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Abstract 

 
Forty participants viewed a series of high-quality, colour images of a 
typical open-plan partitioned office, and rated them for attractiveness.  The 
images were projected at realistic luminances and 33% of full size.  The 
images were geometrically identical, but the outputs of four lighting circuits 
depicted in the renderings were independently manipulated.  Initially, the 
lighting circuit outputs were random, but a genetic algorithm was used to 
generate new images that retained features of prior, highly-rated, images.  
As a result, the images converged on an individual’s preferred scene.  
Luminances in the preferred image were similar to preferred luminances 
chosen by people in real settings.  A sub-set of images was rated on 
Brightness, Non-Uniformity and Attraction scales.  Ratings were 
significantly related to simple photometric descriptors of the images.  In 
particular, around 50% of the variance in Attraction ratings was predicted 
by average image luminance and its square, or by average image 
luminance and a measure of luminance variability. 
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1.  INTRODUCTION 
 
The traditional method of exploring preferred luminous conditions involves 
participants evaluating full-scale spaces lit in different ways.  These 
studies are expensive, especially if one wishes to manipulate the lighting 
design between evaluations.  There has been some interest, from both 
researchers and lighting designers, in other presentation methods, such 
as scale models, photographs, or computer renderings.  Research in 
areas such as forestry, architecture and urban design [e.g. Daniel & 
Meitner, 2000; Danford & Willems, 1975; Rohrmann & Bishop, 2002; 
Bishop & Rohrmann, 2003] have established that images can be a 
reasonable surrogate for the real space, particularly on ratings related to 
aethestics.  The limited lighting research on this topic concurs with this, 
when using photographs [Hendrick et al., 1977], or highly-detailed 
simulations [Mahdavi & Eissa, 2002]. 
 
However, these studies were limited to the evaluation of predefined 
scenes.  With this approach one can compare ratings of images to real 
spaces, find which of a set of images is most preferred, and look for 
general trends, but one cannot easily find the optimal scene.  Johnston 
[1999] and Johnston & Franklin [1993] described an interesting method 
using computer-generated images of faces to arrive at an optimally 
attractive face.  Software initially presented a series of faces with random 
variations of features (e.g., hair colour, size of chin, separation of eyes).  A 
participant rated each face for attractiveness.  Using a genetic algorithm, 
the software then combined the most attractive faces to produce new 
combinations of faces and the rating process was repeated until a face 
with an optimal rating was arrived at.  This proved to be an effective 
method of finding an optimally attractive face from a vast combination of 
possible faces.  Furthermore, the features of the preferred faces 
correlated well with the results of studies using real faces.  In this study we 
applied Johnston’s method to computer-generated images of lit scenes. 
 
We are not the first team to apply genetic algorithms to lighting problems.  
Ashdown [1994] described a process for using genetic algorithms in non-
imaging optics to find optimal luminaire designs.  Eklund & Embrechts 
[2001] used genetic algorithms to optimize filter design to develop energy-
efficient light sources with desired spectral output.  Chutarat & Norford 
[2001] described an inverse method utilising genetic algorithms to derive 
the physical parameters of a room to produce desired daylighting 
performance.  Corcione and Fontana [2003] used genetic algorithms to 
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optimize the lighting designs for outdoor sports facilities.  However, all of 
these studies used physical performance measures as criteria for 
success, not subjective evaluation. 
 
Deterministic optimization techniques, rather than genetic algorithms, 
have been applied to illumination in the computer graphics domain.  In 
Kawai et al. [1993], a user specified target luminous conditions and 
software generated the optimal luminaire focussing and output.  
Schoeneman et al. [1993] allowed the user to “paint” lighting patterns on a 
rendered scene and then determined the light outputs and colours from a 
set of fixed luminaires that would most closely match the desired pattern.  
One drawback of these techniques is that they are based on the user’s 
pre-existing biases towards a desired solution.  The genetic algorithm 
approach does not assume that participants can describe their preferred 
solution in advance, it only requires that they will know their preferred 
conditions when they see them. 
 
Moeck [2001] developed software to directly manipulate the luminance 
and chromaticity of surfaces in a computer-generated image.  These 
surfaces served as light sources themselves with realistic inter-reflections.  
However, Moeck’s software tool was designed for trial-and-error 
exploration as a teaching tool, and not as an optimization tool. 
 
In a previous study Newsham et al. [2004] used software to present 
images to participants who rated them on an attractiveness scale.  
Successive images varied only in the luminance of important surfaces.  
The software used a genetic algorithm to develop the optimally attractive 
combination of luminances for each participant.  The results were 
encouraging: the method was efficient in producing attractive images, and 
the preferred luminances chosen were consistent with preferred 
luminances chosen in experiments conducted in real spaces.  Further, 
ratings of image brightness, uniformity and attractiveness were 
significantly related to simple photometric descriptors of the image. 
 
This work, although promising, suffered from the limitation of using an 
image of low realism.  Although derived from a photograph of a real office, 
it was displayed in greyscale only.  Luminance modifications were made to 
surfaces in the image independent of other surfaces, and therefore with no 
inter-reflection.  Also, there were no visible sources of illumination.  These 
were all deliberate choices to simplify the work.  In this study we applied 
similar techniques to a more realistic image.  The image used in this 
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experiment was a high-quality colour rendering of an office space.  Instead 
of manipulating the luminances of independent surfaces, we manipulated 
the output of four independent groups of luminaires, thus introducing 
realistic illuminance sources and inter-reflections. 
 
