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ABSTRACT 
 
High-integrity die castings require controlled strength and ductility for structural applications. These properties are the product 

of the local microstructure of the material after die filling and solidification. In this paper, a workflow of metallographic 

imaging, image analysis, and machine learning is investigated to estimate the mechanical properties at specific location s in a 

casting based on the local microstructure. Approximately 180 tensile specimens were first extract ed from high pressure vacuum 

die cast Aural™-2/F plates at 1.8, 3.0 and 4.7 mm thickness and tested. Cross -sectional optical micrographs were then taken 

close to fracture locations at different magnifications to observe the microstructure. Image analysis routines were developed 

and applied to systematically quantify the key microstructural characteristics that are expected to affect strength and ductility. 

Challenges related to sampling of multi-scale and heterogeneous material, imaging resolution, high-volume analysis 

automation, and statistical descriptions were addressed to seek out compromises between characterization effort and accuracy. 

Finally, the predictive capability of different families of machine learning algorithms was tested with the dataset o f the extracted 

microstructural characteristics for yield strength, elongation at break, and area reduction at fracture. Feature importance was 

also evaluated to determine key microstructural characteristics used in correlations. This work therefore assesses the potential 

for local, destructive estimation of expected in-service mechanical behaviour, for instance in regions where tensile coupons 

cannot be extracted. Validated relationships between microstructure and properties could  also eventually complemen t  

simulation-based microstructure predictions from process parameters  in an integrated computational materials engineering 

framework for designing new, lightweight die-cast structural components. 

 

INTRODUCTION 
 

High-pressure vacuum die casting (HPVDC) can be used to produce large series of complex, structural components, for instance 

for automotive applications. This net-shape process can create varying sections within a single part which, combined with alloy 

selection and process-dependent filling and solidification factors, can lead to varying mechanical properties within as well as 

between parts. For structural applications, understanding and controlling these variations is important to consistently achieve 

the required service performance. 

 

Strength can efficiently be estimated locally using indentation-based methods, but ductility is more challenging to assess in 

sections that are not well-suited to tensile or bend tests. The local properties are a result of the local microstructure. As such, 

characterizing the microstructure of specific regions in a given casting could therefore provide estimates of their associated 

mechanical properties. While metallographic characterization is as destructive a test method as mechanical testing, it could be 

applied in small, irregular regions such as the edge or base of structural ribbing  as illustrated in Figure 1. 

 



[Type here] 

 

 
Figure 1: Example of an irregular section on a prototype casting after destructive testing 

 

For common Al-Si-Mg-Mn structural die casting alloys, the microstructure consists of a distribution of coarse primary and fine 

aluminium, eutectic regions, intermetallics, and precipitates arising from solidification and heat treatment, in addition to 

potential defects such as porosity, oxides or other inclusions [1]. These microstructural features depend on the processing 

conditions and affect mechanical properties. Many relationships have been identified, discussed, and controlled in the literature. 

The effects of alloy composition on strength and expected ductility are well mapped towards material selection for specific 

applications [2]. Similarly, the effects of grain size and secondary dendrite arm spacing on strength  and ductility have been 

widely investigated [2-5]. While yield strength is mostly related to metal composition, cooling rate, and heat treatment, ductility 

and as a result ultimate tensile strength are affected by a wider range of microstructural features. For instance, it is well 

documented that the presence of micro- and macro-porosity is detrimental to ductility and fatigue life by acting as favourable 

strain localization and crack initiation points [5-11]. Elongated, needle-like intermetallic constituents and eutectic silicon are also 

known to reduce ductility depending on their morphology [5, 11-15], which have led to the development of low-iron and strontium-

modified structural alloys. Large, externally-solidified primary aluminium crystals (ESCs) represent local inhomogeneities that 

affect material deformation and are reported to bring about a reduction of static ductility in thin-walled parts; efforts were made 

to reduce their occurrence especially in magnesium die casting [6]. Many of these factors are also interrelated: for example , 

intermetallic compounds or eutectic evolution also have an impact on material feeding and porosity formation in different  

casting processes [5, 16-18]. Similarly, the distribution of ESCs can alter flow and induce local microporosities at solidification  

leading to a compound, detrimental effect [19-23]. Finally, within the already heterogeneous microstructure, occasional oxides, 

inclusions, or cold flakes originating upstream from the cavity [24-26] or filling defects like cold shuts [27, 28] can be significantly 

detrimental to ductility [29]. While the investigations referenced here provided valuable insight regarding the specific factors 

controlling die casting quality, they often focused qualitatively or quantitatively on either a single or a few features. Limited 

studies have been undertaken to pursue a statistical analysis on all of the features mentioned above in order to establish a 

predictive model capable of mapping microstructure to mechanical properties  [15]. 

