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Simulation-based Localized Sensitivity Analyses (SaLSA) — an example of water
quality failures in distribution networks

Rehan Sadiq, Yehuda Kleiner, and Balvant Rajani

Abstract: Models for environmental, socio-political, engineering and economic systems are
typically complex due to a large number of interacting factors. Uncertainty and sensitivity
analyses are integral parts of modelling complex systems. The level of uncertainties associated
with any system increases with system complexity. These uncertainties are a result of vaguely
known relationships among various factors (epistemic), as well as randomness in the
mechanisms governing the domain (aleatory). Uncertainty analysis examines variations in the
results that are imparted by the uncertainties in inputs, whereas sensitivity analysis determines
the contributions of inputs.

This paper discusses the identification of predominant input factors and ranking them using a
technique called, Simulation-based Localized Sensitivity Analysis (SaLSA), which is a hybrid of
a ‘differential analysis’ and ‘simulation-based sampling’ techniques. The proposed sensitivity
analyses results are discussed using an example of water quality failures in distribution
networks.

Introduction

Modelling complex systems

Ross (2004) described complex systems like environmental, socio-political, engineering, or
economic systems, which involve human interventions, and where the vast arrays of inputs and
outputs could not all possibly be captured analytically or controlled in any conventional sense.
Moreover, relationships between the causes and effects in these systems are often not well
understood but can be expressed empirically. Complex systems consist of a large number of
interacting factors that may be designated as subsystems, concepts, agents or components.
Complex systems are highly non-linear in behaviour and are often sub-additive or super-additive.
The modelling of complex dynamic systems requires methods that combine human knowledge
and experience as well as expert judgment. Soft computing techniques can provide an appropriate
framework to handle uncertainties, if historical data are scarce and/ or available information is
ambiguous and imprecise. Such techniques include probabilistic and evidential reasoning
(Dempster-Shafer theory), fuzzy logic and evolutionary algorithms (Makropoulos and Butler
2004).

Uncertainty and sensitivity analyses in complex systems

Uncertainty and sensitivity analyses are integral parts of modelling complex systems. The level
of uncertainty associated with any system is proportional to its complexity, which arises as a
result of vaguely known relationships among various variables, and randomness in the
mechanisms governing the domain. Uncertainty analysis determines the uncertainty in the results
that is imparted by uncertainties in input factors, whereas sensitivity analysis determines the
contributions of input factors to the uncertainty in the analysis results (Helton et al. 2006).
Sensitivity analysis is critical to model validation, and more specifically determines which factor

e requires additional research for improving the knowledge base, thereby reducing output
uncertainty;



e isinsignificant and can be eliminated from the final model (thus simplifying it);

e contributes the most to output variability; and

e is highly correlated with the output.

In addition, sensitivity analysis also helps to:

e identifies situations which are not anticipated by an analyst;

e identifies technical errors and gauge model adequacy and relevance;

e identifies critical regions in the space of the input factors and their interactions;

e cstablishes priorities for research and verify if intended policy options make a difference; and
e helps re-evaluate the assumptions used in uncertainty analysis.

Water quality failures in distribution networks

Water quality failure (WQF) refers to an exceedance of one or more water quality indicators from
specific regulations, or in the absence of regulations, exceedance of guidelines or self-imposed
limits driven by customer service needs (Sadiq et al. 2004). Water quality failures that
compromise either safety or aesthetics of water in distribution networks, can generally be caused
through the following deterioration mechanisms (Kleiner 1998):

e Intrusion of contaminants;

e Corrosion byproducts and leaching of chemicals;

e Regrowth of microorganisms and formation of biofilm;

e Formation of disinfection byproducts (e.g., THMs) and disinfectant loss;

e Permeation of organic compounds from the soil; and,

e Microbial and/or chemical breakthrough due to deficiency in water treatment.

Water quality failures attributed to above-listed deterioration mechanisms, with the exception of
water treatment deficiency, are closely related to aging water mains in the distribution network.
The manifestation of deteriorating (aging) water distribution networks include the increased
frequency of leaks and breaks, taste and odour and red water complaints, reduced hydraulic
capacity, increased disinfectant demands (due to the presence of corrosion byproducts, biofilms

and regrowth). The US EPA (2007) published a series of white papers on these issues, which are
available at www.epa.gov/safewater/tcr/tcr.html.