The general goal of this experiment was to replicate and extend the 
findings of Newsham et al. [2004] using a more realistic image.  
Specifically, this experiment was designed to test these hypotheses: 

• The genetic algorithm is an efficient method to generate a highly 
attractive image 

• Highly attractive images are rated differently than non-optimal images 

• Preferred luminances derived from images are the same as those 
derived in experiments in real spaces 

• Subjective ratings correlate with photometric descriptors 
 
2.  METHODS & PROCEDURES 
 
2.1  Participants 
 
The 40 participants were non-research staff from within our organization, 
and were naive with respect to lighting.  Participation was voluntary, and 
the reward for participation was limited to a free drink and snack.  Data 
was collected in August and September, 2003.  Participants could choose 
to do the experiment in either English or French; data from both language 
groups were pooled for analysis.  Participant characteristics are shown in 
Table 1. 
  
Participants were given a general description of the experiment both 
verbally and on paper, and asked to sign a consent form.  All further 
information, instructions and tasks were presented on screen. 
 
2.2  Image Evaluation 
 
During the experiment, participants were asked to rate a series of images 
of an open-plan, partitioned office space, with a single workstation (or 
“cubicle”) in the foreground.  These are increasingly common workspaces, 
and we have also conducted experiments in real spaces of this kind. 
 
We used LightscapeTM to generate the basic images used.  An example 
image is shown in Figure 1.  The geometrical content of all images used 
was identical; only the lighting depicted changed from image to image.  
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The lighting was changed by varying the output of four independent 
groups of luminaires: 
 

• an undershelf task lamp in each workstation: max. intensity 624 cd 

• direct/indirect suspended direct/indirect fixtures on a 5ft x 10ft grid: 

• up component: max. intensity 811 cd 

• down component: max. intensity 1828 cd 

• ceiling-recessed wall-washers at the perimeter of the room: max. 
intensity 1543 cd 

 
Figure 2 shows the model used for the renderings, showing dimensions 
and luminaire location.  The viewpoint used to render the images was at 
the entrance to the cubicle at the top left.  Most workstation objects not 
visible from this viewpoint were excluded from the model, reducing 
rendering time without substantially affecting the luminous conditions. 
 
2.2.1 The software used 
 
Software was written to present the images, to conduct the image 
manipulation according to the genetic algorithm, to administer 
questionnaires, and to store data.  A flow diagram is shown in Figure 3. 
 
Participants saw an initial set of 12 images, and rated each one for 
attractiveness, on a scale of 1 to 10.  Images were presented one at a 
time, separated by 10 seconds when the screen was blank.  Ten of the 
initial 12 images were random combinations of luminaire outputs, and 
were therefore different for every participant.  The other two images were 
the same for all participants: an image with all luminaires at maximum 
output, and an image with all luminaires at a low (non-zero) output 
(labelled ‘Maximum’ and ‘Minimum’ in Figure 4).  These images were 
randomly ordered within the other 10, and were included to give an early 
indication of the range of possible luminances.  This set of 12 formed the 
initial “population” of images.  Then the genetic algorithm process began.  
 
2.2.2 The genetic algorithm 
 
The algorithm was designed to mimic the process of Darwinian evolution.  
“Parent” images were selected from the population.  One parent was the 
image with the highest attractiveness rating.  The second parent was 
selected randomly from the population, but selection was weighted 
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according to the image’s attractiveness rating.  These parent images 
“reproduced”, creating “child” images, and passing on successful “genes”. 
 
To describe the process mathematically, first we define “genes” for an 
image.  We had four groups of luminaires each of which had 32 possible 
levels of output, arranged between 0 to 100%.  In binary terms, the output 
of each luminaire group varied between 00000 and 11111 (i.e., between 0 
and 31 in decimal terms).  For example, an output level of 9 (or ~29% of 
full output) was represented by the gene 01001, a level of 22 (or ~71% of 
full output) by 10110, and so on.  Five binary digits for each of four 
luminaire groups resulted in a 20-digit binary string, or “phenotype” 
uniquely representing the luminaire outputs in a particular image (see 
Figure 4 for examples). 
 
We mimicked sexual reproduction with operations on the binary strings 
called crossover and mutation (see Figure 5).  The two parents (the 
“father” and the “mother”) produced two offspring (the “son” and the 
“daughter”).  To create the son’s phenotype, we started with the first 
binary digit in the father’s phenotype.  For each digit, reading from left to 
right, we randomly tested to see if crossover occurred, if it did not, the 
son’s digit was a copy of his father’s and the next digit of the father’s 
phenotype was tested.  If crossover did occur the son’s digit was a copy of 
his mother’s and the next digit of the mother’s phenotype was tested.  The 
possibility of crossover at each digit was set at 25%. 
 
We also included random mutation, which could create gene combinations 
which otherwise would not occur.  The possibility of mutation at each digit 
was set at 4%.  The daughter was created in the same way as the son, 
except the process began with the mother’s phenotype. 
 
An extra element was introduced to help the participant guide the genetic 
process – they indicated for each of four surfaces in an image whether 
they preferred it brighter, the same, or darker.  The interface is shown in 
Figure 1.  Because participants were unfamiliar with lighting technology, 
we articulated the luminaire outputs in terms of surface brightness.  
Therefore Undershelf brightness preference affected the output of the task 
light; Ceiling brightness preference affected the direct/indirect up 
component; Desk brightness preference affected the direct/indirect down 
component; and Far Walls brightness preference affected the wall 
washers.  The image did not change directly with these preferences, but 
when the next child was created, it was checked against the participant’s 
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brightness preference for each surface.  If the child did not meet the set of 
preferences it was rejected and another child created and tested, until a 
satisfactory child was created.  The approach of guiding the genetic 
process can increase the efficiency of a genetic algorithm [Caldwell & 
Johnston, 1991]. 
 
The children were then presented to the participant and rated for 
attractiveness.  If they were rated more highly than the lowest rated 
images in the existing image population then they replaced these images, 
otherwise they were discarded.  The process of parent selection and child 
creation continued until one of three end conditions was reached: 

• An image received an attractiveness rating of 10;  

• A participant preferred no brightness changes for all four surfaces; 

• Neither of the latest two child images were rated more highly than the 
least attractive member of the existing population. 