 

Predictive models require quantified inputs . The ability to generate relevant, accurate, and reliable image descriptors of 

microstructure is the key to extracting the microstructure-properties relationships of materials. Quantifying the microstructural 

characteristics can be achieved using automated image analysis, especially when dealing with a large number of specimens and 

micrographs. Digital image analysis techniques have long been applied in material microstructure analysis  [30] and algorithms  

can be developed to capture the many specific features, and their distributions, of die-cast microstructures. For example, image 

analysis was used to quantify the eutectic fraction profile across cast specimens [31]. More advanced methods can also be applied 

to detect and size more complex objects  such as fracture surface defects  [9]. 

 

The net-shape nature of die casting could lead to probabilistic variations and interactions between microstructural factors [6, 7, 

16, 32]. Ductility, for example, is likely to be controlled by a single or few detrimental instances, which could vary from part to 

part due to the inherent variability in turbulent filling and probabilistic aspects of defect occurrences and solidification [9, 33]. 

This makes developing quantitative models challenging. Artificial intelligence is an active topic of research in die casting, 

especially with a focus on binary classification for part quality. For instance, Blondheim leveraged extensive process data from 

multiple sources to predict pass/fail quality after machining for 1873 parts from casting process inputs over a week of normal 

production [34]. In follow-up investigations, clustering algorithms and signal analysis were applied to anomaly detection [35, 36]. 

The results highlighted the interest of advanced algorithms to find patterns in large sets of complex, interrelated data. Similarly, 

Liu et al. tested the applicability of machine learning algorithms  such as neural networks and gradient boosting to analyze scrap 

rate and predict quality from process parameters  for a dataset of 345,000 parts  [37]. In another study, Apelian and Kopper applied 

tree-based models to predict the good/scrap classification of over 950,000 parts with 83 inputs and outputs from the cell in a 

production environment, and addressed the challenges of imbalanced and missing data in materials processing [29, 38]. These 

large samplings fit well with the “big data” requirement of some advanced machine learning models. Machine learning can 

also be applied in regression analyses to predict a continuous value. For instance, Kopper implemented multiple algorithms, as 

well as principal component analysis , to predict the ultimate tensile strength of 1500 specimens from process data. Artificial 

intelligence appears to be an interesting avenue for predictive tools for microstructure-properties relationships, as an alternative 

to complex physics-based computations [7]. However, developing microstructure-to-properties relationships is likely to rely on 

a relatively small number of specimens, which will bring challenges specific to low-volume data. 
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Within a broader project seeking to estimate die casting properties early during design, this paper focuses on the development 

of a predictive framework from microstructure characterization to mechanical properties  using machine learning. The intent is 

to use process simulations to predict relevant microstructural features [25, 39-41], and then estimate mechanical properties from 

these material characteristics. Microstructure-properties correlations could also be used to estimate the strength and ductility 

of irregular regions that are difficult or impossible to test using conventional tensile or bending methods.  The methodology was 

developed with the Aural™-2 alloy, which is commonly used for high-integrity components in the automotive sector, using as-

cast stepped plates covering a range of thicknesses typical of thin-walled, structural parts. The first objective was to extract the 

relevant microstructural features , including their distributions, from micrographs with large fields of view. Using digital image 

analysis techniques, the microstructures were then quantified in an unbiased and automated manner, which can be readily scaled 

up. The second objective was to select and tune machine learning models to relate these features to the measured strength and  

ductility from tensile testing, in order to evaluate the potential gain in predictive capability with this method. 

 

EXPERIMENTAL METHODS 
 

HPVDC EXPERIMENTS 

In this investigation, flat, stepped plates were cast under varying HPVDC process conditions on the NRC’s research and 

development cell. The plates , illustrated in Figure 2a, had sections measuring 4.7, 3.0 and 1.8 mm in thickness and were cast 

using the same die as the authors’ previous investigation on microstructure modelling  [42]. The cell surrounding the 530-ton 

Bühler SC N/53 cold-chamber die casting machine has automated metal ladling and spray functions as well as a Fondarex 

HighVac/ExVac 500 L vacuum system (Figure 2b). In all experiments, the melt was held in an electrically heated crucible 

furnace, fluxed with a Wedron metal treatment system, and degassed with argon. 

 

 
Figure 2- (a) Cast plate used to extract tensile coupons. (b) General view of the die casting R&D cell. 

 

All casting trials were conducted with an Aural™-2 alloy, with the measured range of composition shown in Table 1. The 

objective was to keep the alloy composition as stable as possible throughout the experiments  in order to focus on process-

induced variations. It is well known that actual alloy composition is a significant factor that can influence the mechanical 

behaviour: this topic was however outside the scope of the work presented here. After comparing properties in the as-cast (F) 

temper and heat-treated (T7) tempers, it was decided to investigate the process-induced F-temper variability only. 

