
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Rules on the Web: Research and Applications the 6th International Symposium,
RuleML 2012 Proceedings, Lecture Notes in Computer Science; no. 7438, pp.
280-288, 2012-08-29

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=b78382ac-757a-4514-8661-8533f170e621

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b78382ac-757a-4514-8661-8533f170e621

NRC Publications Archive
Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien
DOI ci-dessous.

https://doi.org/10.1007/978-3-642-32689-9_23

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

PSOA RuleML API: a tool for processing abstract and concrete

syntaxes
Al Manir, Mohammad Sadnan; Riazanov, Alexandre; Boley, Harold; Baker,
Christopher J. O.

PSOA RuleML API: A Tool for Processing

Abstract and Concrete Syntaxes

Mohammad Sadnan Al Manir1, Alexandre Riazanov1,
Harold Boley2 and Christopher J.O. Baker1

1 Department of Computer Science and Applied Statistics
University of New Brunswick, Saint John, Canada

{sadnan.almanir,bakerc}[at]unb.ca

alexandre.riazanov[at]gmail.com
2 Information and Communications Technologies

National Research Council Canada
harold.boley[at]nrc.gc.ca

Abstract. PSOA RuleML is a rule language which introduces positional-
slotted, object-applicative terms in generalized rules, permitting relation
applications with optional object identifiers and positional or slotted
arguments. This paper describes an open-source PSOA RuleML API,
whose functionality facilitates factory-based syntactic object creation
and manipulation. The API parses an XML-based concrete syntax of
PSOA RuleML, creates abstract syntax objects, and uses these objects
for translation into a RIF-like presentation syntax. The availability of
such an API will benefit PSOA rule-based research and applications.

1 Introduction

F-logic [1] and W3C RIF [2] define objects (frames) separately from functions
and predicates. POSL and PSOA RuleML [3, 4] provide an integration of object
identifiers with applications of functions or predicates to positional or slotted
arguments, called positional-slotted, object-applicative (psoa) term. While RIF
requires different kinds of terms for positional and slotted information as well as
for frames and class memberships, PSOA RuleML can express them with a single
kind of psoa term. As a result, PSOA rules permit a compact way of authoring
rule bases, which are as expressive as POSL and semantically defined in the style
of RIF-BLD. The constructs of PSOA RuleML are described in [3] in detail. In
this paper, ‘psoa’ in lower-case letters refers to a kind of terms while ‘PSOA’ in
upper-case letters refers to the language.

Here we describe an open-source PSOA RuleML API. The inspiration comes
from well-known APIs for Semantic Web languages such as the OWL API [5] and
the Jena API [6]. The existence of these APIs facilitates a lot of experimental
research and development in Semantic Web technologies and we hope that our
API will have a similar effect on the PSOA adoption. Our API allows creation of
objects corresponding to PSOA constructs, such as constants, variables, tuples,
slots, atoms, formulas, rules, etc., using factory-based method calls, as well as

traversal of those objects using simple recursive traversal. Moreover, it supports
parsing of XML-based PSOA documents and generation of presentation syntax.
Thus, users will be able to employ this API for rule processing, including rule
authoring, rule translation into other languages, rule-based applications, and
rule engines.

Due to space constraints, here we briefly describe the key features of the
PSOA RuleML presentation syntax. The language is best described using condi-
tions and rules built over various terms, centered around psoa terms in particular.

We begin with the disjoint sets of alphabets of the language. The alphabets
include a countably infinite set of constant and variable symbols, connective
symbols (e.g., And,Or,:-), quantifiers (e.g., Exists,Forall), and other auxil-
iary symbols (e.g., =,#,##,->,External,Group,(,),<,>,∧∧,).

The language contains literal constants and IRI constants, the latter some-
times abbreviated as short constants.

The following examples illustrate double-type and string-type literal con-
stants:

"27.98"∧∧xs:double "The New York Times"∧∧xs:string

Constants like family, kid are short constants.

Each variable name is preceded by a ‘?’ sign, such as ?1,?Hu,?Wi, etc.

In a psoa term, the function or predicate symbol is instantiated by an object
identifier (OID) and applied to zero or more positional or named arguments. The
positional arguments are referred to as tuples while named arguments (attribute-
value pairs) are called slots.

