original mesh cut by the interface. In the example shown in

Figure 3 the pressure on the interface node Pi is different when the node is considered inside the

Copyright q 2010 Crown in the right of Canada. Int. J. Numer. Meth. Fluids (2010)
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Pf2 Ps2

Ps1

Eif
e1

1 Eis
e1

2

Eis
e2

3
Eif

e2

Eif
e2

1

2

Pf1

Pi

Eis
3

e1

Discontinuous pressure on interface nodes (Pi):

different values for sub–elements Eif     and Eife1 e2
1 1

Continuous pressure on fluid nodes:

same value for elements e1 and e2

Figure 3. Local enrichment of the pressure discretization on interface elements.

sub-element Eife11 and inside the sub-element Eife21 , respectively. However, the pressure at Pi for

sub-elements Eife21 and Eife22 is the same as both sub-elements are subdivisions of the element e2.

Elementary systems are therefore constructed using the following algorithm:

• Identify elements (Ei) that are cut by the interface. Elements entirely in the solid region do

not contribute to the global system, while elements entirely in the fluid region are computed

as usual, ignoring the presence of the interface;

• Create the additional nodes (Ni) on the interface;

• Decompose interface elements (Ei) into sub-elements which are either entirely in the fluid

region (Eif) or in the solid region (Eis);

• For interface elements, only fluid sub-elements (Eif) contribute to the elementary system. For

each interface element, the sub-element matrices are assembled into an augmented elementary

system that also contains the velocity and pressure degrees of freedom associated with the

interface nodes (Ni);

• The degrees of freedom associated with the interface nodes are eliminated at the element

level by using the Dirichlet boundary conditions for the velocity and by static condensation

for the pressure. The pressure degrees of freedom on interface nodes can also be computed

using the flow solution at the previous iteration.

Hereafter, the elimination of interface degrees of freedom is presented. The contribution of an

interface element including both the fluid and interface nodes can be written as follow:

Aese= be, Ae=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Auu
ff A

up
ff

Auu
fi A

up
fi

A
pu
ff

A
pp

ff
A
pu
fi

A
pp

fi

Auu
if A

up
if

Auu
ii A

up
ii

A
pu
if A

pp

if A
pu
ii A

pp
ii

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, se=

⎛

⎜

⎜

⎜

⎜

⎝

u f

p f

ui

pi

⎞

⎟

⎟

⎟

⎟

⎠

, be=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

buf

b
p
f

bui

b
p

i

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (15)

where indice f denotes degrees of freedom associated with fluid nodes (Nf) and indice i denotes

degrees of freedom associated with interface nodes (Ni). The velocity at interface nodes is known

ui =us and can therefore be eliminated from the unknowns to be determined leading to the

following system:

Aese= be, Ae=

⎛

⎜

⎜

⎜

⎝

Auu
ff A

up
ff

A
up
fi

A
pu
ff

A
pp

ff
A
pp

fi

A
pu
if A

pp

if A
pp
ii

⎞

⎟

⎟

⎟

⎠

, se=

⎛

⎜

⎝

u f

p f

pi

⎞

⎟

⎠
, be=

⎛

⎜

⎜

⎝

buf −Auu
fi us

b
p

f −A
pu
fi

us

b
p
i −A

pu
ii us

⎞

⎟

⎟

⎠

. (16)
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The last remaining step before assembling the elementary system into the global one is the static

condensation of the pressure degrees of freedom pi associated with the interface nodes. Those

degrees of freedom are local on each interface element and therefore can be determined as a

function of the other degrees of freedom of the element:

pi = (A
pp
ii )−1[(b

p
i −A

pu
ii us)−A

pu
if
u f −A

pp

if
p f ] (17)

The resulting equations contain only the degrees of freedom corresponding to the fluid nodes:

Aese = be, Ae=

⎛

⎝

(Auu
ff −A

up
fi (A

pp
ii )−1A

pu
if ) (A

up
ff −A

up
fi (A

pp
ii )−1A

pp

if )

(A
pu
ff

−A
pp

fi
(A

pp
ii )−1A

pu
if

) (A
pp

ff
−A

pp

fi
(A

pp
ii )−1A

pp

if
)

⎞

⎠ ,

se =

(

u f

p f

)

, be=

⎛

⎝

buf −Auu
fi us−A

up
fi

(A
pp
ii )−1(b

p
i −A

pu
ii us)

b
p

f −A
pu
fi
us−A

pp

fi
(A

pp
ii )−1(b

p

i −A
pu
ii us)

⎞

⎠ .