 
Table 1- Alloy composition range during 7 days of casting trials over 4 months, in % mass 

Aluminum Silicon Magnesium Iron Manganese Titanium Strontium 

Bal 10.3-10.9 0.29-0.32 0.18-0.20 0.48-0.51 0.06 0.010-0.016 

 

To generate a range of typical and detrimental process conditions, die thermoregulation temperature, melt holding temperature, 

fast shot velocity, vacuum level, shot mass, and cycle time were varied in the ranges shown in Table 2. Moreover, the remelt  

fraction in the crucible was varied between 0% (all primary ingots) and 50%. Remelt was taken from the feeds and overflows 

from previous castings with the same alloy: the iron content therefore remained quite stable. In the specimens selected for 

testing, the intensification pressure target was constant at 500 bar. 

 

Over 900 tensile specimens based on the ISO 6892 standard [43] were extracted from the cast plates for testing to investigate 

the process-properties correlations as part of a wider project. Displacement-controlled tensile testing was performed on an MTS 

Alliance electromechanical machine with a 25-mm gauge length extensometer. After testing, the area reduction at fracture was 

also calculated for each specimen as a local ductility measurement compared to elongation at break over the entire gauge leng th.  

 

 

(a) (b)
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Table 2- Range of die casting process parameters in this work 

Parameter Upper and lower bounds 
Die thermoregulation temperature 180-255°C 

Melt temperature 670-720°C 
Metal velocity at gate 25-50 m/s 

Vacuum level 55-300 mbar 
Cycle time 70-120 s 

Biscuit length 17-23 mm 

 

 

METALLOGRAPHIC CHARACTERIZATION AND IMAGE ANALYSIS 
From these specimens, a subset of 189 units were specifically selected for systematic metallographic characterization. These 

covered the range of yield strength and ductility from the mechanical testing results , but also included many overlaps as 

different process parameters can lead to similar properties . 

 

The first step was to determine where to characterize the specimen microstructures. Given that there is no to minimal 

thermomechanical processing done after forming, aluminium die casting can exhibit local microstructural variations. For 

example, the exact locations of porosity instances can vary slightly from one shot to another [34]. Similarly, rare, isolated defects 

such as cold flakes tend to affect a small, localized volume of material when they occur in parts . Selection of metallographic 

sampling plane and regions of interest is therefore important to relate the observed microstructure to the mechanical properties 

measured in testing. In this project, it was decided to image and characterize a single plane nearly parallel to the fracture plane 

in a deformed region on the tensile specimen, at a minimal distance of a few millimeters away from the fracture surface. This 

was justified as larger defects tend to cause strain localization and fracture and bulk observations may not correlate well with 

measured properties [9, 33]. The method to characterize the fracture-adjacent material was expected to provide a better specific 

estimate of the properties of the detrimental region especially for ductility, at least in a statistical sense. The drawbacks of this 

method are the observation of a stretched microstructure and the potential to capture testing -induced voids. However, since this 

investigation focused on the F-temper with a relatively low area reduction at break compared to T7-treated Aural™-2, these 

limitations were deemed acceptable. Another option would be to sample undeformed material taken further away from the 

fracture location, at the risk of missing important, local characteristics . 

 

Once metallographic preparation of the selected cross-section was concluded with 0.25-µm oxide polishing, the specimens 

were imaged using an Olympus BX-51 optical microscope equipped with a Clemex color CCD camera, with consistent control 

of illumination and without chemical etching. The well-known skin effect in die-cast aluminium [11, 24, 44, 45] and segregation 

band of increased eutectic fraction related to dilatant shear [22, 31, 46] caused through-thickness variations of microstructure: 

images were therefore systematically captured from one surface to another. In the perspective of automation, the specific 

regions of interest on the 5-to-9-mm-wide section plane were pre-determined and not manually adjusted to capture potentially 

detrimental features.  

 

The selection of image descriptors was based on the analysis of solidification process and the resulting microstructure. In cold-

chamber HPVDC, the melt is poured into the shot sleeve where primary α-Al starts to solidify from liquid along the chamber 

wall, and subsequently grow into the coarse ESC. The plunger then begins its slow shot to avoid air entrapment and provide 

time for vacuum to be established in the cavity. As the alloy approaches the gate, the plunger accelerates to its fast shot v elocity 

to fill the cavity, where air can also be entrapped leading to porosity. During and after filling, contact with the steel die under 

high pressure leads to fast solidification of the primary aluminium in fine globular or rosette morphology [47] between the ESCs. 