For example, a psoa term (an atom), containing family relation with the
OID ?inst, tuples husband ?Hu, and wife ?Wi, along with a slot child->?Ch

can be represented as follows:

?inst#family(?Hu ?Wi child->?Ch)

Terms include psoa terms as well as several different types of logic terms,
such as constants and variables, equality, subclass, and external terms.

An atomic formula with f as the predicate is defined as f(...) in general.
PSOA applies a syntactic transformation to incorporate the OID, which results
in the objectified atomic formula o#f(...), with o as the OID and f acting as
its class. The OID is represented by a stand-alone ‘ ’ for a ground (variable-free)
fact, an existentially-scoped variable for a non-ground fact or an atomic formula
in a rule conclusion, and a stand-alone ‘?’ as an anonymous variable for any
other atomic formula.

Condition formulas are used as queries or rule premises. Conjunction and
disjunction of formulas are denoted by And and Or, respectively. Formulas with
existentially quantified variables are also condition formulas. An example of a
condition formula is given below:

And(?2#married(?Hu ?Wi) Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)))

Aside from the condition formulas, the premise can also contain atomic for-
mulas and external formulas.

2

A conclusion contains a head or conjunction of heads. A head refers to an
atomic formula which can also be existentially quantified. A conclusion example
is given below:

Exists ?1 (?1#family(husb->?Hu wife->?Wi child->?Ch))

An implication contains both conclusion and condition formulas. A clause
is either an atomic formula or an implication. A rule is generated by a clause
within the scope of the Forall quantifier or solely by a clause. Several formulas
can be collected into a Group formula.

The Group formula below contains a universally quantified formula, along
with two facts. The Forall quantifier declares the original universal argument
variables as well as the generated universal OID variables ?2, ?3, ?4. The in-
fix :- separates the conclusion from the premise, which derives the existential
family frame from a married relation And from a kid of the husb Or wife. The
following example from [3] shows an objectified form on the right.

Group (
Forall ?Hu ?Wi ?Ch (

family(husb->?Hu wife->?Wi child->?Ch) :-
And(married(?Hu ?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
married(Joe Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi)

Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch))))
_1#married(Joe Sue)
_2#kid(Sue Pete)

)

The objectified family term in the rule conclusion is slotted with 3 slots:

?1#family(husb->?Hu wife->?Wi child->?Ch)

The rules’s condition formulas use the relations married and kid, containing
only 2-tuples Hu, Wi, and Ch:

?2#married(?Hu ?Wi) ?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)

The next section will describe the API components and their uses. We begin
by describing the organization of the package, then illustrate the object creation
and traversal as well as parsing the PSOA/XML input, and rendering in presen-
tation syntax. For all of these operations, we use the objectified family example
above. Finally, we conclude by mentioning the scope of using our API with other
complementary tools and potential work directions in the future.

2 The API Structure and Functionality

2.1 Package Organization

The API is divided into two main components: one is for the creation and traver-
sal of abstract syntax objects and the other is for parsing and rendering of those
objects.

The AbstractSyntax is the top level class for factories and contains all Java
interfaces for different types of abstract syntax objects. A simple implementa-
tion of AbstractSyntax interfaces is in the DefaultAbstractSyntax class, which is
suitable for most purposes. However, more demanding uses may require custom
implementations of the interfaces.

3

Fig. 1. The API Structure

The package also contains a Parser class, which provides PSOA/XML pars-
ing and translation into presentation syntax. Parsing is implemented using the
Java Architecture for XML Binding (JAXB) [7], which creates equivalent Java
objects based on XML schema files. The schema is a straight-forward encoding
of the syntactic construct hierarchy and is available in [8]. The parsed XML is
then converted to the abstract syntax by calling factory methods.

Figure 1 presents the most important classes and interfaces implementing
different types of syntactic constructs. Each of the names in a rectangular box
represents a Java interface, and is kept as close as possible to the presentation
syntax construct names. The corresponding implementations of these interfaces
use Java inheritance, shown by the solid arrows.

The interface Construct sits at the top of the hierarchy. Group can be pop-
ulated with more Groups and Rules. Both universal facts and universal rules
are represented by the Rule class, which encapsulates a Clause. The interface
Clause represents either an implication or an atomic formula. Implication is rep-
resented by the interface Implies whereas Atomic represents atomic formulas.
The generalized interface Atomic is implemented either by Atom (representing a
psoa term like ?2#married(?Hu ?Wi)) or by Subclass (representing a subclass
term like student##person) or by Equal (equality term like ?cost = ?spent).