(18)

The following observations can be made with respect to the proposed method:

Remark 1

The velocity and pressure discretization inside interface elements make use of the shape functions

defined on the sub-elements determined by the cutting interface. Therefore, the resulting solution

is similar to the one obtained on a grid having nodes on the fluid/solid interface.

Remark 2

The imposition of the solid velocity is made exactly on the interface nodes, thus resulting in an

accurate representation of boundary conditions at this location.

Remark 3

The continuity equations are solved for elements covering the entire fluid region, including fluid

elements (Ef) and interface/fluid sub-elements (Eif). Therefore, mass conservation is enforced in

the discrete form of the equations.

Remark 4

The pressure on interface nodes is not an unknown of the global system of equations, but it is

determined at element level as function of the solution inside the fluid (see Equation (17)). Note

that the size of the matrix A
pp
ii is given by the number of interface nodes of the respective element,

which means 2 in 2-D and 3 or 4 in 3-D, making the solution of Equation (17) very inexpensive.

The pressure interpolation is continuous except for the element faces cut by the interface where it

is discontinuous. The procedure results in the local enrichment of the pressure discretization. For

other pressure enrichment techniques resulting in local discontinuous pressure interpolations, the

reader may consult the work of Minev et al. [18] for two-fluid flow with surface tension and that

of Coppola-Owen and Codina [19, 20] for two-phase and free surface flows.

Remark 5

The procedure can be seen as a local refinement of the mesh such as to have grid nodes on the

interface between the fluid and solid regions. However, it does not lead to the burden of changing

dynamically the mesh as the additional degrees of freedom are eliminated at element level.

3.3. Decomposition of interface elements for 3-D tetrahedral grids

The sub-elements creation is illustrated in Figure 2 for 2-D triangular elements but the procedure

is general and applications in this work are using 3-D tetrahedral grids. For 3-D elements the

connectivity of sub-elements should be done with care as each triangular face cut by the interface

should be decomposed in the same way for the adjacent tetrahedrons. The intersection between

interface elements and the fluid/solid interface is either a triangle or a quadrilateral. When the

intersection is a triangle the element decomposition yields one tetrahedron on one side and three on

the other side, whereas for a quadrilateral we have three tetrahedrons on each side of the interface.
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Figure 4. Decomposition of interface elements: (a) one or three nodes in the fluid region
and (b) two nodes in the fluid region.

In this section we describe a procedure to perform the subdivision of tetrahedral elements cut

by the interface which is coherent for adjacent elements. In doing so, we will use the number

associated with each node in the mesh, hereafter identified as the nodal global number. The cases

for which the interface is a triangle and a quadrilateral are treated separately.

For an interface element having one node in the fluid region and three in the solid region, we

perform a local renumbering of the nodes such as ‘1’ identifies the fluid node, whereas the solid

nodes are identified by the labels ‘2’,‘3’ and ‘4’. The labels to the three solid nodes are allocated

depending on the global number of each node: ‘2’ is the node with the highest number, ‘3’ is

the node with the lowest number and ‘4’ is the remaining solid node. The intersection between

the element 1234 and the fluid/solid interface is the triangle ABC, where A∈12, B∈13 and

C∈14 (Figure 4(a)). The element is therefore decomposed into four sub-elements as illustrated in

Figure 4(a):

• sub-element 1 (fluid): formed by nodes 1, A, B and C

• sub-element 2 (solid): formed by nodes A, 2, 3 and 4

• sub-element 3 (solid): formed by nodes A, 4, 3 and C

• sub-element 4 (solid): formed by nodes A, 3, B and C

In Figure 4(a) the edges of interface triangles are those connecting interface nodes (identified by

letters) and the additional edges of the sub-elements are those connecting interface nodes to grid

nodes. Visible edges are shown with continuous lines whereas the edges on the background are

shown with discontinuous lines.

In the case where the interface element has three nodes in the fluid region the proce-

dure is similar but the solid node is labeled ‘1’ and the fluid nodes are identified by ‘2’,‘3’

and ‘4’.