As the temperature drops below the eutectic temperature, the remaining melt solidifies as eutectic regions  containing fine 

silicon particles between the already-solid primary aluminium. Throughout this process, the die casting machine applies high 

pressure to feed material (before the gates freeze) and minimize jagged, sponge-like shrinkage porosity [16]. Intermetallic  

compounds also form in the microstructure due to the presence of iron and manganese in the alloy [17]. Optical micrographs 

were taken at 100X and 200X magnifications  to capture the features of this multi-scale, multi-phase structure, as shown in 

Figure 3. The lower magnification images were stitched together to generate a single mosaic [24] which was analyzed for coarser 

microstructural features such as ESCs or eutectic agglomerations, including their locations through-thickness. These large-

scale mosaic images were taken to sample as much of the material as possible. The higher magnification images were used to 

quantify the finer characteristics at 64 to 144 locations, depending on thickness, evenly spaced on the region of interest. In this 

investigation, it was decided to only use medium-magnification optical imaging to minimize the characterization effort towards 

potential industrial applications. As a result, the eutectic characteristics were only measured collectively due to the fact that the 

typical individual silicon particles were in the sub-micron range, which is difficult to quantify accurately with optical 

microscope. The downstream model range of applicability will therefore be limited to the alloy under investigation, especially 

in terms of eutectic modification, as a potentially significant factor for mechanical properties is not included. Higher-

magnification optical imaging, electron microscopy or differential scanning calorimetry can provide further information on 
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very fine features such as eutectic silicon and nano-scale precipitates, but these are generally time-consuming to achieve 

quantitatively at the large volume required in this investigation. 

 

 
Figure 3- (a) Low magnification stitched image of 3-mm thick Aural™-2 alloy cross-section near fracture surface after 

tensile test. (b-c-d) Higher magnification images with indication of (b) an ESC cluster (red) and a eutectic region 
(blue) considered as a large eutectic segregation, (c) ESC, eutectic, non-ESC α-phase and porosity, and (d) magnified 

view with FDAS schematics and intermetallic constituent. 

 

Once consistent images were captured, they were analyzed using automated image analysis. After carrying out normalization  

steps to allow direct comparisons between images  and calibrating the scales to extract features in physical units , routines were 

developed to identify individual instances of each feature of interest and extract key numerical characteristics towards machine 

learning based on the literature and industrial background. In addition to common measurands such as average area, aspect 

ratio, or area fraction for each feature of interest, advanced shape and statistical analyses were also conducted for some elements  
[10, 16, 17, 24]. For instance, the Sauter mean diameter d32:  
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where di is the equivalent diameter of a circle with the same area of an individual instance i, was used instead of the arithmetic 

mean to weight the individual instances with their area. Since ductility can be affected by a few, extreme instances [11], upper-

bound estimates such as the maximum or 95th percentiles were also extracted. Due to the complex morphologies, advanced 

algorithms such as watershedding and fractal dimensions were integrated in the analysis routines to quantify the observations , 

for instance for the regions shown in Figure 3b. The spatial distributions of instances can also be a factor for mechanical 

behaviour as clusters of individual instances can be more detrimental [7, 9]. Some features were evaluated in subsets of the 

metallographic images to identify possible concentrations. Quantitative clustering metrics were , however, not implemented  

herein [48]. It is worth noting that automated image analysis often still involves user decisions, for example when selecting 

grayscale thresholds for phase distinctions  [48] or determining lower-bound size threshold to remove artefacts or irrelevant 

instances. In this work, a systematic approach was followed to ensure comparable imaging and analysis throughout, to avoid 

introducing bias into the downstream modelling activities. 

 

Many investigations have included fractographic analysis of the fracture surfaces in correlations [9, 28]. This was also conducted 

in this work, but the results were not included in the machine learning models, as having a fracture surface implies prior 

mechanical testing. With the objective of evaluating properties from microstructure alone, for instance in regions where 

mechanical testing is not practical, information on fracture surface defects or morphology would not be available. Fractography 

was therefore considered as post-modelling information to relate to the predictions. 

 



[Type here] 

 

 

ImageJ® and Python® were used to perform the digital image analyses for all the image descriptors. Given the evolving nature 

of the analyses, and the more than 10,000 images database, batch processing of images and generation of a grouped datasets 

were programmed for efficiency. As the analysis routines evolved frequently in development to cope with the new challenges 

in newly acquired images, version tracking was implemented and a consistently-processed, comparable dataset was extracted  

for modelling. 

 

MACHINE LEARNING MODELS 
 

Machine learning spans a variety of mathematical and statistical models and includes a range of preparation and post -processing 

tasks [29]. In this project, the Python language and its suite of machine-learning-oriented modules such as scikit-learn and the 

user-friendly PyCaret® library was used for computations. 

