
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

INRS-Telecommunications: Proceedings of the First SPIN Workshop, 1995

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=cc0c86b1-43f4-4114-ad96-0cc8db85493e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=cc0c86b1-43f4-4114-ad96-0cc8db85493e

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Verifying Semantic Relations in SPIN
Erdogmus, Hakan

National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information

Verifying Semantic Relations in SPIN *

Erdogmus, H.
October 1995

* published in the Proceedings of the First SPIN Workshop, INRS-Telecommunications.

Verdun, Québec, Canada. October 16, 1995. pp. 1-15. NRC 39182.

Copyright 1995 by

National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,

provided that the source of such material is fully acknowledged.

This report also appears in Proceedings of the First SPIN Workshop, INRS-Télécommunications, Montréal,
Québec, October 16, 1996.

Copyright 1995 by National Research Council of
Canada

Copyright 1995 par Conseil national de recherches
du Canada

Permission is granted to quote short excerpts and
to reproduce figures and tables from this report,
provided that the source of the material is fully ac-
knowledged.

Il est permis de citer de courts extraits et de repro-
duire des figures ou tableaux du présent rapport, à
condition d’en identifier clairement la source.

Additional copies are available free of charge from: Des exemplaires supplémentaires peuvent être
obtenus gratuitement à l’addresse suivante:

Publication Office
Institute for Information Technology
National Research Council of Canada
Ottawa, Ontario, Canada
K1A 0R6

Bureau des publications
Institut de technologie de linformation
Conseil national de recherches du Canada
Ottawa (Ontario) Canada
K1A 0R6

ii

Verifying Semantic Relations in SPIN∗

Hakan Erdogmus
Institute for Information Technology/Software Engineering Group

National Research Council
Building M-50, Montreal Road

Ottawa, Ontario, Canada K1A 0R6
erdogmus@iit.nrc.ca

Abstract—Spin is a general verification tool for proving correctness properties of concurrent/distributed

systems specified in the CSP-like modeling language Promela. We extended Promela’s syntax to differentiate

between external and internal transitions in a given model and the Spin tool with the ability to verify a particular

class of semantic relations between two Promela models. This document describes this extension and gives an

overview of the relevant theoretical foundations.

1 Introduction

Spine is an experimental verification system based on Promela/Spin version 1.5.7. Spin is a general
verification tool for proving correctness properties of concurrent/distributed systems specified in the
CSP-like modeling language Promela [8, 9]. This extended abstract describing the Spine system and
its foundations assumes familiarity with Promela/Spin.

The Spine system extends Spin with ‘limited’ semantic relation checking capability implemented
in terms of a new option, -e, whose usage is given below:

spine -eRel fileL fileR

Here Rel indicates the particular semantic relation (usually a preorder or an equivalence) to be verified1

and fileL and fileR are two files containing the Promela models to be compared (called lhs and rhs
models, respectively). The term ‘limited’ is used in the sense that currently only a particular class
of semantic relations are supported. This class is chosen for the following reasons: (1) there exists a
general, easy-to-implement, on-the-fly checking algorithm for this class; (2) the class includes a number
of well-known semantic relations, such as trace inclusion and testing equivalence, as well as others
which underlie different extended trace models.

The existing options of Spin version 1.5.7 work as before with Spine. The command ‘spine -e’
generates a customized relation checker—a collection of C files—which is subsequently compiled and
run to return a verdict. The flow diagram of the Spine system is shown in Fig. 1.

∗NRC no. 39182. Supported in part Bell Northern Research Laboratories, Montreal, and INRS-Télécommunications.
1e.g., trace inclusion, trace equivalence, testing equivalence

1

fileL

fileR

poc.cspine

-eRel

cc

-o poc

-g

-lm

-eRel

-mN

-Mn

-Sn

-wN
-V

poc.

trace

Verdict
&
Stats

poc
*

*

C files

generator

options compilation

options
execution

options

executable

relation

checker

relation

checker
trace file

(false verdict)

screen

output

input

PROMELA

models

syntax

checking

&

code

generation compilation

execution

Figure 1: Flow diagram of the Spine verification system.