 
2.2.3 Semantic differential ratings 
 
After the end condition was reached, participants rated the appearance of 
six images on a series of semantic differential (adjective pair) scales.  Two 
of the images rated were the image with the highest attractiveness rating 
in the final population (Best image), and the image rated third highest from 
the initial population (75th percentile image), both of which were 
(potentially) different for every participant.  The other four images rated 
were identical for all participants.  These were the Maximum and Minimum 
images described above, an image designed to give similar, mid-range, 
luminances on all surfaces (Neutral image), and an image designed to 
have the same overall luminance as the Neutral image but with higher 
luminance on the ceiling and far walls (Ceiling Boost image).  These latter 
four images are shown in Figure 4. 
 
Newsham et al. [2004] used 15 adjective pairs for semantic differential 
ratings.  Factor analysis of their data suggested three basic factors related 
to attractiveness, uniformity, and brightness.  We wanted to keep the time 
required of each participant to 30 minutes, so we used only nine individual 
rating scales in the present study.  These nine scales were made up of 
three sets of three, each set designed to load on factors of Attraction, 
Non-Uniformity1, and Brightness.  The three Attraction scales were: ugly – 

                                            
1
 This label is expressed in this way because higher values of the final variable indicated 

more variability, whereas lower values indicated uniformity. 
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beautiful; pleasant – unpleasant; comfortable – uncomfortable.  The three 
Non-Uniformity scales were: varied – unvaried; simple – complex; non-
uniform – uniform.  The three Brightness scales were: bright – dim; dark – 
light; radiant – murky.  The six images were presented in random order, 
with each adjective pair presented one at a time next to the image.  
Participants gave their rating by moving a cursor on a continuous scale 
between the two adjectives; the value recorded ranged from 0 to 100. 
 
Finally, the Best image was recalled to the screen and the participant was 
asked to indicate, for each surface in turn, whether they would prefer it to 
be A lot Brighter, a little Brighter, No Change, a little Darker, or A lot 
Darker.  The image did not change in response to this input. 
 
Completion of the on-screen part of the experimental procedure took a 
mean time of 19:12 (min:sec); s.d. = 5:53. 
 
2.2.4 A note on image rendering 
 
Four lighting circuits each with 32 levels of output means 324 , or 1.05 
million possible unique images.  Rendering high quality images on-
demand, or pre-rendering all of the images in advance were not possible.  
Instead, we rendered all combinations of light output from the four circuits 
at four levels: 0, 33, 67 and 100% of full output, which gave 256 images.  
We then devised an interpolation scheme to generate any other possible 
combination of luminaire outputs from these 256 images in less than 10 
seconds with low error (more information on this process is available at: 
http://irc.nrc-cnrc.gc.ca/ie/lighting/office/images_e.html). 

 
2.3  The Experimental Space 
 
Images were projected onto a viewing screen using an InFocus LP530 
data projector (see Figure 6).  Participants sat in a chair and viewed the 
image through a height-adjustable rectangular slot.  The inside of the 
space was completely black except for the image.  The participant had 
access to a keyboard and a mouse for questionnaires and ratings. 
 
The distance from the projector to the viewing screen affected both the 
size of the image and the maximum brightness of the image.  We chose a 
distance that gave an image that was 1.30m (51”) wide and 0.83m (33”) 
high; the computer monitor in the image was 0.125m (5”) corner to corner, 
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or about 33% of full size.  Luminances in the image were then up to ~140 
cd/m2, a typical maximum for most surfaces in a non-daylit office. 
 
2.4  Luminance Measurements 
 
To calibrate the display we projected a target onto the screen with five 
blocks of uniform grey, and measured their luminance values used a 
Topcon BM3 luminance meter.  We adjusted the brightness and contrast 
settings on the projector to get a condition where the 0 grey level (“black”) 
was close to 0 cd/m2, the 255 grey level (“white”) was close to a typical 
maximum luminance, and the relationship between grey level and 
luminance was close to linear in the most common luminance range (20 – 
80 cd/m2).  The final calibration is shown in Figure 7. 
 
With the brightness and contrast levels fixed, we made the same 
calibration measurements prior to each participant’s experimental session.  
These measurements are also shown in Figure 7.  These data show that 
the projector’s output was not constant between sessions, and could vary 
by 10 – 15%. This seemed to be part of normal projector functioning.  This 
effect does create error in the experimental process.  However, the effect 
was largest at the high end of possible luminances, which were not 
achieved very often (only 24% of the Maximum image area was greater 
than 80 cd/m2), and were much smaller than the possible luminance range 
created by lighting circuit output settings. 
 
After the experimental sessions were completed, the Best and 75th 
percentile images for each of the participants, as well as the Maximum, 
Minimum, Neutral, and Ceiling Boost images, were re-projected in a 
different laboratory.  These images were measured using a Radiant 
Imaging Prometric video photometer, which took a digital picture of these 
stimuli and provided a luminance measurement for every pixel. 

 
3.  RESULTS & DISCUSSION 
 
3.1  Did the Genetic Algorithm Lead to a Highly-Rated Image? 
 
The mean attractiveness rating of the Best image (scale of 1 to 10) was 
8.6 (s.d. = 1.3), and the modal rating was 9.  When offered the opportunity 
to express a final preference in surface brightnesses of their Best image, 
44% of the 160 votes (4 surfaces x 40 participants) were for ‘No Change’, 
and 89% for the three middle categories of ‘No Change’, ‘A little darker’ or 
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‘A little brighter’.  A large majority of those wanting change preferred an 
increase in brightness, and preferences for change were not evenly 
distributed by room surface. For example, the number of participants 
wanting no change to the desk brightness was low; on the other hand, 
satisfaction with the brightness of the perimeter was high, with few people 
wanting change. 
 