 

After grouping all the sources into a single dataset, the first task generally involves human intervention to analyze the data at 

hand. The variable types detected by the software were first verified: in this study, all predictors  (the microstructural 

characteristics) and targets (the measured mechanical properties) were numeric. The dataset was then checked for missing data: 

in this case, no imputation was required. Even with the relatively small number of lines in this investigation, data analysis was 

done first in a statistical sense, to identify the variance of each predictor and any potential outliers or trends or groups in the 

distributions. This step identified individual image analysis challenges leading to an iterative refinement of the characterization  

routines. Additionally, correlations between single predictors and targets could already be identified here. For instance, since 

multiple statistical indicators were included for some microstructural features and some features were cross -correlated, some 

predictors among the 70 originally extracted in image analyses exhibited noticeable correlations, which can be detrimental 

especially for some models  [34] and can be detected using tools such as the variance inflation factor. 

 

In order to test the models to be developed, the complete set was split into training, testing and unseen sets based on the 

PyCaret® workflow. The training set was first used to compare and tune different model types using a cross-validation method. 

The predictive accuracy can then be evaluated by introducing the testing set and calculating the quality of the new predictio ns 

in order to select promising algorithms. Finally, new models of the same types can be defined using both the training and testing 

sets. The unseen sets included 15% of the available data and represent the application use -case of introducing new data to an 

operating model to get its predictions. Given the small dataset and the relatively large variation of strength and ductility, four 

unique and constant training/testing/unseen sets were generated to evaluate the reproducibility of the results with different  

splits. Furthermore, each unseen set was constructed so as to sample the range of the measured ductility by randomly selecting 

lines in sub-groups of increasing ductility. 

 

The second step involves pre-processing. The pre-processing requirements depend on the type of data and the models to be 

used. For instance, linear and K-nearest-neighbours (K-NN) models can be sensitive to the range of values  and the absolute 

values of predictors in this work ranged from the order of 0.01 to 100,000. Data was therefore normalized for compatibility  

with a variety of models to be evaluated. Furthermore, initial data exploration showed that many predictors had non-normal, 

skewed distributions with a tail of larger instances inherent to the process . Since many models are known to perform better 

with predictors having Gaussian-like distribution [49], power transforms such as Box-Cox and Yeo-Johnson were also tested. In 

addition, principal component analysis (PCA) can be a useful method when dealing with correlated predictors [29]. This method 

generates new, linearly independent and ordered predictors, at the expense of reduced model explainability. While 

explainability was an important goal in this investigation to interpret the results, PCA was tested as a means to handle correlated 

predictors with minimal intervention as part of automated machine learning applications. Finally, given that the low-ductility  

specimens still represented a relatively small fraction of the dataset, but an important one to capture for quality purposes, 

weighting factors based on the prior distribution of the target were also generated for modelling trials. The purpose here is 

similar to the synthetic minority oversampling technique (SMOTE) that can be used to improve accuracy for imbalanced data 
[29, 38].  

 

The data was then input into machine learning models to compare the relative performance of different groups of algorithms  
[29, 34]. In this work, the PyCaret® library was first used to quickly assess a large number of models using built -in functions and 

simple programming to loop over different predictor selections , preprocessing options, or training/testing/unseen sets. Given 

the small number of data lines, each parallel computation took less than 5 minutes on a portable workstation equipped with an 

Intel i7 processor and many variations could be efficiently tested overnight to determine favourable modelling options. 

Throughout all of the computations, random number generation was controlled to ensure reproducible analyses: this is 

especially important in models involving stochastic decisions, such as random forests. 

 

Further tuning was conducted to maximize the accuracy of a small number of retained models. The optimal hyperparameters, 

such as the number of tree or tree “complexity” in tree-based models or learning rate in boosting models, depend on the extent 
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and type of input predictors and can be adjusted. In this work, after identifying reasonable ranges from random grid searches  

on PyCaret®, final tuning was conducted by a dedicated data scientist with experience in this field. An important aspect of 

tuning is control of over- or underfitting. The application of some models, especially those using boosting strategies, on small 

datasets such as the one in this work can lead to overfitting with excellent predictions on the training set but poor performance 

on new data as the model tries to capture small, noisy variations in the trends [29]. 

 

The tuned models were then run with the unseen data to evaluate the expected predictive capability in terms of the root mean  

square error (RMSE) and R2 coefficient. The model output was also analyzed in terms of feature importance [29] and 

explainability [50], to gain insight into the predictors having the most impact on the predictions and confirm which features 

would be of most importance to measure (and eventually predict) to estimate strength and ductility.  

 

RESULTS AND DISCUSSION 
 

FEATURE ENGINEERING 
A total of 70 predictors were extracted for each specimen to describe the coarse and fine aluminium, eutectic, intermetallics , 

and porosity in terms of average dimension, shape, extreme dimension, and relative area occupation. 