For an interface element having two fluid nodes and two solid nodes the local renumbering is

done such as the fluid nodes to be labeled ‘1’, ‘2’ and the solid nodes ‘3’ and ‘4’. Moreover, we

associate the label ‘1’ with the fluid node with the lower global number and similarly the label ‘3’

to the solid node with the lower global number. In this case the intersection between the element

1234 and the fluid/solid interface is the quadrilateral ABCD where A∈13, B∈14, C∈23 and

D∈24 (Figure 4(b)). The element is therefore decomposed into six sub-elements as illustrated in

Figure 4(b):

• sub-element 1 (fluid): formed by nodes 1, 2, C and D

• sub-element 2 (fluid): formed by nodes 1, D, A and B

• sub-element 3 (fluid): formed by nodes 1, C, A and D

• sub-element 4 (solid): formed by nodes 3, B, D and 4

• sub-element 5 (solid): formed by nodes 3, A, C and D

• sub-element 6 (solid): formed by nodes 3, A, D and B
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Figure 5. Decomposition of a triangular face.

This procedure ensures that each element face cut by the interface is decomposed following a

consistent pattern illustrated in Figure 5. If, for example, ‘1’ is a fluid node, ‘2’ and ‘3’ are solid

nodes with ‘2’ being the solid node with the lower global number, then the triangular face 123

is decomposed into the sub-triangles 1Pi2Pi3, Pi22Pi3 and 23Pi3 for both tetrahedral elements

containing the respective face.

Special cases may be encountered when the interface intersects with one or more grid nodes.

In order to avoid treating a large number of exception combinations and to avoid creation of very

small or degenerate sub-elements we proceed to the following correction when grid nodes are too

close to or on the interface:

if |� |<�he then �=

{

�he if ��0,

−�he if �<0,
(19)

where � is a small positive parameter and he is the element size. Computations for this work were

carried out by using �=0.001.

4. APPLICATIONS

4.1. 2-D flow in an obstructed channel

This first test problem represents the flow in an obstructed channel for which experimental data

are available [21]. The geometry, illustrated in Figure 6, consists of a channel of height H which is

partially obstructed by a fence of height S and thickness l located on the lower wall. The flow has

a recirculation zone behind the fence and for high blockage ratios a second recirculation region

is formed at the top wall. The dependence of the reattachment length on the Reynolds number

was investigated experimentally by Carvalho et al. [21] for a fence having l/H =0.1 and three

blockage ratios, S/H =0.25, 0.5 and 0.75.

Computations were first carried out for a blockage ratio S/H =0.75 by using a body-fitted

mesh and also the IB method on a mesh covering the entire channel as if the obstruction would

not be present. The problem is two-dimensional and therefore only a slab was meshed with 3-D

tetrahedral elements. Figure 7 illustrates the two meshes in the region of the top of the obstacle

(y/H =0.75). For the IB mesh, the region of the mesh in the solid region is shown with less

intensity and the mesh was constructed to avoid intersection between interface and mesh nodes.

This way the performance of the procedure to impose boundary conditions in the IB method can

be evaluated. A mesh convergence study was carried out for both body-fitted and IB methods

and it was found that solutions on the final meshes shown in Figure 7 are grid converged. The

Reynolds number used for the simulations is defined based on the obstacle height S and the

inlet mean velocity U as Res = (�US)/�. The u-velocity profile for the solution at Res =82.5 at

various locations along the channel is shown in Figure 8. The IB solution is shown for Mesh 1

having 11 322 nodes and 27 360 elements, for Mesh 2 with 44 530 nodes and 109 584 elements

and for the final refined Mesh 3 having 176 610 nodes and 437 760 elements. The solution on
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Figure 6. 2-D flow in an obstructed channel.

Figure 7. Meshes for the obstructed channel flow at S/H =0.75: (a) body-fitted mesh and (b) IB mesh.

the body-fitted mesh is shown only for the final refined mesh having 159 810 nodes and 395 520

elements. The IB solution changes very little between meshes 2 and 3 thus indicating that the

solution on mesh 3 is grid converged. Remark also that the solution obtained using the IB method

agrees extremely well with the solution on the body-fitted mesh. This indicates that the procedure

of imposing the boundary conditions for the IB method works well. The agreement between the

numerical solutions and experimental data is good at x/S=0, 2 and 8.8. At x/S=5, location that

is very close to the reattachment point, the agreement with the experiment is not as good. The

same behavior was reported for other numerical solutions of the obstructed channel problem [22].
The numerical predictions for the length of the primary recirculation zone agree well with the

experiment as can be seen in Figure 9. The results shown in Table I indicate that the IB method

predicts the same position of the reattachment point as the solution on the body-fitted mesh. One

advantage of the IB method is that it can generate solutions for other obstruction ratios without

remeshing, thus reducing significantly the total solution time. Only the level set-function should

be changed in order to get a solution for a different obstacle height. IB solutions on the same mesh

were computed for an obstruction ratio S/H =0.25 and the resulting position of the reattachment

point is compared with the experimental data in Figure 10.