A measure of the efficiency of the algorithm is the number of images seen 
by the participants.  Five participants gave an attractiveness rating of 10 to 
one of the 12 images in the initial population.  The mean number of 
images seen was 21.7 (s.d. = 10.3), small compared to the number of 
possible images. 
 
Although the Best image was not perfectly optimal, it was rated very 
highly.  Participants were viewing an image of a relatively uninspiring 
office space, and some might not have given a rating of 10 in any 
circumstances.  The Best image was achieved after viewing relatively few 
images.  However, many participants desired further small brightness 
changes to their final Best image, particularly an increase in desk 
brightness.  The mean dimmer setting for the downward component of the 
direct/indirect fixtures, the circuit that most affected the desktop, was only 
56%.  This suggest that the optimization process did not allow participants 
to achieve high desktop brightness without compromising other 
preferences.  Therefore, there is room for improvement. 
 
3.2  Are the Optimal (Best) Images Rated Differently than Non-
Optimal Images? 
 
We explored this was through the semantic differential appearance ratings 
of the images.  Figure 8 shows the mean ratings for the six images for 
each of the adjective pairs.  The mean brightness-related ratings for the 
Maximum image are close to 100, and for the Minimum image are close to 
0, therefore including the Maximum and Minimum images in the initial 
population to establish a brightness scale was successful.  The Neutral 
and Ceiling Boost images were designed to have the same overall 
luminance, and their mean brightness-related ratings are very similar.  
Also as expected, the Best image has the highest mean scores on the 
attraction-related ratings (ugly – beautiful, unpleasant – pleasant, 
uncomfortable – comfortable), whereas the Minimum image rates poorly. 
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Our plan was to reduce these nine ratings to the three concepts related to 
Attraction, Non-Uniformity, and Brightness.  It is clear from Figure 16 that 
the mean values of ratings related to Attraction and Brightness were very 
consistent.  It is equally clear that the scales intended to relate to Non-
Uniformity neither agree with each other, nor discriminate very well 
between the six images2.  The single scale uniform-non-uniform does 
order the mean ratings in the expected manner: the Minimum, Maximum, 
and Neutral images are the most uniform, and the Ceiling Boost image is 
the least uniform.  Therefore, for further statistical tests, our measure of 
Non-Uniformity was the single item rating uniform – non-uniform. 
Descriptive statistics for the three scales are shown in Table 2. 
 
We conducted statistical analyses on these three subjective outcomes to 
test differences between the images.  There were a priori reasons for the 
following comparisons: 

• Best vs. Neutral – a test of whether optimal images differed in 
ratings from another image, in this case the comparison is to a non-
optimal, “average” image; 

• Best vs. 75th percentile – a more rigorous test of whether optimal 
images differed in ratings from another image, in this case the 
comparison is to a non-optimal, but relatively attractive image; 

• Best vs. Maximum – previous research [Newsham et al., 2004] 
suggested that brighter images were more attractive; this 
comparison tests whether the optimal image, which is not 
maximally bright, differs in ratings from the maximally bright image; 

• Neutral vs. Ceiling Boost – previous research [Newsham et al., 
2004] suggested that brighter ceilings were more attractive; this 
comparison tests whether images with the same brightness overall 
differ in ratings when the ceiling is brighter in one of the images. 

 
We first conducted overall multivariate analyses of variance (MANOVA) 
for the planned comparisons to test for an overall difference across 
outcomes. It is usual practice (to control for Type I statistical errors) to test 
for univariate differences (differences on single outcomes) only if the 
overall MANOVA is significant.  Only two of the planned comparisons had 
significant MANOVAs; the results of the tests are shown in Table 3. 
 
The Best image was rated significantly brighter and more attractive than 
the Neutral image, as expected.  On average, the Best image had higher 

                                            
2
 These impressions were supported by the Cronbach’s Alpha statistic of scale reliability. 
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luminance (see Table 4): 36.9 cd/m2 vs. 28.4 cd/m2.  The Best image was 
rated significantly less bright than the Maximum image, and the Maximum 
image had a higher luminance (55.6 cd/m2).  Nevertheless, the Best image 
was significantly more attractive than the Maximum image, suggesting that 
images that are too bright are less attractive.  Previous research 
[Newsham et al., 2004] suggested that images that are too uniform are 
also less attractive, and the Maximum image was rated as significantly 
more uniform than the Best image. 
 
There was no significant difference between the Best and 75th percentile 
images on the room appearance ratings.  There was little difference 
between the images in luminance (75th percentile image mean was 35.6 
cd/m2).  Note that the ratings of image attractiveness made on a scale of 1 
– 10 used during the optimization process did differ significantly between 
the two images (Best: Mean=8.6, s.d. 1.3; 75th percentile: Mean=6.6, s.d. 
1.5; F(1,39)=69.98, p<0.001, η2 

partial = 0.64).  In Newsham et al. [2004] 
the 75th percentile image was much less realistic than the Best image, and 
there were significant differences in room appearance ratings.  Perhaps 
the use of more realistic images meant the range of appealing images was 
wider. 
 
The MANOVA showed no significant difference in ratings between the 
Neutral and Ceiling Boost images.  Therefore the finding of our previous 
work, which indicated the primacy of ceiling luminance in determining 
attractiveness, was not supported.  This could have been because the 
images were both too dim, or because we did not boost the ceiling 
luminance enough in the Ceiling Boost image. 

 
3.3  Are Preferred Luminances the same as Those Derived from 
Experiments in Real Spaces? 
 
Table 4 presents a summary of the luminance information from the 
images, and Figure 9 shows how the image was divided into surfaces for 
analysis.  Table 4 also contains a physical measure of image luminance 
non-uniformity, labelled RMS, calculated as follows: 
 

RMS = √(∑i
 ((Lumi – WAV)2 � Ni) / (∑i

 Ni) � WAV) 

 
where, 
i = surface label for 1 to 9 surfaces 
Lumi = mean luminance of surface i (cd/m2) 
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WAV = weighted average luminance of image (cd/m2) 
Ni = number of data points (relative area) for surface i 
 
RMS accounts for the difference between the individual surface 
luminances and mean luminance.  It is scaled by the mean luminance, so 
that images do not have higher values just by virtue of being brighter.  The 
higher the value of RMS the higher the physical non-uniformity. 