 

Figure 4 shows typical distributions of externally-solidified crystals, intermetallics, and porosity instances quantified through 

automated image analysis in three example specimens. Each specimen reveals different characteristics from the others, which 

shall be used for correlations with the resulting properties. The intermetallics and ESC distributions are noticeably asymmetrical 

with the presence of larger instances. These are related to the statistical aspects of solidification in the cold chamber and  inside 

the cavity. Porosity typically exhibits a more jagged distribution caused by the occasional presence of a single or few muc h 

larger instances in addition to microporosity, especially in the thicker specimens . It should be noted that the two-dimensional 

metallography only presents a cross -section whereas structures, especially large ESCs and shrinkage porosity, are in reality  

three-dimensional. Areas that appear disconnected on the section may in fact be interconnected, which necessitated appropriate 

image analysis functions to best estimate likely groupings from the available 2D data. 

 

To account for these skewed microstructural characteristics and the expected importance of the extreme values on ductility, 

upper-bound values were extracted for some features, including the 95th percentile, 99th percentile and maximum value from 

the individually detected instances. Figure 5a-b illustrates the relationships between average and extreme values of ESCs and 

porosity also with respect to section thickness for the complete dataset. Higher average values  typically correspond to higher 

extreme values, but the Pearson correlation coefficient remains relatively low on the order of 0.45 to 0.6. The correlation 

between average and upper bound evaluators generally degraded and the noise increased when increasin g the percentile, as the 

upper bound evaluator became more sensitive to single, extreme instances in the microstructure. 

 

There is also a correlation between some predictors of different categories. For instance, the general trend between dendrite 

arm spacing and intermetallics in Figure 5c, notwithstanding some outliers such as the top right point, can be associated with 

their common dependency on the average cooling rate which is dependent upon section thickness that is defined by product 

design. The location within the casting can also be a factor, for example for externally -solidified crystals [22], but this factor 

cannot be effectively decoupled from thickness in this work. The differences within a group can be associated with variations  

of cooling rate from process factors, most importantly from the die thermal management. The fine dendrite arm spacing metric 

developed herein for the fine cavity-solidified α-aluminium is an alternative estimator to the conventional secondary dendrite 

arm spacing that becomes challenging to evaluate, especially for high-volume automation, for the morphologies that arise from 

the fast cooling rate in HPVDC [47]. Compared to previous studies spanning multiple casting processes or wide ranges of cooling 

rate [4], this investigation focused specifically on HPVDC, which resulted in a much narrower grouping of DAS values that 

could make correlations with properties more difficult. Further investigation of the group of points at the bottom left of Figure 

5c revealed that analysis of these specimens was biased by the presence of more scarcely distributed eutectic particles between 

which the aluminum just passed the threshold and was regarded as very fine dendrite by the image analysis algorithm, leading 

to relatively lower DAS results. This leads to difficulties in determination of ambiguous microst ructures during an automatic 

image analysis campaign where prior experience is not programmed into the algorithm. This highlights the importance of the 

iterative approach applied in this work for image analysis development where in each iteration the outliers are to be verified in 

detail to fine-tune the algorithm. 
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Figure 4- Examples of distributions of (a) externally solidified crystals, (b) intermetallics and (c) porosity from image 

analysis. Specimens correspond to different thicknesses as well as different process parameters. 

 

 

 

 
Figure 5- Correlations between selected predictors from automated image analysis. (a -b) Relationship between 
average and maximum evaluators for ESC and porosity. (c) Relationship between cavity -solidified dendrite arm 

spacing and intermetallics dimensions.  

 

 

DATA EXPLORATION 
Visual analysis of the direct correlations between predictors (i.e. microstructural characteristics) and targets (mechanical 

properties) already highlights some trends. For instance, Figure 6 presents individual relationships between yield strength and 

dendrite arm spacing, intermetallics size or ESC area occupation. Each shows a trend for decreasing yield strength with 

increasing predictor value, with Pearson coefficients between 0.3 and 0.7. Each predictor by itself is therefore not sufficient to 

estimate the property of interest. It should also be noted that Figure 6 illustrates correlations, not causations. For instance, the 

intermetallic constituent mean area is not expected to be such a significant factor to the yield strength: it can however be a 

metric of the cooling rate and solidification history that control many other, potentially more mechanically significant, 

microstructural characteristics. 