4.2. Flow around an array of spheres

4.2.1. Problem definition. This test problem corresponds to the flow around spheres placed on

a simple cubic lattice. A non-dimensional solution is obtained by defining reference values for

the variables describing both the immersed geometry and the flow. The reference length is taken

equal to the distance between the center of adjacent spheres L and the reference velocity is given

by the inlet velocity Vi . Following the work of Martys et al. [23] computations were carried out

without considering the inertia in the momentum equations (low Reynolds number approach). The

dimensionless viscosity and the inlet velocity are set to 1 and the dimensionless diameter of the

spheres D̃=D/L is varied between 0.2 and 1.4 resulting in the solid fraction of the bed of spheres

varying from 4.19×10−3 to 0.959.
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Figure 8. Comparison of predicted and measured u-velocity profile: (a) x/S=0;
(b) x/S=2; (c) x/S=5; and (d) x/S=8.8.
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Figure 9. Length of the primary recirculation zone for S/H=0.75.

Table I. Length of the primary recirculation zone (x1/S) for S/H=0.75.

Re 56 82.5 120 150 200

Experiment [21] 4.41 5.11 5.93 6.5 6.75
Body-fitted grid 4.13 4.99 6.03 6.72 7.63
Present IB method 4.13 4.99 6.03 6.72 7.64

Given the symmetry of the arrangement of spheres, only one array is considered having the size

of the transverse section equal to the distance between the centroids of two adjacent spheres. A first

series of computations considered one array of 5 spheres in the flow direction. The computational
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Figure 10. Length of the primary recirculation zone for S/H=0.25.

domain spans in the flow direction from x =−4 to 9 with the five spheres located in the space

between x=0 and 5 (the centroids are at x=0.5, 1.5, 2.5, 3.5, 4.5, respectively). The domain has

unit length in the y and z directions. Computations were also carried out considering an array of

nine spheres. In this second case the computational domain spans from x=−4 to 13 with the nine

spheres located in the space between x=0 and 9. The surface of the spheres on which Dirichlet

boundary conditions should be imposed is represented by the level set function:

�(x, y, z)=min(�0, ((x−xi)
2+(y− yi )

2+(z−zi )
2)1/2−D/2) for i =1,Ns, (20)

where Ns is the number of spheres in the array, �0 is an arbitrary positive value larger than the

size of the computational domain (say �0=100) and (xi , yi , zi ) are the centroid coordinates of the

sphere i . The level set �=0 will then indicate the location of the boundary. The region having

�>0 is the flow region inside which the flow equations are solved and the region having �<0

represents the volume of the spheres. The solid fraction of the bed of spheres for a given sphere

radius R=D/2 is given by

fs=Vs/Vtot, (21)

where Vs is the volume of one sphere and Vtot= L3 is the volume of the cubic box of size L within

which the sphere is located. In dimensionless variables (L=1) the volume of the box is equal to

unity and the volume of the sphere is given by:

Vs=
4�R3

3
for R�0.5 (22)

Vs=
4�R3

3
−6

2�R3

3
+6

�L

24
(12R2−L2) for R>0.5 (23)

The expression in Equation (23) takes into account for the spheres overlapping when R>0.5.

4.2.2. Numerical results. The solution for the pressure distribution on the surface of the spheres

is shown in Figure 11 for an array of five spheres of diameter 0.7. The pressure distribution and

the mesh are also shown in a mid-plane along the flow direction. The mesh has 20 elements in

directions transverse to the flow. As can be seen, the solid boundary of the spheres cuts through

the elements, as the mesh is not constructed to fit the geometry of the immersed objects. The flow

field for the same case is presented in Figure 12 in the plane containing the centers of the spheres

indicating that homogeneous velocities are recovered on sphere surface.
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Figure 11. Distribution of the pressure and computational mesh.

Figure 12. Flow field around the spheres.
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Figure 13. Permeability of an array of spheres.

Hereafter we present the results obtained for the pressure drop in the flow and the resulting

permeability coefficient for various diameters of the spheres. The permeability k of the array of

spheres is determined from Darcy’s law and is given by

k=
�u

|∇ p|
, (24)

where u is the average flow rate.