 
We compared the preferred luminous conditions in the Best images to 
those derived from experiments in real spaces.  All of the studies we refer 
to in this section excluded daylight, analogous with our study.   
 
Loe et al. [1994] had observers rate a small conference room from a point 
equivalent to the room’s entrance.  Lighting conditions were manipulated 
by the experimenters using a variety of luminaires.  They concluded that 
for ‘visual lightness’ the preferred average luminance in a horizontal band 
40o wide should be >= 30 cd/m2.  We have approximated an equivalent 
average luminance, shown in Table 4 with the label ’40-deg band’.  This is 
the weighted mean luminance of the far walls, other cubicles, partitions, 
desk, and computer screen.  The median value in the Best images was 
37.7 cd/m2, and only 9 participants chose Best images with the 40-deg 
band luminance below 30 cd/m2. 
 
Veitch and Newsham [2000] conducted a study in a similar workstation in 
a laboratory.  Participants had dimmable control over three lighting circuits 
(one indirect and two direct) as well as on-off control over an undershelf 
task light.  Participants occupied the space for an 8-hour day and 
conducted typical office tasks.  One value reported was the mean 
luminance in an area that included the partitions behind the computer and 
under a binder bin, part of the desktop and part of the binder bin – chosen 
to represent the 40o horizontal band of field of view from Loe et al. [1994].  
The median luminance in this area resulting from participants’ choices was 
39.2 cd/m2 (min. = 11.5, max. = 61.0).  The median luminance of the 
partitions and 40-deg band in the Best images was 35.5 cd/m2 (min. = 
12.3, max. = 55.9), and 37.7 cd/m2 respectively. 
 
Berrutto et al. [1997] gave participants dimming control over various 
luminaires in small private offices.  Exposures were limited to 20 minutes, 
and data were collected separately for different tasks.  They concluded 
that for non-VDT tasks wall luminance at eye level should be around 60-
65 cd/m2, and for VDT tasks the luminances around the screen should be 
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equal or lower than the luminance of the screen.  In our study, the median 
screen luminance in the Best images was 30.6 cd/m2 and the partitions 
had a median luminance of 35.5 cd/m2.   
 
Van Ooyen et al. [1987] presented participants with different office 
luminous environments by manipulating light distributions and changing 
the reflectivity of surfaces; working plane illuminance was maintained at 
around 750 lux.  The spaces were private two-person offices, and data 
were collected separately for different tasks.  For non-VDT tasks, 
preferred wall luminances were 30 to 60 cd/m2, and preferred working 
plane luminances were 45 to 105 cd/m2.  For VDT work the values were 
reduced: preferred wall luminances were 20 to 45 cd/m2, and preferred 
working plane luminances were 40 to 65 cd/m2.  In our study, the median 
partition luminance of the Best images was 35.5 cd/m2, and the median 
desktop luminance was 52.5 cd/m2.  Van Ooyen et al. reported that the 
preferred ratio of working plane luminance to wall luminance was 1.33.  In 
our study, the equivalent ratio, desk:partitions, was 1.49.  Note that with 
the lighting systems we modelled, a low desk:partition ratio was very 
difficult to achieve. 
 
Finally, we looked at the variability in individual preference.  We observed 
a wide variety of preferred luminances in the Best images.  This is 
encouraging because studies of individual preference in real spaces also 
report wide variety.  We performed a quantitative comparison to the 
results of Veitch and Newsham [2000].  Figure 10 shows a plot of two 
measures of the frequency of preferred luminance: for Veitch and 
Newsham we plot the mean luminance in the (approx.) 40o horizontal 
band of field of view (as described above).  For this study, we plotted the 
derived value labelled ’40-deg band’ in Table 4.  The two curves show 
remarkable agreement. 
 
Taken together, these comparisons show that the preferred luminances 
derived from our study compare well with the preferred luminances from 
studies in real spaces.  As such, these comparisons reinforce the 
hypothesis that the images are perceived in the same way as real spaces. 
 
3.4  Do Subjective Ratings Correlate with Photometric Descriptors? 
 
Lighting researchers have often sought to correlate occupant ratings of 
luminous environments with photometric descriptors.  This task has 
proven difficult, though some progress has been made [for example: Flynn 
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et al., 1979; Loe et al., 1994; Veitch & Newsham, 1998; Newsham & 
Veitch, 2001]. 
 
Therefore we examined whether photometric measures of the images 
(such as those in Table 4) were predictive of Attraction, Non-Uniformity, 
and Brightness ratings, using linear regressions.  We began by including 
ratings and photometric values for all six images rated using the semantic 
differential scales.  This gave us 240 data points per regression (6 images 
x 40 participants).  Because each participant provided six data points, the 
points are not independent and simple regressions would provide 
misleading results.  Two of the six images varied between participants, 
making traditional analysis-of-variance techniques inappropriate.  The 
relatively new statistical technique of Hierarchical Linear Modelling (HLM, 
or mixed regression) [Bryk & Raudenbush, 1992; Hox, 1995] accounts for 
the within-subject effects in this kind of analysis.  Conceptually, this 
analysis consists of creating separate regression lines for each participant, 
and then testing the distribution of regression weights (slopes and 
intercepts) against the null hypothesis that the average regression weight 
equals zero.  The technique also produces a single best-fit regression line 
across all data points3.  The results of the HLM analyses are summarized 
in Table 5.   
 
We expected that images with a higher average luminance (labelled 
‘WAV’ in Table 5) would have higher Brightness ratings.  The HLM 
analysis showed the linear trend was significant, and the proportion of 
variance explained was high (0.72).  Note that the intercept was close to 
the origin, as expected: an image with a luminance of zero should get a 
zero rating of Brightness. 
 