 

Trends on ductility tend to be more complex, as illustrated in Figure 7. As expected, larger instances of porosity, which als o 

correlates with a higher area occupation, correspond to a reduced elongation at break. Interestingly, the correlation between 

porosity and area reduction at break was not as good, as porosity may have a more significant effect on localization of 

deformation on the gauge section. The presence of externally-solidified crystals, especially in the skin regions, also exhibits a 

similar trend as well as grouping of the specimens with similar thicknesses. Eutectic solidification can play a major role in  

high-silicon hypoeutectic alloys such as Aural™-2. Concentration of Al-Si eutectic in large regions is of interest as the eutectic 

is generally more brittle than the α-phase and large clusters are expected to decrease the ductility of the material. This trend 

appears in Figure 7c. It can be seen that a significant presence of these features tends to correspond to lower-ductility specimens. 

On the other hand, the absence of one of these features does not necessarily correspond to high ductility, as other detrimental 

microstructural characteristics could be present and limit ductility [9]. These competing mechanisms could be a challenge for 

simpler models such as multiple regression [15].  
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Figure 6- Individual scatter plots illustrating the correlation between yield strength and (a) dendrite arm spacing, (b) 

intermetallics dimension and (c) ESC area occupation. Colour-coding is the same as Figure 5. 

 

 
Figure 7- Individual scatter plots showing the correlation between elongation at break and (a) maximum area of a 

single porosity instance or (b) area occupation of ESCs in skins and (c) eutectic clusters.  

 

MACHINE LEARNING MODELS 

Figures 8 and 9 summarize some of the initial comparison of models on PyCaret in terms of root mean square error on yield 

strength and area reduction, respectively, using various versions of the complete dataset with all features: 

1. Original: only a robust scaler is applied to all features prior to the modeling;  

2. Box-Cox: the features are transformed using a min-max scaler followed by a Box-Cox power transform;  

3. Yeo-Johnson: the features are transformed using a standard scaler followed by a Yeo-Johnson power transform;  

4. PCA: principal component analysis is fitted on the original features and the 16 most significant components are retained 

as the new predictors.  

Similarly, four types of model were evaluated: regularized regression refers to linear models such as ridge regression and 

elastic net and tree-based refers to randomized trees such as random forest. For each combination, the same four different 

training/unseen splits were run and the average RMSE was calculated.  

 

The four model types performed well on the 0.2% offset yield strength target, as shown in Figure 8, with a root mean square 

error (RMSE) on the order of 5.5 MPa on the range spanning 118-165 MPa. This corresponds to R2 values between 0.65-0.8 

on the unseen datasets. Linear regressions yielded the best results and the slightly degraded performance of K-NN and tree-

based models are likely to be related to occurrence of overfitting. The outliers, such as the Box-Cox results with the K-nearest 

neighbours algorithm, demonstrate the need to explore multiple modelling strategies to determine the most suitable me thod. 

 

In terms of area reduction in Figure 9, considering the average on four runs, linear models with the original set of features show 

a larger error but the power transforms as well as principal component analysis  bring significant improvement as expected for 

this kind of model. Boosting and randomized forest models performed slightly better and yielded similar error with all the 

versions of the dataset while K-NN further improved the predictive score with the original and PCA datasets. Nevertheless, 

accuracy was not as good as with the yield strength correlation, with average R2 values in the range of 0.35 to 0.5 on the unseen 

datasets. Figure 9 shows a noticeable difference between sets and that some splits proved more challenging for some model 
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types, for instance set # 4 for KNN, which suggests that the relatively small number of training points may not be able to 

capture a sufficient range of scenarios . 

 

 
Figure 8- Summary of root mean square error on 0.2% offset yield strength predictions for unseen dataset and 

different model types and strategies (lower is better). Points in color represent individual training/unseen sets and 
points in black are the average over the four different sets. 

 

 
Figure 9- Summary of root mean square error on area reduction predictions for unseen dataset and different model 

types and strategies (lower is better). 
 

Based on these results, further parameter tuning was attempted to improve the predictive accuracy for the two types of models 

deemed most promising. The KNeighbors and extra trees (extremely randomized trees, similar to random forest) regressors 

were retained from the sci-kit learn advanced API but no significant improvement over PyCaret was obtained meaning that the 

latter successfully found a suitable set of hyper-parameters. 

 

As Figure 10 shows, the distribution of the target variable is imbalanced towards average values despite our effort to 

deliberately select specimens across the range. Because of this, models like extra trees struggle to predict the extremes, which 

increases the RMSE metric. To mitigate this problem, weighting factors were added to the training sets to give more importance 

to the few upper and lower data points to improve accuracy in those practically important ranges.  For instance, it would be 

especially important to detect low-ductility regions for riveting or service performance. Predictive accuracy was indeed 

improved, as illustrated with the filled symbols in Figure 11. However, a more conservative model, where the predicted ductility 

is lower than the actual (observed) one, would be desirable. The improvement is visible mostly for the training set, especially 

when breaking down the RMSE into the different thicknesses as shown in Figure 12. However, the better score for the training 

set, compared to the unseen set, suggests that some overfitting occurs and is likely due to the small datasets in this invest igation. 