2 Extension to PROMELA’s Syntax

Promela does not provide an explicit mechanism to distinguish between external (observable) and
internal (invisible) behavior. Without such a mechanism, the ability to verify semantic relations is not
very useful. The computations that can most obviously be subjected to external observation are channel
operations (send/receive).2 However, it is not necessary for all possible operations on all the declared
channels to be externally observable: communications of certain types on selected channels may be
considered invisible, or internal, while others may be externally observable. We modified the syntax of
Promela’s chan declaration to allow the association of an individual channel with an external name
that is unique throughout the Promela model which contains it. The new syntax is as follows:

chan intname (extern extname btype) = [nslots] of { ... }

where extname is the external name of the channel whose internal name is intname. This syntax makes
it possible to treat send (!) and/or receive (?) operations on external channels of a Promela model
as externally observable communications during a Spine verification. More precisely, these external
communications correspond to the external actions of the underlying labeled transition system. In an
external channel declaration, btype specifies which types of operations on that channel are considered
as external communications: ! is used to declare only the send operations to be external and ? is used
to declare only the receive operations to be external. If btype is omitted, both sends and receives are
treated as external communications. For external synchronous channels, either ! is specified or btype
is omitted altogether.

It is important that each external name be unique in a given model. When a semantic relation is
verified between two Promela models, a communication on an external channel in the first model is

2Although communication through shared variables is available in Promela, the basic mechanism for inter-process
communication is message passing through synchronous or asynchronous channels. We considered only this latter mode
of communication for specifying external behavior.

2

comparable to a communication on an external channel in the second model if and only if the external
names of the two channels match.

Note that in the current implementation, the above syntax is applicable only to individual channels,
and cannot be used with arrays of channels.

3 Example: Synchronous FIFO Buffers

As an example, consider a system consisting of a synchronous FIFO buffer with a maximum capacity
of two slots (each capable of holding one byte of information) and an environment process depositing
and retrieving one byte values in a somewhat random manner. A Promela model of this a system is
shown in Fig. 2 where the environment process is defined in Fig. 4.

In a distributed implementation of the same system, the process FIFO2 of Fig. 2 is replaced by the
interconnection of two instances of a synchronous FIFO buffer having a capacity of a single slot (the
process type FIFO1). This latter system is depicted in Fig. 3.

Note how the external behavior of the Promela models specL and specR are defined in terms of
external channel declarations. The external name IN establishes a binding between the channel inL of
specL and the channel outL of specR, allowing the send/receive operations on these two channels to
be compared for a possible match during a Spine verification. Similarly for the external name OutL.
Note that in the distributed implementation specR, the channel shift which interconnects the two
instances of the process type FIFO1 is declared as an internal channel (because it does not have an
external name). We can easily prove the two models to be trace-equivalent3 by the following C-shell
script whose result is shown in Fig. 5:

spine -e2 specL specR

cc -o poc poc.c -lm

poc

In Lotos terms, the above verification is equivalent to deciding trace equivalence between the Lotos

behaviors

Environment(IN,OUT) |[IN, OUT]| FIFO2(IN, OUT)

and

hide shift in (Environment(IN, OUT) |[IN,OUT]|

(FIFO1(IN, shift) |[shift]| FIFO1(shift,OUT)))

As an aside, we comment on the role of the process Environment in the verification. In Spin, one can
only reason about closed systems (complete, self-contained Promela models). If a semantic relation
Rel is to be verified between two open systems S1 and S2, the systems must first be composed with a
model of their respective intended environments, say E1 and E2, resulting in two closed systems. Then
the verification takes the form S1||E1 Rel S2||E2 where || denotes parallel composition. In Promela

such composition is modeled by the run statement. Note that in the above example, a common
environment is used.