Implementations of the generalized Formula interface represent either dis-
junction, conjunction, or existential formulas by implementing Formula Or (rep-
resented as Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)), Formula And (And instead
of Or), and Formula Exists, respectively. In addition to atomic formulas, exter-
nal formulas (External(func:numeric-add(?cost1 ?cost2))) can be repre-
sented using the Formula External interface. The generalized interface Term is

4

represented by implementing Const for different kinds of constants, Var for vari-
ables like ?Hu, ?Wi, Expr for expressions denoting psoa terms, and External for
external Expressions. Constants can be either Const Literal (e.g., "47.5"∧∧xs:

float, with Symspace referring to xs:float) or Const Constshort (e.g., family

,kid). Finally, the interface Psoa is implemented to represent objectified func-
tions or predicates with membership symbol ‘#’ and tuples and slots as ar-
guments, e.g., inst#family(Homer Merge child->Bart). The internal nodes
Sentence, Formula, Atomic, Term, Const, and Expr, are generalized classes and
implemented by more specific classes.

2.2 Construction of Abstract Syntax Objects

The abstract syntax objects are constructed by factory-based createX methods
calls, X being the object type name. The rest of this paper represents each
method in emphasized font. A factory can be created as follows:

DefaultAbstractSyntax absSynFactory = new DefaultAbstractSyntax()

We are going to illustrate the creation of facts and rules below.

Construction of Facts A fact is of type Atomic. Let us look at the first fact
that tells us Joe and Sue are married to each other with the OID 1, whereas
the second fact says Pete is the kid of Sue with the OID 2, each fact referring
to a psoa term.

The creation of fact 1#married(Joe Sue) starts by creating the four con-
stants 1, married, Joe, Sue as const 1, const married, const Joe, const Sue,
respectively using the method createConst Constshort.

Const Constshort const 1 = absSynFactory.createConst Constshort(" 1")
Const Constshort const married = absSynFactory

.createConst Constshort("married")
Const Constshort const Joe = absSynFactory

.createConst Constshort("Joe")
Const Constshort const Sue = absSynFactory

.createConst Constshort("Sue")

Tuples const Joe and const Sue are constructed by the method createTu-
ple. The list of such tuples is referred to as a tuplesList.

Tuple tuples = absSynFactory.createTuple(tuplesList)

Method createPsoa assembles 1, married and tuples into a psoaTerm,
while null indicates the absence of slots.

Psoa psoaTerm = absSynFactory

.createPsoa(const 1, const married, tuples, null)

Here is how we create an atom:

Atom atom = absSynFactory.createAtom(psoaTerm)

Thus, we use the method createAtom for creating a fact of type Atom,
createEqual for a fact of type Equal, and createSubclass for type Subclass.
This creation is completed by the createClause and createRule method calls.
The representation for creating the fact 2#kid(Sue Pete) is similar to the
method calls described above, hence omitted.

5

Construction of Rules A rule contains condition and conclusion. We will
start with the condition formula, which is a conjunction of the atomic formula
?2#married(?Hu ?Wi) and disjunction of two atomic formulas, ?3#kid(?Hu

?Ch) and ?4#kid(?Wi ?Ch).
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (

Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-

And(?2#married(?Hu ?Wi) Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch)))
)

)

The following code snippet creates the disjunction of two atoms. Method
createFormula Or defines the disjunction of two atomic formulas, atomOr 1

and atomOr 2. The OIDs ?3 and ?4 (var 4), as well as tuples ?Hu (var Hu), ?Wi

(var Wi) and ?Ch (var Ch), are variables. Only the construction of ?3 (var 3)
is shown below to avoid repetition (...).

Var var 3 = absSynFactory.createVar("3")
...
Tuple tuples = absSynFactory.createTuple(tuplesList 1)
Psoa psoaTerm 1 = absSynFactory

.createPsoa(var 3, const kid, tuples, null)
Atom atomOr 1 = absSynFactory.createAtom(psoaTerm 1)
...
Atom atomOr 2 = absSynFactory.createAtom(psoaTerm 2)

Both of the atomic formulas atomOr 1 and atomOr 2 are in a list called
formulaOrList.