Figure 12 also highlights that the accuracy of the model seems to improve as thickness increases even though all thicknesses 

are put together in the training process. 

 

The benefit of area-specific modelling can be evaluated by comparing to thickness -specific properties [7, 28, 51], as shown in 

Figure 12. Compared to the root mean square error calculated by taking the average value by t hickness, the training data shows 

an approximately 50% smaller RMSE and the unseen data 8-24% smaller RMSE for area reduction at break. There is therefore 

a potential accuracy gain by using local information on the microstructure. Nevertheless, the relativ ely higher RMSE on the 

unseen data suggests a possible overfitting remaining in the analyses. 
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Figure 10- Target distribution for area reduction. 

 

 
Figure 11- Example of area reduction predictions vs observations with and without sample weights for one 

training/unseen split. 

 

 
Figure 12: Calculated RMSE and R2 by thicknesses for training and unseen data, with and without weighting for extra 

trees model. RMSE calculated using the average value by thickness is provided as a reference. 
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Given the large number of available predictors from image analysis and the good performance observed when modeling the 

area reduction with 16 principal components only, further development focused on feature selection to identify the most 

relevant microstructural features. A typical way to perform feature selection is in a first time by removing collinearities and 

highly correlated predictors and then us ing tools like the Boruta method or feature importance analysis after models are fitted 

with the entire set of features. However in this study a different approach was used based on how the feature engineering is 

done and the physical meaning of the predictors. Specific predictor groupings were kept and the results are illustrated in Figure 

13 

1. Average dimension, area occupation and simple shape metrics (14 predictors) 

2. Area occupation, d32 metric, advanced shape metrics  (25 predictors) 

3. Area occupation, d32 metric, 95th percentile, and advanced shape metrics (40 predictors) 

4. Area occupation, d32 metric, 99th or maximum, and advanced shape metrics (41 predictors) 

 

 
Figure 13- Summary of RMSE results on area reduction for four different feature selections. 

 

In this case, limiting the model input to specific predictor groups while retaining all microstructural features types  could 

improve the model performance slightly. Compared to the reference feature set including all available predictors, the ones us ing 

the d32 indicators or the d32 and 95th percentile along with shape characteristics and area occupation showed reduced RMSE, 

respectively. The set-to-set scatter also remains large. On the other hand, keeping only average size and area occupation (# 1) 

or relying on the absolute maximum sizes (# 4) did not improve the score. It should also be noted that the different unseen 

datasets do not react all in the same way to feature selection, which suggests that a deeper investigation into the critical 

predictors for correlations would be required. 

 

CONCLUSION 
In this work, a digital workflow was developed and tested to quantitatively characterize the microstructure of a high-pressure 

die-cast Al-Si-Mg-Mn alloy and then use this data in a machine learning framework to estimate the local yield strength and 

ductility. The applications envisioned were the characterization of difficult-to-measure regions such as rib crossing or small 

features that are often part of die-cast components or the gradients arising from the skin effect, as well as future integration 

with process simulations predicting microstructural characteristics for new casting designs . 

 

The minimum predictive error in terms of RMSE was on the order of 5 MPa for yield strength. Area reduction at break was 

however less accurately predicted from the microstructural features with a RMSE on the order of 1.75%. In both cases, this 

represents approximately 11% of the measured property range, but the R2 values were generally lower for ductility. This is not 

unexpected, given that ductility is  likely to be more significantly affected by fewer, local features in the material. The lower 

predictive performance for ductility could for instance be due to the selection of a single cross -section plane which could miss 

significant features, as some specimens exhibited defects on the fracture plane. Another hypothesis is that features that are 

important to the mechanical properties  are missing from the predictors set: some of these features may be at too small a scale 

to capture efficiently with optical imaging in a large-volume workflow. 

 

The key microstructural features identified by the models were still generally consistent with the literature, showing that a more 

homogeneous and finer microstructure generally resulted in higher strength and ductility. Results should however be interpreted 

with caution, as the models seek correlations that are not necessarily causations. For instance, many predictors are related to 

the cooling rate and solidification time [7, 17, 48, 52], which leads to correlated predictors. Machine learning algorithms may swap 

such correlated predictors . 
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In this work, casting parameters were varied and process data was collected, but neither were used as predictors in the 

correlation effort. Process to properties relationships are evaluated in a distinct modelling framework not shown herein. Apelian 

and Kopper highlighted that each machine and cavity combination can represent a unique process [38], which was a challenge 

for generalization of process-properties relations. On the other hand, the microstructure is expected to have a unique relationship 

to properties for a given material. A single, simple casting was used but work is underway to expand this framework to a more 

geometrically complex prototype with the same alloy to evaluate the transferability of the model to new cast components. 
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