3i.e., satisfy the same safety properties

3

(a)

FIFO2

IN OUT

Environment

slot1 slot2

(b)

chan inL (extern IN) = [0] of {byte};

chan outL (extern OUT) = [0] of {byte};

#include "Environment"

proctype FIFO2(chan In, Out)

{

byte slot1, slot2;

do

:: In?slot1 ->

do

:: In?slot2 -> Out!slot1 -> slot1 = slot2

:: Out!slot1 -> break

od

od

}

init

{

atomic{run FIFO2(inL, outL);

run Environment(inL, outL)}

}

Figure 2: (a) Block diagram of the centralized FIFO buffer system consisting of an environment and a
two-slot synchronous FIFO buffer. (b) The corresponding Promela model specL.

4

(a)

FIFO1 FIFO1shift

IN OUT

Environment

slot slot

(b)

#include "Environment"

chan inR (extern IN) = [0] of {byte};

chan shift = [0] of {byte};

chan outR (extern OUT) = [0] of {byte};

proctype FIFO1(chan In, Out)

{

byte slot;

do

:: In?slot -> Out!slot

od

}

init

{

atomic{run FIFO1(inR, shift);

run FIFO1(shift, outR);

run Environment(inR, outR)}

}

Figure 3: (a) Block diagram of the distributed FIFO buffer system consisting of two an environment
an two synchronous single-slot FIFO buffers. (b) The corresponding Promela model specR.

proctype Environment(chan send, recv)

{

byte any;

do

:: send!1

:: send!2

:: send!3

:: send!4

:: recv?any

od

}

Figure 4: The include file Environment where the process type representing the common environment
is defined.

5

(

SPIN Preorder Checker Version 1.2 (based on SPIN Version 1.5.7)

June 1994

Hakan Erdogmus

INRS-Telecommunications

16 Pl. du Commerce, Verdun, Quebec, H3E 1C8 Canada

)

Verifying Trace Equivalence ...

Verdict: TRUE: specL [TRACE-EQUIVALENT] specR

Statistics:

185 L state(s) stored permanently in the hash table

of a total of 851 L state(s) generated

400 L state(s) matched

185 L extended state(s) stored

400 L extended state(s) matched

1835 L link(s) executed with 1 atomic links

0 L state(s) with internal cycles found

0 L deadlock state(s) found

0 L atomic sequence blockage(s) found

0 L endstate(s) reached

105 R state(s) stored permanently in the hash table

of a total of 1356 R state(s) generated

480 R state(s) matched

105 R extended state(s) stored

480 R extended state(s) matched

2420 R link(s) executed with 2 atomic links

0 R state(s) with internal cycles found

0 R deadlock state(s) found

0 R atomic sequence blockage(s) found

0 R endstate(s) reached

185 composite state(s) stored

400 truncated search(es) due to matched composite state

0 truncated search(es) due to high-level (LR) stack overflow

5000 was the max allowed depth of LR stack

47 was the max reached depth of LR stack

0 truncated search(es) due to low-level stack overflow

1000 was the max allowed depth of stack

3 was the max reached depth of stack

36 was the max vector size reached

1907 times an H_el record (state) has been recycled

a total of 300 such record(s) allocated

16350 time(s) a TransDescr record has been recycled

a total of 138 such record(s) allocated

2792 time(s) a StateSet record has been recycled

a total of 295 such record(s) allocated

334 state comparison(s) made

65536 was the size of state hash table

99.68% empty

1.39 sd 0.87 state(s) per non-empty entry

65536 was the size of extended state hash table

99.68% empty

1.39 sd 0.87 extended state(s) per non-empty entry

1.00 sd 0.00 state(s) per extended state

65536 was the size of composite state hash table

99.72% empty

1.00 sd 0.00 composite state(s) per non-empty entry

Figure 5: Result of Spine verification for the synchronous FIFO buffer example.

6

4 Inductive Relations

Spine supports a particular class of semantic relations, called inductive relations, first identified in
[4]. Before discussing these relations, two relevant models—Extended Labeled Transition Systems and
Weak Process Systems—need to be introduced.