Formula Or formula Or = absSynFactory.createFormula Or(formulaOrList)

The conjunction of the newly created formula Or and another atomic for-
mula atom And, ?2#married(?Hu ?Wi) is described next. Here var 2, var Hu

and var Wi denote the variables ?2, ?Hu and ?Wi, respectively. The code below
does this using the method createFormula And. The list formulaAndList

contains atomic formulas atom And and formula Or. The conjunction formula
formula And is the rule premise and created as follows:

Formula And formula And = absSynFactory

.createFormula And(formulaAndList)

We now move on to the rule Head creation, which is a psoa term containing
the OID ?1 with family class name and three slots, husb->?Hu, wife->?Wi,
and child->?Ch, in ?1#family(husb->?Hu wife->?Wi child->?Ch) as ar-
guments. These slots will be called slot 1, slot 2, and slot 3, respectively.

Var var 1 = absSynFactory.createVar("1")
...
Slot slot 1 = absSynFactory.createSlot(const husb, var Hu)
Slot slot 2 = absSynFactory.createSlot(const wife, var Wi

Slot slot 3 = absSynFactory.createSlot(const child, var Ch)

The list of slots slot 1, slot 2 and slot 3, called slotsList, is used to
create the psoa term.

Psoa psoa = absSynFactory.createPsoa(var 1, const family, null,slotsList)

6

The atom created is atom head, and thus the rule head is created by the
method createHead, where the variable var 1 is existentially quantified. Both
existentially and universally quantified variables are treated as a list of variables,
called varsList.

Head rule head = absSynFactory.createHead(varsList, atom head)

The method createImplies combines the rule head, rule head and the rule
premise, formula And, into an implication. Method createClause creates the
implication. Finally, method createRule collects all the universally quantified
variables, var Hu, var Wi, var Ch, var 2, var 3, and var 4 into a varsList and
creates the rule with the clause.

Implies implication = absSynFactory.createImplies(rule head,formula And)
Clause clause = absSynFactory.createClause(implication)
Rule rule = absSynFactory.createRule(varsList, clause)

2.3 Abstract Syntax Structure Traversal

Our implementation recursively traverses the object tree generated from the
abstract syntax structure and is usually simpler than writing visit methods [9]
as used in OWL API.

All components of the abstract syntax structure can be accessed directly
by the corresponding accessor methods, which are getX methods. The gener-
alized classes (see Figure 1) are Sentence, Formula, Atomic, Term, Const, and
Expr, containing isX methods to recognize the specific instance types. Alterna-
tively, specific classes of particular instances have to be identified, e.g., by using
instanceof.

For an atomic formula, an isX method in Atomic class needs to recognize if
the instance is of type Atom, Subclass, or Equal object. This principle applies
to each of the generalized classes.

For example, isEqual method in generalized class Atomic recognizes the
instance of Equality atom ?cost = "47.5"∧∧xs:float. Immediately, a cast
is made as the instance type Equal and getLeft and getRight methods are
called, each referring to an instance of another generalized class Term. Class
Term contains appropriate isX methods, which use similar techniques to find
out if the instance is of type Const, or Var, or an External expression.

assert this instanceof AbstractSyntax.Equal

return (AbstractSyntax.Equal) this

...
AbstractSyntax.Term getLeft()
AbstractSyntax.Term getRight()

Method getLeft, in this case, retrieves the instance of Var and thus string
variable ?cost is retrieved by the method getName as the variable instance.
On the other hand, getRight refers to the instance of type Const. Method
isConstLiteral recognizes Const Literal involving the literal and the type
float involving the instance of type Symspace. The literal object 47.5 is retrieved
as string by the method getLiteral. Finally, xs:float object is retrieved by the
method getValue as an instance of type Symspace.

7

Thus, the traversal of objects in the API structure follows the same strategy
of going down to most specific instances in a recursive manner for both facts
and rules.

2.4 Parsing and Rendering

Aside from creating and traversing objects, the API is able to parse PSOA/XML
inputs and render them in human readable presentation syntax.

In section 2.1 we discuss an XML schema for PSOA RuleML. We generate the
XML parser with the help of JAXB, which creates Java classes from a schema
traversal, where the ultimate output of the parser is abstract syntax objects.

The following example shows a transformation of an XML input for a fact
and its rendering in presentation syntax.

<Atom>
<Member>

<instance>
<Const type="\&psoa;iri">inst1</Const>

</instance>
<class>

<Const type="\&psoa;iri">family</Const>
</class>

</Member>
<tuple>

<Const type="\&psoa;iri">Joe</Const>
<Const type="\&psoa;iri">Sue</Const>

</tuple>
<slot>

<Const type="\&psoa;iri">Child</Const>
<Const type="\&psoa;iri">Pete</Const>

</slot>
</Atom>

inst1#family(Joe Sue Child->Pete)

A toString method in each class implements this pretty-printing, which
follows the same traversal procedure described in section 2.3.