We were concerned that the linear relationship between Brightness and 
WAV was being driven by ratings of images at the extremes of the 
luminance range: the Minimum and Maximum images.  We therefore 
repeated the analysis with these images removed.  The linear trend was 
still significant and strong, with coefficients similar to those from the 
analysis with all six images: intercept = -6.8; slope = 1.71 (t = 8.59, d.f. = 
39, p < 0.001); proportion of variance explained = 0.51.  Similarly, in the 

                                            
3
 The model we generally used was a random intercept and random slope model with no centering, 

with one or more photometric predictors at level-1, and no level-2 predictors; we were interested in 
explaining whether photometric variables predicted appearance ratings (level-1), and not in 
investigating what participant characteristics might have led to differences in ratings between 
participants (level-2). 
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analyses of Uniformity and Attraction below, we found that removing the 
data from the Minimum and Maximum images did not substantially affect 
the results.  Therefore, all analyses in Table 5 include data from all six 
images. 
 
The weighted average luminance was highly correlated (r > 0.85) with all 
the other luminances shown in Table 4.  This is almost inevitable with real 
lighting systems.  We did repeat the HLM analysis on Brightness ratings 
using the other luminances as predictors, but found that all were very 
similar in predictive power.  Therefore, we conducted other analyses with 
WAV as the luminance predictor. 
 
Previous work using the genetic algorithm method [Newsham et al., 2004], 
and using brightness matching and rating scales methods in real spaces 
[Tiller & Veitch, 1995; Tiller et al., 1995] found a significant relationship 
between ratings of brightness and photometric uniformity: less uniform 
images were rated as being more bright.  Data from this study supported 
this.  Table 5 shows a significant relationship between Brightness rating 
and RMS, with a positive slope.  However, using WAV and RMS together 
as predictors of Brightness ratings did not increase the predictive power 
over using WAV alone.  WAV and RMS are correlated (r = 0.37), with 
more luminous images tending to be less uniform.  The relationship 
between Brightness and RMS might have resulted from this confound, 
although this seems unlikely given that the relationship between 
brightness and uniformity was observed in two experiments in which 
uniformity varied while average luminance was held constant [Tiller & 
Veitch, 1995; Tiller et al., 1995]. 
 
We also found a significant relationship between Brightness rating and the 
ratio between desk and partition luminance (labelled DSK:PAR in Table 
5).  The slope was negative, indicating that the lower the luminance 
difference between these two surfaces the higher the Brightness rating.  
However, using WAV and DSK:PAR together as predictors of Brightness 
ratings did not increase the predictive power over using WAV alone.  WAV 
and DSK:PAR were highly correlated (r = -0.83), with more luminous 
images tending to feature desks and partitions with more similar 
luminances.  The relationship between Brightness and DSK:PAR might 
have resulted from this confound. 
 
For Non-Uniformity, the obvious first predictor was RMS.  The relationship 
between Non-Uniformity ratings and RMS was significant and in the 
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expected direction.  The intercept was very close to zero, as expected: an 
image where all surfaces had the same mean luminance should be 
subjectively rated as very uniform.  This result supports the relationship 
found in Newsham et al. [2004], but is not as strong.  This is likely 
because in the previous work the range of photometric variability between 
images was much larger. 
 
Whereas there were obvious photometric predictors for ratings of 
Brightness and Non-Uniformity, there were no such obvious predictors for 
ratings of Attraction.  Newsham et al. [2004] showed that brighter images 
were rated as more attractive, so we began there.  Table 5 shows that the 
relationship was significant, WAV explained 30% of the variance in 
Attraction ratings.  Figure 8 suggests that the relationship with WAV was 
not linear, the Maximum images received lower average attractiveness-
related ratings then the Best images, despite having a higher average 
luminance.  This implies a quadratic component to the relationship, and 
therefore we examined Attraction vs. WAV and WAV2.  This relationship 
was also significant, and explained 50% of the variance in Attraction 
ratings, substantially more than WAV alone.  The coefficients were also in 
the expected direction: positive for WAV so that Attraction increases with 
luminance at low luminances, and negative for WAV2, resulting in a 
penalty on Attraction if average luminance is too high. 
 
Newsham et al. [2004] also suggested that some non-uniformity increased 
attractiveness, but excessive non-uniformity decreased attractiveness.  
Therefore, we examined the Attraction vs. RMS relationship.  The 
relationship was significant with a positive coefficient, the more non-
uniform the image, then more attractive it was rated.  To test if excessive 
non-uniformity was negative for attractiveness, we examined Attraction vs. 
RMS and RMS2.  This relationship explained 27% of the variance in 
Attraction ratings, a little more than RMS alone.  The coefficients were 
also in the expected direction: positive for RMS so that Attraction 
increased with non-uniformity at low non-uniformity, and negative for 
RMS2, resulting in a penalty on Attraction if non-uniformity was too high.  
However, although the RMS coefficient was significant, the RMS2 

coefficient just failed the significance test (p = 0.059).  Normally we do not 
comment on non-significant tests (and this test is not included in Table 5), 
but we comment here because of the theoretical interest in this trend.  The 
lighting design we used to create the images did not generate a large 
range of values photometric uniformity.  Images with more variability might 
produce a significant Attraction vs. RMS and RMS2. 
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As noted above, WAV and RMS are positively correlated, and it could be 
that the significant relationship between Attraction and RMS arose 
because images with higher RMS values also tended to be brighter.  
Therefore we examined Attraction vs. WAV and RMS.  Table 5 shows that 
this relationship was significant, and explained 47% of the variance in 
Attraction ratings, substantially more that either WAV or RMS alone.  This 
result suggests that RMS is contributing unique explanatory power. 
 