4.1 Labeled Transition Systems

A Promela model defines a network of communicating processes, treated by the Spin validator as a
(possibly huge) NFSA4 with transitions labeled by the communications and other executable Promela

statements. With the added ability to distinguish between internal and external communications, the
adoption of Extended Labeled Transition Systems as the underlying formal model is suitable for the
purposes of semantic relation checking.

An ELTS is a quadruple 〈Σ, A, {−a→ | a ∈ A},−·→〉, where Σ is a set of states, A is a set of
external actions, the −a→ ⊆ Σ × Σ are called the external transition relations, and −·→ ⊆ Σ × Σ is

called the internal transition relation. The predicates =·⇒ and =a⇒ are defined as follows: =·⇒0 def
=

{〈σ, σ〉 | σ ∈ Σ}, =·⇒
def
=

⋃
{=·⇒n | n ∈ Nat}, and =a⇒

def
= =·⇒−a→=·⇒. The last predicate

may be extended to arbitrary sequences of actions in A∗ as follows: σ=as⇒σ′ def
= =a⇒=s⇒, with the

convention that σ=ε⇒σ for all σ ∈ Σ, where ε denotes the empty sequence. For a state σ ∈ Σ, we use
traces(σ) denote the set of all finite execution traces of σ:

traces(σ)
def
= {s ∈ A∗ | (∃σ′ ∈ Σ)[σ=s⇒σ′]}.

The must set of σ is the set

must(σ)
def
= {a ∈ A | (∀σ′ ∈ Σ)[σ=·⇒σ′ implies (∃σ′′ ∈ Σ)[σ′=a⇒σ′′]]}

and the must set of σ after s is the set

must(σ, s)
def
= {a ∈ A | (∀σ′ ∈ Σ)[σ=s⇒σ′ implies a ∈ must(σ′)]}.

If σ has an infinite internal computation

σ−·→σ1−·→σ2 · · · −·→σk−·→ · · ·

then σ is said to be a divergent state, written σ↑. Otherwise, σ is called a convergent state, written
σ↓. Finally, if for some ρ ∈ Σ and for some prefix r of s, σ=r⇒ρ such that ρ↑, then we write σ↑s;
otherwise we write σ↓s. Note that σ↑ε iff σ↑.

4.2 Weak Process Systems

Rather than on the structure of an ELTS, the notion of inductive relation is more easily defined on a gen-
eral extended trace model called a Weak Process System. A WPS is a structure 〈Π,Λ, A,L,A, {·(a) | a ∈

4Nondeterministic Finite State Automaton

7

A}〉, where Π is a set of (weak) processes, Λ is a set of local behaviors, A is a set of (external) actions,
L: Π �−→ Λ is called the labeling function, A: Λ �−→ A is called the local action set function, and finally
the ·(a): Π �−→ Π are called the transition functions. Because its transitions are defined as functions, a
WPS has a deterministic branching structure.

Given a WPS, let RELΛ be a binary relation on Λ. We call RELΛ a local relation.

Theorem 1 For every local relation RELΛ, there exists a unique maximal binary relation REL on
Π which satisfies for all P,Q ∈ Π, P REL Q iff L(P) RELΛ L(Q) and P (a) REL Q(a), for every
a ∈ A(L(P)) ∩ A(L(Q)). The relation REL is called an inductive relation5.

4.3 Characterization of Semantic Relations using Weak Process Systems

Theorem 1 states that every inductive relation is uniquely characterized by an underlying relation
on local behaviors. As examples, we consider three well-known semantic relations, trace equivalence
(≡trace), trace inclusion (≤trace), and testing equivalence (≡test)—each of which can be formulated as
an inductive relation on the structure of a WPS using a transformation Det which maps a given ELTS
to a corresponding WPS. The purpose of the transformation Det is to abstract from internal transitions
and extract the relevant ‘local’ information. Once Det is defined, we can identify the local relations
underlying ≡trace, ≤trace, and ≡test.

Let σ, ρ ∈ Σ. Trace equivalence simply equates two states of an ELTS if they have the same set of
finite traces:

Definition 1 σ ≡trace ρ if traces(σ) = traces(ρ).