Numerous factors can, directly and indirectly, affect water quality in the distribution networks.
These factors include pipe properties, water chemistry, design and operational factors and
surrounding soil characteristics. Interactions amongst these factors are very complex and often
not well understood. Historically, WQFs in distribution networks are relatively rare, which make
statistically significant generalizations difficult. However, the relative rarity of WQFs belies their
seriousness, since each failure indicates the potential for harmful public health effects and
increased public mistrust and complaints. In such data-sparse circumstances, expert knowledge
and belief can serve as supplementary information and even an alternative source of information.

Simulation-based Localized Sensitivity Analyses (SaLLSA)

A number of techniques for sensitivity analysis have been developed, including differential
analysis, response surface methodology and factorial design, Monte Carlo analysis, statistical
methods and variance decomposition procedures (Helton et al. 2006). These techniques to
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conduct sensitivity analysis can be classified in variety of ways. Most of the classifications
schemes focus on the capability, rather than the methodology, of a specific technique (Salehi et
al. 2000). Based on the methodology, sensitivity analysis can be classified as mathematical,
statistical, or graphical techniques (Frey and Patil 2002). Different classification schemes help to
understand the applicability of a specific sensitivity analysis technique to a particular model and
analysis objective(s).

Of the numerous techniques available for the sensitivity analysis, no single technique provides
optimum results for all the modelling efforts. Choice(s) for a particular technique depends on a
number of factors, including the nature and complexity of the model and the resources available.
Sensitivity analysis need not be limited to the techniques described above. A large body of
scientific literature on various other techniques is also available. Any technique used, however,
should be documented clearly and concisely (US EPA 2001).

Differential analysis is a direct method to estimate the sensitivity of the model response to
changes in input factor values (henceforth referred as input sensitivity). The output of the model
using most likely values of inputs can be defined as ‘base’ values (denoted by asterisk in this
paper, e.g., x, ). The sensitivity of a given input can be determined from the ratio of the change in

output to the change in that input while keeping all other factors constant at the ‘base’ level
(Krieger et al. 1977). A major drawback is that it represents sensitivity around ‘base’ values only,
which may not be applicable for realms far away from the ‘base’ values (Hamby 2004).

Differential analysis requires a first-order Taylor series approximation. This method uses a
linearized theory assumption, which is good for only small uncertainties (perturbations) in input
(Koda et al. 1979). Differential analysis is computationally challenging for complex models
(Iman and Helton 1988). Simulation-based sensitivity analyses (Monte Carlo analysis) are
commonly used to study input sensitivities to overcome the complexities of differential analysis.
Although, simulation-based sensitivity analysis can be implemented in different ways, it
generally involves the following steps (Hamby 2004):

e define the model and its inputs/ outputs;

e assign probability density functions to each input;

e generate an input matrix through an appropriate random sampling method;

e calculate an output vector; and

e assess the influences and relative importance of each input/ output relationship.

A new sensitivity analysis technique called, Simulation-based Localized Sensitivity Analysis
(SaLLSA) is proposed, which is a hybrid of the differential analysis and simulation-based

sampling techniques. Figure 1 provides a flowchart that describes all the steps of the proposed
technique.

In the following sections, we briefly describe the previously developed (Sadiq et al. 2007) Q-
WARP model (Water Quality —Water mAin Renewal Planner) to predict water quality failures in
the distribution networks. Subsequently we demonstrate the application of SalLSA to a case study
analysis as applied in Q-WARP.
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Figure 1. Methodology for proposed technique — SaLSA




Sensitivity analysis — an example of water quality failures in distribution networks

Q-WARP

Various computational techniques may be appropriate to predict WQFs in aging water mains, but
appropriateness of any technique depends on how readily it treats the uncertainties inherent in
modelling and handle interacting concepts that encompass issues specific to water distribution
networks. Fuzzy cognitive maps (FCMs), an extension of cognitive maps, are illustrative
causative representation of complex systems (Kosko 1997). FCMs draw a causal representation
among all identified factors of any specific system. A complex system represented by FCM can
incorporate human experience, judgment, understanding and knowledge about the system. The
FCM is a process model, which can use knowledge of expert opinion and belief (qualitative, soft)
and/ or existing (quantitative, hard) data. FCM consists of nodes that represent factors involved in
the system, and weighted arcs (connections), that represent causal relationships between factors.
Arcs are graphically illustrated as signed weighted graphs with optional feedback loops. Factors
can be inputs, outputs, variables, states, events, actions, goals, and trends of the system.