The solution for the permeability of the array of spheres is shown in Figure 13 as a function

of the solid fraction. The results obtained by Chapman and Higdon [24] are also presented as a

reference. Similar results were reported by Martys et al. [23] using a lattice Boltzmann method.

As can be seen, the permeability decreases as the solid fraction increases, reaching a value close

to zero when the solid fraction approaches the maximum value of 1. The present numerical results

agree very well with those reported by Chapman and Higdon [24].
The present FE-IB method is sensitive to the position of the solid boundary inside mesh elements.

One limitation lies in the fact that given the linear interpolation functions used by the finite element

method, the boundary is represented by planar surfaces inside mesh elements. Thus, the accuracy

with which the boundary is represented depends on the local mesh size. In order to assess the

sensitivity of the IB method to changes in the location of the solid boundary within a mesh element,

computations were carried out by varying the spheres diameter from 0.7 to 0.8 with a constant
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increment of 0.01. The results are plotted in Figure 14(a). Furthermore, very small changes in the

location of the solid boundary were simulated by considering the diameter in the range between

0.7 and 0.71 with constant increments of 0.001. Recall that the mesh size is 0.05, which means

that each change in the radius of the spheres determines a displacement of the interface with a

distance one hundred times smaller than the element size. The results from this set of computations

are shown in Figure 14(b). As can be seen, the present numerical method is able to represent

accurately even extremely small changes in the location of the IB.

4.3. Transient flow past a circular cylinder

4.3.1. Problem statement. The computational domain and boundary conditions for this problem

are shown in Figure 15. A steady velocity profile was imposed at the inflow. The cylinder is

located at 10 diameters from the inlet and at 20 diameters from the outlet. Because the problem

is two-dimensional, only a slab was meshed with 3-D tetrahedral elements. The mesh is shown

in Figure 16 and was designed to have smaller elements in the region of the immersed cylinder

and in the wake of the cylinder where the solution is expected to exhibit larger time variations.

The grid has 300 elements in flow direction, 200 elements in direction normal to the flow and only

2 elements are used in the width of the slab for a total of 600 000 tetrahedral elements.

4.3.2. Flow solution. Computations were carried out for the Reynolds number Re=�U0d/� equal

to 20, 40, 80, 100, 125 and 200. For Re=20 and 40 steady-state solutions are obtained presenting

two symmetric recirculation regions in the wake of the cylinder as shown in Figure 17. The length

of the recirculation zone (L/d) is compared with the experimental and computational results in
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Figure 14. Permeability for small changes in sphere diameter: (a) diameter increments of 0.01 (D=0.7
to 0.8) and (b) diameter increments of 0.001 (D=0.7 to 0.71).
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Figure 15. Uniform flow around a circular cylinder: domain and boundary conditions.

Copyright q 2010 Crown in the right of Canada. Int. J. Numer. Meth. Fluids (2010)

DOI: 10.1002/fld



F. ILINCA AND J.-F. HÉTU

Figure 16. Mesh for the flow around a circular cylinder: (a) global view of the mesh and (b)
detail around the immersed cylinder.

Figure 17. Solution for flow around circular cylinder at Re=40: (a) pressure and (b) velocity.

Table II. Length of the recirculation zone at low Re.

(L/d) at Re=20 (L/d) at Re=40

Experiment [25] 0.73 1.89
IB method [26] 1.05 2.59
Numerical results referred in [26] 0.91–1.04 2.18–2.55
Present IB method 0.94 2.27

Table II. The present IB solution is close to the lower limit of previous numerical results, which

is in good agreement with the experimental data.

For Reynolds numbers higher than the critical Reynolds number Recr=51 [27] a vortex street

develops in the wake of the cylinder. Following the work of Sohankar [27] the time-step is set to

�t=0.025d/U0. The initial conditions are obtained from steady state solutions at Re up to 125.

For Re=200 the steady state solution at Re=125 was used as an initial solution and the time

step was set at �t=0.0125d/U0. Figure 18 shows the time variation of the flow velocity at a

point located on the symmetry axis two diameters downstream of the center of the cylinder. The

signal is shown from time t=0 to 160d/U0. Notice that during the first part of the simulation

the transverse velocity v is zero because the initial solution is symmetric with respect to the x-axis.