Trace inclusion, defined below, is a preorder of this relation:

Definition 2 σ ≤trace ρ if traces(σ) ⊆ traces(ρ).

These two relations capture safety properties only. The third, more interesting relation we consider
is testing equivalence, which takes into account some liveness properties—divergence, deadlock, and
internal nondeterminism in particular:

Definition 3 σ ≡test ρ if for all s ∈ A∗, we have:

i) σ↑s iff ρ↑s,

ii) traces(ρ) = traces(σ), and

iii) σ↓s implies must(σ, s) = must(ρ, s).

These relations and their variants have been discussed under different names and with different char-
acterizations in several references; see for examples [3, 6, 2, 5]. The version of testing equivalence given
above is derived from [2], but is more suitable for implementation purposes. Note that according to
testing equivalence, divergence is persistent; i.e., all descendants of a divergent state are also treated
as being divergent.

5The term inductive is used because this class of relations was originally formulated in an inductive manner.

8

The transformation Det is similar to NFSA determinization, but also incorporates the must set
and divergence information to the local behaviors. Let T = 〈Σ, A, {−a→ | a ∈ A},−·→〉 be an ELTS.

Then Det(T)
def
= 〈Π,Λ, A,L,A, {·(a) | a ∈ A}〉, where

• Π
def
= 2Σ;

• Λ
def
= 2A × 2A × {↑, ↓};

• for P ∈ Π, L(P) is defined as the triple 〈S,M, d〉 such that

– S
def
= {a ∈ A | (∃σ ∈ P)(∃σ′ ∈ Σ)[σ=a⇒σ′]},

– M
def
= {a ∈ A | (∀σ ∈ P)[a ∈ must(σ)]}, and

– d
def
= ↑ if (∃σ ∈ P)(∃ρ ∈ Σ)(∃s ∈ A∗)[ρ↑ ∧ ρ=s⇒σ]; ↓ otherwise;

• for S,M ∈ 2A and d ∈ {↑, ↓}, A(S,M, d)
def
= S;

• for P ∈ Π and a ∈ A, P (a)
def
= {ρ ∈ Σ | (∃σ ∈ P)[σ=a⇒ρ]}.

Now we can identify the three local relations—TRCEQΛ, TRCINCΛ, and TSTEQΛ—underlying
≡trace, ≤trace, and ≡test, respectively. The relation TRCEQΛ simply coincides with equality between
the S components, whereas TRCINCΛ reduces to subset inclusion. TSTEQΛ is slightly more complex:

Definition 4 Let S,M ∈ 2A and d ∈ {↑, ↓}.

i) 〈S,M, d〉 TRCEQΛ 〈S′,M ′, d′〉 if S = S′.

ii) 〈S,M, d〉 TRCINCΛ 〈S′,M ′, d′〉 if S ⊆ S′.

iii) 〈S,M, d〉 TSTEQΛ 〈S′,M ′, d′〉 if S = S′ ∧ d = d′ ∧ (d = ↓ implies M = M ′).

Theorem 2 Let σ, ρ ∈ Σ in T. We have

i) σ ≡trace ρ iff {σ} TRCEQ {ρ} in Det(T).

ii) σ ≤trace ρ iff {σ} TRCINC {ρ} in Det(T).

iii) σ ≡test ρ iff {σ} TSTEQ {ρ} in Det(T).

5 Relation Checking in SPINe

The algorithm used by Spine to check inductive relations on Promela models is based on Theorems 1
and 2. It is illustrated in Fig. 6. This is a recursive fixpoint algorithm which computes a representation
of the composite state space of the two input Promela models. It performs a depth-first search of
the composite state space. The weak process representations (the transformation Det) of the ELTSs
underlying the two input Promela models are computed on-the-fly.