3 Conclusion and Future Work

The API is open-source and hosted in [10]. The companion effort PSOA2TPTP
[11] has developed a reference translator for PSOA RuleML, which facilitates in-
ferencing using TPTP reasoners (see e.g., [12]). One component of the translator
is a parser for the presentation syntax. Our API will greatly benefit from includ-
ing this presentation syntax parser. The other component of the PSOA2TPTP
translator is its mapping from abstract syntax objects to TPTP. Combined with
our API, this will also make PSOA/XML executable on the TPTP-aware Vam-
pirePrime [13] reasoner.

Currently, the API can render PSOA/XML only into presentation syntax. As
an extension, we plan to also include the translation of abstract syntax objects
back to PSOA/XML.

We have been using the API in our HAIKU work [14], where PSOA is used
to capture semantic modeling of relational data and needed, at least, to support

8

authoring, including syntactic and, to some extent, logical validation (consis-
tency checking). We also plan to use it for automatic generation of Semantic
Web services from declarative descriptions.

PSOA RuleML API has become an input to the Object Management Group’s
API4KB effort [15], which tries to create a universal API for knowledge bases
that among other things combines the querying of RDF-style resource descrip-
tions, ODM/OWL2-style ontologies, and RIF RuleML-style rules.

References

1. Michael Kifer, Georg Lausen, and James Wu. Logical Foundations of Object-
Oriented and Frame-Based Languages. J. ACM, 42(4):741–843, July 1995.

2. Harold Boley and Michael Kifer. A Guide to the Basic Logic Dialect for Rule
Interchange on the Web. IEEE Trans. Knowl. Data Eng., 22(11):1593–1608, 2010.

3. Harold Boley. A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules. In Nick Bassiliades, Guido Governatori, and Adrian
Paschke, editors, RuleML Europe, volume 6826 of Lecture Notes in Computer Sci-

ence, pages 194–211. Springer, 2011.
4. Harold Boley. Integrating Positional and Slotted Knowledge on the Se-

mantic Web. Journal of Emerging Technologies in Web Intelligence,
4(2):343–353, November 2010. Academy Publisher, Oulu, Finland,
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353.

5. Matthew Horridge and Sean Bechhofer. The OWL API: A Java API for OWL
Ontologies. Semantic Web, 2(1):11–21, 2011.

6. Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: Implementing the Semantic Web Recommendations.
Technical Report HPL-2003-146, Hewlett Packard Laboratories, 2003.

7. Joe Fialli and Sekhar Vajjhala. Java Architecture for XML Binding (JAXB) 2.0.
Java Specification Request (JSR) 222, October 2005.

8. http://code.google.com/p/psoa-ruleml-api/source/browse/trunk/

PSOARuleML-API/src/main/resources/.
9. Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design

Patterns: Abstraction and Reuse of Object-Oriented Design. In Proceedings of the

7th European Conference on Object-Oriented Programming, ECOOP ’93, pages
406–431, London, UK, UK, 1993. Springer-Verlag.

10. PSOA RuleML API: A Tool for Processing Abstract and Concrete Syntaxes. http:

//code.google.com/p/psoa-ruleml-api/, 2012.
11. Gen Zou, Reuben Peter-Paul, Harold Boley, and Alexandre Riazanov.

PSOA2TPTP: A Reference Translator for Interoperating PSOA RuleML with
TPTP Reasoners. 2012. In these proceedings.

12. System on TPTP. http://www.cs.miami.edu/˜tptp/cgi-bin/SystemOnTPTP.
13. VampirePrime Reasoner. http://riazanov.webs.com/software.htm.
14. Alexandre Riazanov, Gregory W. Rose, Artjom Klein, Alan J. Forster, Christopher

J. O. Baker, Arash Shaban-Nejad, and David L. Buckeridge. Towards Clinical In-
telligence with SADI Semantic Web Services: A Case Study with Hospital-Acquired
Infections Data. In Adrian Paschke, Albert Burger, Paolo Romano 0001, M. Scott
Marshall, and Andrea Splendiani, editors, SWAT4LS, pages 106–113. ACM, 2011.

15. http://www.omgwiki.org/API4KB/lib/exe/fetch.php?media=api4kb:rfp.pdf.

9