The obvious next step would be try WAV, WAV2 and RMS together as 
predictors.  Unfortunately, given the data we had, the HLM analyses were 
not stable for three predictors.  Future studies with more participants 
observing more images might allow for HLM analyses with more 
predictors. 
 
The models of Attraction vs. WAV and WAV2, and Attraction vs. WAV and 
RMS both explained about the same proportion of variance.  We 
encourage others to explore these relationships in future studies, both with 
images and with real spaces as stimuli.  We also recommend ensuring a 
wider range for the photometric predictor values. 
 
4.  CONCLUSIONS 
 
The general goal of this experiment – to replicate and extend the findings 
of Newsham et al. [2004] using a more realistic image – was met.  The 
results demonstrated that the genetic algorithm approach was quite 
successful in obtaining a participant’s preferred luminance patterns in a 
high-quality, realistic colour image of an office space.  Further, the 
preferred luminances from the projected images were very similar to those 
from experiments conducted in real settings. 
 
Importantly for lighting quality research, subjective ratings of room 
appearance in the image were significantly related to photometric 
descriptors of the image.  Ratings of image brightness were predicted by 
the average luminance of the image (WAV), and by a measure of 
photometric non-uniformity (RMS).  Ratings of image non-uniformity were  
predicted by RMS.  And, in particular, ratings of image attractiveness were 
predicted by various combinations of WAV, WAV2, RMS, and RMS2.  The 
latter result indicates that an attractive image of an office space is one that 
is bright, but not too bright, and that has some non-uniformity but is not too 
non-uniform. 
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Our results suggest that evaluation of images has value as both a 
research tool and a method of presenting lighting design solutions to 
clients and occupants.  If future work reinforces our findings that image 
evaluation is equivalent in many ways to the aesthetic evaluation of real 
spaces, this method might, in some circumstances, be able to replace 
much more expensive studies in real settings. 
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Table 1.  Participant characteristics. 
 

 Total 
responses 

  

Sex  Female Male 
 40 28 12 

Age  18-29 30-39 40-49 50-59 60-69 
 40 2 9 16 13 0 

Correction 
Lenses 

 
None 

Reading 
Glasses 

Distance 
Glasses 

Bi- or 
Trifocal 
Lenses 

Gradual or 
Multifocal 
Lenses 

Contact 
Lenses 

 40 10 3 12 8 5 2 

Principal 
Occupation 

 
Administrative Technical Professional Managerial 

 40 22 0 15 3 

Language  English French 
 40 32 8 
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Table 2.  Descriptive statistics for the three scales used in statistical tests. 
 
 Attraction Non-Uniformity Brightness 

Image 
(ugly – beautiful,  

unpleasant – pleasant, 
uncomfortable – comfortable) 

(uniform – non-uniform) 
(dim – bright, dark – light, 

murky – radiant) 

Best    
Min. 0.0 0.0 6.0 

Max. 100.0 100.0 100.0 

Med. 67.8 39.5 57.8 

M 63.8 42.6 58.1 

SD 26.2 28.6 24.7 

75
th

 percent    
Min. 0.0 0.0 5.3 

Max. 100.0 100.0 100.0 

Med. 53.0 49.0 49.7 

M 53.3 41.4 55.6 

SD 29.2 28.1 29.0 

Neutral    
Min. 0.0 0.0 0.0 

Max. 88.0 80.0 100.0 

Med. 36.3 40.5 38.3 

M 39.8 36.6 41.3 

SD 25.4 22.0 27.3 

Ceiling Bst.    
Min. 0.0 0.0 0.0 

Max. 100.0 100.0 91.7 

Med. 34.5 50.0 35.0 

M 37.5 45.0 41.2 

SD 24.4 27.6 26.5 

Maximum    
Min. 0.0 0.0 0.0 

Max. 100.0 97.0 100.0 

Med. 28.7 20.5 94.3 

M 41.4 25.4 89.6 

SD 37.4 26.4 13.6 

Minimum    
Min. 0.0 0.0 0.0 

Max. 85.7 92.0 34.3 

Med. 5.3 10.5 1.7 

M 11.8 24.2 5.1 

SD 19.9 27.8 7.6 
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Table 3.  Result of MANOVAs and univariate effects on appearance 
ratings.  Statistical tests were within-subjects on a single independent 

variable: image type; with two levels in each comparison.  Only statistically 
significant effects are shown (p < 0.01).  η2 

partial is a measure of effect 
size, or proportion of variance explained by the effect. 

 
 Best vs. Neutral Best vs. Maximum 

Outcome F(1,39) η2 
partial F(1,39) η2 

partial 

Attraction  28.24 0.42 9.76 0.20 

Non-Uniformity   7.98 0.17 

Brightness 9.68 0.20 55.79 0.59 

 MANOVA: Wilks’ Λ = 0.528;  
η2 

partial(ave) = 0.22; F(3,37) = 11.01 
MANOVA: Wilks’ Λ = 0.362;  
η2 

partial(ave) = 0.32; F(3,37) = 21.69 
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Table 4.  Luminance-related information for the six different images 
(cd/m2).  Values from the Best and 75th percentile images were different 

for each of the 40 participants, therefore measures of variability are 
shown.  Values for the Neutral, Ceiling boost, Maximum and Minimum 
images were the same (within experimental error) for every participant.  
Values for combinations of surfaces were calculated by weighting each 

surface’s contribution according to its size. 
 

Best image Min. Max. Median Mean s.d. 