9

For a given set of states, Add internal states computes all states which are reachable through
a sequence of internal communications (transitions) from the given states employing a depth-first
strategy. Note that each Promela statement which is not a send/receive operation on an external
channel is treated as an internal transition. The output is a data structure called an extended state,
a linked list of states with the proper ‘local’ information attached to it. An extended state is the
implementation equivalent of a weak process. Divergent and deadlocked states are detected on-the-fly
during this internal state search phase and labeled accordingly. Although not yet implemented, the
must sets should also be computed on-the-fly within Add internal states. To reduce the overall storage
requirements, those states in which no external communications are enabled are considered transient
and deleted before Add internal states returns. Such states are not needed once the divergence,
deadlock, and must information (i.e., the ‘local’ information) of the extended state has been computed
from its constituents and recorded.

A pair of extended states—the first formed of the states of the lhs model and the second of those
of the rhs model—constitutes a composite state. The initial composite state is computed from the
respective initial states of the lhs and rhs models. Then the recursive routine V erify relation is
called. If the composite state has been generated before, V erify relation returns. Otherwise the
composite state is stored and then analyzed.

The function Local behavior computes the data structure representing the local behavior of an
extended state. This routine implements the WPS labeling function L. Check local rel tests whether
the specified local relation6 holds true for the composite state being analyzed. If this test fails, the
relation being checked is not satisfied, and a false verdict is returned. If the test succeeds, a new
composite state is generated for each external communication (action) enabled in the current composite
state. Note that Check local relation is the only routine that is dependent on the inductive relation
being verified.

The routine Execute external action performs the execution of a selected external action enabled in
an extended state. The WPS transition functions ·(a) are implemented by applyingAdd internal states

on the result of Execute external action. Applied component-wise to a composite state, this proce-
dure produces a potentially new composite state to be analyzed, and thus V erify relation is called
recursively. This is done once for each enabled external action in a loop. The algorithm terminates
with a true verdict when all the possible composite states have been generated with successful local
tests.

5.1 Implementation Notes

The relation checking system takes advantage of most of Spin’s existing data structures, with some
modifications and additions. Its implementation evolved from Holzmann’s implementation of his ex-
haustive state exploration algorithm supplied with the Spin validator. The structure of the Spine
state vector is identical to the one used in the Spin validator with the exception of a prevailing byte
to differentiate between lhs and rhs states and a trailing byte to store some extra information (the
deadlock status and the divergence status of the state, whether the state is the source of an external
transition, whether the state has at least one enabled external transition, etc.) used by the relation

6one of the predicates TRCEQ
Λ
, TRCINCΛ, TSTEQ

Λ
, or another local relation

10

global variables sl, sr, initL, initR, LR Table, BL,BR, result;
begin

sL ← initial state of the lhs model; sR ← initial state of the rhs model;
InitL ← Add internal states({sL}); InitR ← Add internal states({sR});
LR Table ← ∅;
return V erify relation(InitL, InitR)

end

V erify relation(L,R)
local variables A, a;
begin

if 〈L,R〉 ∈ LR Table then

return true

endif;
LR Table ← LR Table ∪ {〈L,R〉};
BL ← Local behavior(L); BR ← Local behavior(R);
if Check local rel(BL,BR) then

A ← External actions(BL) ∩ External actions(BR);
for all a ∈ A do

L ← Add internal sates(Execute external action(L, a));
R ← Add internal sates(Execute external action(R, a));
if V erify relation(L,R) then

result ← true

else

result ← false;
break

endif

endfor;
return result

else

return false

endif

end

Figure 6: Pseudocode for the relation checking algorithm used in Spine.

checking algorithm.
There are three levels of states implemented by three data structures. Individual states belonging to

both lhs and rhs models are stored in a common hash table using Spin’s data structure H el. Transient
states are recycled when no longer needed. Extended states are stored in a second hash table using the
data structure StateList. A composite state is implemented by the data structure ProdState and is
stored in a third hash table. See Figure 7 for an illustration of the data structures involved.