Q-WAREP is a model based on hierarchical (two levels) FCMs. This model is used to predict the
‘potential’ (risk) for water quality failures in a given pipe segment. At the lower or modular level
(or Level 1), input factors related to pipe attributes, site-specific conditions, operational and
hydraulic factors, water quality indicators, and decision actions are defined and used to quantify
the potential for water quality deterioration due to different mechanisms including contaminant
intrusion, internal corrosion, leaching, biofilm formation, disinfectant loss and THM formation,
and permeation. In the supervisory level (or Level II), these deterioration mechanisms are
assessed for their contributions to the potential for aesthetic, physico-chemical, microbiological
and overall water quality failures (Figure 2).
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Figure 2. Schematic representation of Q-WARP model



Q-WARP describes three types of water quality failures - aesthetic, physicochemical and
microbiological. The overall risk of water quality failure is estimated based on these three types
of water quality failure. Q-WARP considers approximately fifty factors, of which 25 are input
factors that directly or indirectly influence water quality in distribution networks. All of these
input factors feed into modular FCMs, whose outputs are used to stimulate the supervisory FCM.
Many basic factors are common to more than one of the modular FCMs, e.g., pipe age, pipe
diameter, etc., which leads to a strong interconnectivity between factors. This interconnectivity
and redundancy of the factors in modular FCMs increase the complexity of estimating the
contribution (sensitivity) of input factors.

Results and discussion

Consider a hypothetical pipe segment (any pipe length in which conditions are assumed
homogenous) in a water distribution network, for which the potential for water quality failure
needs to be determined. Data for the input factors are provided in Table 1. Note that although
hypothetical, these data reflect realistic conditions. This data set represents instantaneous or
average estimates for the input factors. Actual magnitudes (e.g., pressure, velocity, or other water
quality indicators) may vary over time. Any representative value of these input factors can be
analyzed.

Results of an example using the Q-WARP are provided in Figure 3, where potentials for the
realization of various water quality deterioration mechanisms as well as water quality failures are
shown. Three values, min, max and most likely, are provided for each prediction, using error bars.
The interval [min, max] size is directly proportional to the amount of missing data. For example,
the potential for intrusion has a wide range because the contributing factor contamination
distance is defined as ‘No info’ (i.e., missing data) in Table 1.

SalSA is implemented to evaluate the impacts of various input factors on water quality failures.
Sensitivity is determined only for those factors, whose values can be mapped ordinally, e.g., pipe
age, pipe diameter, velocity, etc. Non-ordinal (normative) input factors (e.g., pipe material (C3),
pipe lining (C16), contamination type (C25), etc.) are set at pre-defined levels for a particular
sensitivity analysis scenario. The sensitivity analysis in Q-WARP reports only relative rankings
for each selected input factor based on their contribution to output.

The values of input factors in the simulations are assumed continuous in the selected sensitivity
intervals. If ‘Full range’ is of interest then lower and upper ordinal values of the input factor

become the min and max values of the sensitivity interval (x; ). The x; can assume any interval

within the full range of x; (including a point, which means a ‘Fixed’ value). Those input factors
that are defined as ‘No info’, are treated by default as ‘Full range’.

Once sensitivity intervals (x; ) are defined for the selected input factors, Monte Carlo

simulations are performed and the potential for water quality failures and potential for water
quality deterioration mechanisms are calculated (a result of single iteration is similar to a
snapshot shown in Figure 3). Sensitivity is determined for only those input factors for which

sensitivity intervals (x;’ ) are defined as non-point intervals or indicated as ‘No info’. The
sensitivity analysis using SalSA has following pricipal features and characteristics:
e Small sensitivity intervals (x’) for random sampling imply strong observational

interdependence among various input factors. Complete independence is approached if
sensitivity interval is large;



The sensitivity of an input factor is determined based on a linear fit; therefore the larger
sensitivity intervals ignore local perturbations;

One-factor at a time (OFAAT) approach can be used to determine the sensitivity of a given
input factor over its universe of discourse by keeping all other input factors ‘Fixed’ at any

desired base value x; , and a sensitivity profile can be established for that factor; and

Results of the sensitivity analysis must be interpreted only relative to each other, i.e., used for
ranking the input factors under a given scenario.

Table 1. Defining sensitivity interval (x;) in the example

Sensitivity interval (xis )

Ci Input factors’ Base value (xf )