The axial velocity u is also constant until approximately tU0/d=40, after which time perturbations

are observed and the solution is no longer symmetrical. The amplitude of these perturbations

increases in time and leads to the formation of the well-known Karman vortex street. Vorticity
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Figure 18. Uniform flow around a circular cylinder: flow response at (x=2, y=0):
(a) u: velocity and (b) v: velocity.

[Correction made here after initial online publication.]

Figure 19. Uniform flow around a circular cylinder: Karman vortex street at Re=100.

contours are shown in Figure 19 from tU0/d=100 through tU0/d=106 clearly illustrating the

periodic Karman vortex street.

4.3.3. Strouhal number of the periodic flow. The Strouhal number St is a standard non-dimensional

representation of the vortex shedding frequency. It is defined as the ratio of the characteristic

frequency of the flow response f to the inverse of the fluid dynamics time scale d/U0, that is the

time it takes for a fluid particle moving at velocity U0 to travel the distance d:

St=
f d

U0
(25)
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It is well known that the Strouhal number depends on the Reynolds number of the flow. The present

numerical predictions are compared with the experimental and computed data in Table III. The

agreement with the experimental correlation of Williamson [28] is very good. The results reported

by Ilinca et al. [29] were obtained using the same finite element method as used in the present

work but on a body-fitted grid. Remark that the present IB method leads to the predictions closer

to the experiment than those obtained on the body-fitted grid. This difference however is marginal

and can be explained by the fact that in [29] the computational domain had the lower and upper

boundaries closer to the cylinder.

4.4. Flow past an NACA0012 profile

For this test problem we consider the flow past an NACA0012 airfoil at an angle of incidence of

3.59◦. Computations were carried out for Re=100, 400, 2000 and 5000 and the solutions were

compared with those obtained on a very refined body-fitted mesh. The resulting lift coefficient

is given in Table IV indicating that the IB solution compares extremely well with the solution

from the body-fitted mesh. The difference is very small at low Reynolds number and increases

slightly for the largest Re. The two solutions for Re=5000 are shown in Figure 20 for the pressure

and u-velocity contours. The pressure coefficient on the airfoil is shown in Figure 21. The two

solutions are almost superimposed one over each other, thus indicating that the proposed IB method

performs well.

Table III. Strouhal number at various flow regimes.

Re=80 Re=100 Re=125 Re=200

Experiment [28] 0.153 0.164 0.175 0.197
IB method [26] 0.15 0.160 — 0.192
Numerical results referred in [26] 0.15 0.160–0.175 — 0.187–0.202
Ilinca et al. [29] 0.157 0.168 0.178 —
Present IB method 0.155 0.166 0.176 0.197

Table IV. Lift coefficient for NACA0012 at 3.59◦.

Re=100 Re=400 Re=2000 Re=5000

Body-fitted grid 0.1045 0.1015 0.0807 0.0480
Present IB method 0.1053 0.1016 0.0813 0.0502

Figure 20. Flow past an NACA0012 airfoil at Re=5000: (a) pressure: IB method; (b) pressure: body-fitted
grid; (c) u velocity: IB method; and (d) u velocity: body-fitted grid.
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Figure 21. Pressure coefficient for NACA0012 at Re=5000.

5. CONCLUSIONS

A new IB finite element method that accurately imposes the boundary conditions on the immersed

interface is presented. The procedure consist of incorporating into the grid the points where the

mesh intersects the boundary. The degrees of freedom associated with the additional grid points

are then eliminated either because the velocity is known or by static condensation in the case of

the pressure.

Application of the proposed method to the flow in an obstructed channel shows an excellent

agreement with the body-fitted grid solution. The three-dimensional IB finite element method

was also used to solve the flow around spheres placed on a simple cubic lattice. The resulting

permeability was computed as a function of the solid fraction and the results agree very well with

previously computed solutions. The method is shown to detect even the smallest changes in the

shape of the IB. Computations for different values of the sphere diameter are obtained on the same

mesh by simply changing the level set function thus reducing the time of performing this type of

simulation.

For the application to transient flow past a circular cylinder the results compare well with

experimental data and previous numerical results. The computed Strouhal number for the periodic

vortex shedding is in excellent agreement with the experimental correlation of Williamson. Finally,

for the flow past an NACA0012 airfoil, the solution from the present IB method compares very

well with a solution computed on a body-fitted grid.

The proposed method can be extended to problems involving moving solids and fluid–structure

interaction. Those topics will be the subject of future investigations.
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