5.2 Complexity and Performance

It is established in [15] that checking NFSA equivalence is a PSPACE-hard problem. Since for finite
state systems (which are the systems of interest), the decision problem for NFSA equivalence can be
reduced to a decision problem for trace equivalence (and vice versa), trace equivalence checking is also
PSPACE-hard.7 Trace equivalence is an inductive relation, therefore deciding inductive relations on

7Proposed reduction: choose a symbol, say
√

, which is not in the alphabet of the two NFSA being tested for equivalence.
For each final state σ of both automata, create an extra ‘exit’ state σ′ and define a transition labeled by

√

from σ to σ
′.

11

:

:

:

:

:

:

H_tab

H_tabSS

H_tabLR

StateSet

StateList

ProdState

H_el

StateSet

StateSet

StateSet

StateList StateList StateList

H_el

H_el H_el

H_el

H_el H_el

ProdState ProdState

Figure 7: Data structures used in stage storage.

12

Verdict No. of states Mem Time

1 True 169/1313 4015/5649 1332 3:39
2 ? 69/? [3 × 107]/[9 × 109] ? ?
3 True 69/1960 3045/46715 1416 2:28
4 ? 1037/? [1 × 107]/? ? ?
5 True 191/2031 10098/210845 1468 13:01
6 True 20/458 5192/51633 1456 4:14

Table 1: Example Spine verifications. Mem is the total memory required in kB. Under No. of states,
the first subcolumn relates to the lhs model and the second subcolumn relates to the rhs model. In
each subcolumn, the first figure is the total number of states generated by a Spin exhaustive validation
run, whereas the second figure indicates the total number of states (not necessarily distinct) revisited
during the Spine trace equivalence verification. A question mark indicates an inconclusive verdict due
to time limitations and the figures between square brackets are estimated upper-bound values. In all of
the verifications, the total numbers of extended and composite states generated were low (not shown).

the structure of a LTS using a generalized algorithm is at least as hard as deciding trace equivalence,
the actual complexity depending on that of the local relations involved. Note however that inductive
relation checking is polynomial on the structure of a WPS, but the required transformations from LTS
to WPS are exponential since they involve some kind of ‘determinization’ to abstract from internal
transitions.

Practical experience shows that the real complexity arises from the subset construction process
performed by the Add internal states routine. Contrary to what the theoretical results suggest, the
total number of extended and composite states generated is far from being exponential in the total
number of individual states generated; indeed in all of the examples tried out, these numbers were
several orders of magnitude lower then the number of individual states. Instead, extended states tend
to be large, and possibly overlapping. With the state recycling scheme used, the space complexity
is alleviated to a large extent at the expense of a sometimes substantial increase in time complexity.
Table 1 shows the results of several Spine verifications carried out on a Sparc2 with 32 MB of memory.
In two cases, the results were inconclusive because of unacceptable time requirements. In one case,
even an exhaustive Spin validation was not possible due to state explosion. In all of the examples tried
with false verdicts, the results were obtained relatively quickly (not shown).

5.3 Summary and Future Work

Spine is an experimental verification system for concurrent/distributed systems based on Promela/Spin.
It adds to Promela/Spin the capability to verify a particular class of semantic relations.

The Spine system was developed in 1994, and since early 1995, a new version of Promela/Spin

has been in place. The system needs to be upgraded for compatibility with Spin version 2.x.
The current implementation suffers from some limitations which restrict its practical application

in sizable projects. These limitations will have to be addressed in the future. The first limitation

Use σ as the ‘entry’ state and σ
′ as the ‘exit’ state of the final state. Treat the resulting automata as two ELTSs and

verify trace equivalence between them. The language of a NFSA can be deduced from the traces of the corresponding
ELTS by deleting those traces not ending with a

√

and then projecting the remaining traces on the original alphabet.

13

concerns the exclusive support of a particular class of relations whose decision algorithms are provably
intractable. Although this class (inductive relations) represents an important category8, other more
practical semantic relations with polynomial checking algorithms should be considered as well. Obvious
candidates are weak bisimulation equivalence [12], its variants, and preorders of these, reformulated
following Park’s elegant notion of bisimulation [13]. A polynomial algorithm for checking weak bisim-
ulation equivalence (observation equivalence) has been proposed in [10], but unfortunately, it is not
an on-the-fly algorithm in that it assumes that the entire state spaces have been computed and stored
in advance. This algorithm should be examined to see whether it can be adapted appropriately and
incorporated to the Spine system.