Minimum ( xiL )  Maximum ( in )
Cl Pipe age (yrs) 20 to 40 20 to 40 75 to 100
C2 Pipe diameter (inch) 6 Fixed (same as base value)
C3' Pipe material Cast iron lined Nominal category
Cc4 Condition of appurtenances V. Good Excellent Fair
C5 Pressure (psi) Positive (> 5) <-20 >5
Cce’ Contamination distance (m) No info <0.5 >5
C7 Potential for leaks V. Low V. Low V. High
C8 Groundwater table fluctuations dry/ dry Fixed (same as base value)
c9 Type of soil Silty sand Fixed (same as base value)
C10 Burial depth (m) 3to4 Fixed (same as base value)
Cl1 Potential for cross-connection V. Low Fixed (same as base value)
Cl12 Time to response V. Fast Moderate V. Fast
C13 Residual disinfectant type Chlorine Nominal category
Cl4 Residual disinfectant conc. (mg/L) 0.2t0 0.5 ND 2to4
C15 pH 71t08.5 Fixed (same as base value)
Cl6 Pipe lining material Bituminous Nominal category
C17 Velocity (m/s) 0.3t00.5 Fixed (same as base value)
C18 Water age (days) <03 <03 1to2
C19 Water temperature °0) 10 to 15 <10 20to 25
C20 Larson ratio <0.5 Fixed (same as base value)
C21 Dissolved oxygen (mg/L) 2t05 Fixed (same as base value)
C22 Organic content (mg/L) <02 <02 >2.0
C23 Nutrients V. Low Fixed (same as base value)
C24 Bromide concentration No info V. Low V. High
C25 Contamination type Sewage Nominal category

1: shaded factors are nominal (non-ordinal) category
2: values of factors shown in bold letters were defined as ‘No info’
3: sensitivity can be determined only for those factors that are not ‘Fixed’
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Figure 3. A snapshot of Q-WARP results

Data for two input factors, namely C6 (contamination distance) and C24 (Bromide
concentration), are assumed missing, therefore the sensitivity analysis of these factors is taken at
‘Full range’. The results of sensitivity analyses for 11 input factors are provided in Table 2 (based
on sensitivity intervals described in Table 1). Sensitivity to potential for internal corrosion (PC)
and potential for permeation (PP) are not shown, since the deterioration mechanisms are not
relevant to 6 cement lined cast iron pipe. It can be noticed that potential for leaks (C7), time to
response (C12) and condition of appurtenances (C4) were key factors in case of potential for
intrusion (PI) under given conditions.

The results of sensitivity analysis require interpretation on relative scale (Table 2). Ranking is
performed based on the absolute values (ignores positive or negative) of sensitivity results and
provided in descending order. Table 2 provides a complete list of ranking orders for input factors
for various output factors calculated based on their intensity. This ranking order of sensitivity is
valid only for given conditions selected in the example as described earlier. For example, in case
of potential for intrusion, the most sensitive factor was ‘potential for leaks’, and was assigned a
rank of ‘1’ and so on. In this analysis, the ‘potential for cross-connection” was assumed ‘fixed’ at
a base value of very low, but the ranking order would have changed for all factors if it were
allowed to vary, say, from very low to very high.



Table2. Ranking orders for the input factors based on sensitivity

Input factors * PI PL PB PT WQF
Pipe age (yrs) 3 2 3
Condition of appurtenances 2 2
Pressure (psi) 3 3
Contamination distance (m) 2 3
Potential for leaks 1#%* 2
Time to response*** 2 1
Residual disinfectant conc. (mg/L) 1 1 1 3
Water age (days) 1 1 2 3
Water temperature o) 2 3 3 3
Organic content (mg/L) 2 1 1
Bromide concentration 1 2

* Factors for which units are not provided were defined linguistically (e.g., low, medium, high). Smaller number
represents higher severity of sensitivity and vice versa. PI: Potential for intrusion; PL: Potential for leaching; PB:
Potential for biofilm formation; PT: Potential for THM formation; WQF: Overall water quality failures.

** Bold characters represent the most influential factor.

*#% The contribution of an input factor to the overall WQF depends on multitude of interactions in modular FCMs.
Therefore it is possible that in some cases the ranking order is lower in a specific water quality deterioration mechanism
(modular FCM) and higher in overall WQF.

Summary

Water quality in a distribution network is a very complex system, affected directly or indirectly
affect by numerous factors. These factors can be categorized as pipe attributes, site-specific
factors hydraulics/ operational factors, water quality indicators and decision actions (or
interventions). Interactions amongst these factors are very complex and often not well
understood. The modelling of complex dynamic systems requires methods that combine human
knowledge and experience as well as expert judgment. Q-WARP (water Quality —Water mAin
Renewal Planner) was developed in earlier work (Sadiq et al. 2007) to model complex system
using fuzzy cognitive maps.

In this study, the contribution of impacts of input factors on complex system response is
investigated, using a newly developed technique called, Simulation-based Localized Sensitivity
Analysis (SaLSA), which is a hybrid of a differential analysis and simulation-based sampling
techniques. The application of proposed technique SalLSA is demonstrated through the analysis
of water quality failure as implemented in Q-WARP.
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