It should however be pointed out that such relatively stronger relations as weak bisimulation
equivalence—although they are easier to verify—do not abstract from internal behavior in a com-
pletely satisfactory manner. As such they may sometimes fall short of making desirable identifications.
This limitation should be taken into account. For example, although weak bisimulation equivalence
can serve as an excellent ‘approximation’ to testing equivalence most of the time, it is not universally
suitable for all applications.

Other methods of complexity reduction that are worthwhile to examine include:

• Approximative relation checking based on partial state exploration, possibly using Spin’s bitstate
hashing technique [7], as suggested in [1].

• The exploitation of partial order state exploration [14] in semantic relation checking.

• Taking advantage of Promela2’s hidden construct to reduce the size and total number of indi-
vidual states.

Other potential improvements to the Spine system include:

• The ability to define arrays of channels as external channels.

• The ability to treat shared variable type communications as external operations by allowing
ordinary variables to be declared external.

Availability — The Spine system is availabe through FTP from the site zoosun.iit.nrc.ca (sub-
directory ‘/pub/incoming/hakan’). For questions and suggestions, please contact the author.

References

[1] R. Civalero, B. Jonsson, and J. Nilsson. Validating simulations between large nondeterministic specifications.
In Proceedings of Sixth International Conference on Formal Description Techniques, pages 3–17, 1993.

8For example, Hoare’s widely-known failures equivalence has been shown by De Nicola [2] to be just another charac-
terization of testing equivalence. Hennessy’s must testing preorder [6] is one of the preorders of testing equivalence. One
can also find several other semantic relations that underlie other extended trace theories: for examples see [16] and [11,
Ch. 3].

14

[2] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica, 24:211–237, 1987.

[3] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical Computer Science, 34:83–133,
1984.

[4] H. Erdogmus. A Flexible Framework for the Design of Concurrent Nondeterministic Processes. PhD thesis,
INRS-Télécommunications, Verdun, Québec, 1993.

[5] R. Fournier and G. von Bochmann. The equivalence in the DCP model. Theoretical Computer Science,
87:97–114, 1991.

[6] M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, MA, 1988.

[7] G. J. Holzmann. Algorithms for automated protocol validation. AT&T Technical Journal, 69(1), Jan./Feb.
1990.

[8] G. J. Holzmann. Design and validation of protocols: a tutorial. Computer Networks and ISDN Systems,
25(9):981–1017, 1993.

[9] G. J. Holzmann. Basic spin manual. Technical report, AT&T Bell Laboratories, Murray Hill, N.J., Mar.
1994.

[10] P. C. Kannellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems of equiva-
lence. Information and Computation, (86):43–68, 1990.

[11] G. Leduc. On the Role of Implementation Relations in the Design of Distributed Systems using LOTOS.
Thèse d’agréation de l’enseignement supérieur, Faculté des sciences appliquées, Université de Liège, Belgium,
June 1991.

[12] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[13] D. M. R. Park. Concurrency and automata for infinite sequences. In Proceedings of 5th GI Conference,
number 104 in Lecture Notes in Computer Science. Springer-Verlag, 1981.

[14] D. A. Peled. Combining partial order reductions with on-the-fly model checking. In Proceedings of 6th
Workshop on Computer-Aided Verification, June 1994.

[15] L. J. Stockmeyer and A. R. Meyer. World problems requiring exponential time. In Proceedings of 5th ACM
Symposium on Theory of Computing, pages 1–9, Austin, Texas, 1973.

[16] R. J. van Glabbeek. The linear time – branching time spectrum. In J. C. M. Baeten and J. W. Klop,
editors, CONCUR ’90 — Theories of Concurrency: Unification and Extension, number 458 in Lecture
Notes in Computer Science, pages 278–297. Springer-Verlag, 1990.

15