Ceiling 7.9 57.5 40.5 37.5 14.3 

Far walls 13.6 62.4 42.1 39.8 14.2 

Other cubicles 12.4 54.0 32.1 32.9 11.7 

Left partitions 9.3 54.4 34.7 34.4 11.4 

Left desk 15.2 74.1 55.3 53.3 14.3 

Right partitions 10.5 57.0 33.9 34.5 12.9 

Right desk 12.6 73.5 50.2 48.5 16.5 

Computer Screen 17.5 43.3 30.6 30.3 7.0 

Other Image Areas 14.0 45.4 31.1 30.3 8.6 

Weighted Average 13.8 57.4 36.6 36.9 11.7 

Left partitions + Left desk 11.2 60.7 41.0 40.4 12.2 

Right partitions + Right desk 11.3 63.0 39.4 39.5 14.1 

Left partitions + Right partitions 12.3 55.9 35.5 34.4 11.9 

Left desk + Right desk 19.9 73.8 52.5 50.3 14.6 

40-deg band 14.7 60.2 37.7 38.3 12.3 

Desk : Partitions 1.32 1.76 1.49 1.50 0.11 

RMS 1.0 2.3 1.2 1.4 0.3 
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Table 4. continued … 
 

75th percentile image Min. Max. Median Mean s.d. 

Ceiling 7.2 52.6 44.4 38.1 13.5 

Far walls 9.6 56.7 45.0 39.0 15.1 

Other cubicles 6.9 48.6 33.9 31.7 10.4 

Left partitions 4.7 49.4 33.8 31.5 10.4 

Left desk 7.3 68.6 52.8 49.2 15.2 

Right partitions 6.8 50.7 33.8 32.8 11.0 

Right desk 10.4 68.8 50.1 47.0 14.7 

Computer Screen 14.2 38.4 29.9 29.4 5.9 

Other Image Areas 9.5 41.3 29.9 29.2 7.6 

Weighted Average 8.0 51.9 38.5 35.6 11.0 

Left partitions + Left desk 5.5 55.6 39.8 37.1 11.9 

Right partitions + Right desk 8.1 56.7 39.4 37.9 12.3 

Left partitions + Right partitions 6.0 50.1 33.5 32.2 10.5 

Left desk + Right desk 9.3 67.0 50.1 47.8 14.2 

40-deg band 7.8 54.3 38.7 36.5 11.5 

Desk : Partitions 1.34 1.76 1.48 1.50 0.09 

RMS 0.7 1.7 1.2 1.2 0.2 

  

 Image Type 

 Neutral 
Ceiling 
Boost 

Maximum Minimum

Ceiling 29.4 38.0 56.8 7.4 

Far walls 32.6 41.8 61.7 10.8 

Other cubicles 25.6 26.2 52.5 7.0 

Left partitions 20.7 19.9 51.5 4.8 

Left desk 32.5 28.6 70.3 7.6 

Right partitions 27.3 24.3 55.7 6.9 

Right desk 41.9 33.9 71.6 10.8 

Computer Screen 25.9 24.8 41.0 15.2 

Other Image Areas 24.6 23.2 42.9 10.1 

Weighted Average 28.4 29.1 55.6 8.2 

Left partitions + Left desk 24.5 22.7 57.5 5.7 

Right partitions + Right desk 32.6 27.8 61.4 8.3 

Left partitions + Right partitions 24.5 22.4 53.9 6.0 

Left desk + Right desk 38.3 31.9 71.1 9.6 

40-deg band 29.0 28.3 58.3 7.9 

Desk : Partitions 1.57 1.42 1.32 1.59 

RMS 1.0 1.3 1.1 0.7 
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Table 5.  Results of the HLM analyses. Each line shows a separate 
regression model, using the predictor variables indicated. All coefficients 

(slopes) shown are statistically significant (p < 0.05).  All intercepts shown 
were also are statistically significant (p < 0.05), unless shown in italics.  

WAV=Weighted Average Luminance; DSK:PAR=Desk:Partitions. 
 

Outcome Predictor Intercept t (d.f. = 39) Coefficient t (d.f. = 39) 
Proportion 
of Variance 
Explained 

Brightness WAV  -7.8 -2.49 1.75 22.37 0.72 

 DSK:PAR  352 15.74 -205 -13.48 0.48 

Non-
Uniformity 

RMS  -1.3  32.6 4.73 0.26 

Attraction WAV  20.0 3.59 0.62 3.62 0.30 

 WAV, WAV
2
  -5.4F

  2.66, -0.032 5.94, -3.99 0.50 

 RMS  -13.7  48.2 6.86 0.21 

 WAV, RMS  -11.2  0.41, 32.8 2.09, 4.27 0.47 

Note, in this analysis the proportion of variance explained refers to variance at 
level-1, at the level of the individual ratings.  The total variance at level-1 is 
calculated using a ‘random intercept model’ that is, an HLM model with no 
predictors; call this σ1

2.  We then add the level-1 photometric predictor, which 
reduces the unexplained level-1 variance to σ2

2.  The proportion of variance 
explained at level-1 is then (σ1

2 - σ2
2)/ σ1

2. 
 

F This is a fixed intercept model, meaning that when HLM calculates regression 
equations for each participant, it assigns each participant the same (best-fit) 
intercept.  Our general preference is to use a non-fixed (random) intercept for our 
models, but this particular model is not stable without a fixed intercept.  
Nevertheless, a fixed intercept, with a value close to zero, is not unreasonable in 
this case.  With a luminance of zero it is a reasonable assumption that all 
participants would give an Attraction rating of zero. 



 Lighting Quality Research using Rendered Images of Offices 29 
 

 

Figure 1.  Interface for the experimental task.  Participants rated the image 

http:/ tml

 

for overall attractiveness on a scale of 0-10.  They then used the boxes at 
the bottom to indicate their brightness preference for each surface.  

Example images can be viewed in colour at: 
/irc.nrc-cnrc.gc.ca/ie/lighting/office/images_e.h
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Figure 2.  A plan view of the model used for the LightscapeTM renderings. 
The suspended direct/indirect fixtures are clearly visible as the white 

rectangles.  The crosshairs show the centre of the wall washers.
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Figure 3.  Overall flow diagram of software used in experiment 
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Figure 4.  Four of the images used in the semantic differential ratings.  
Im  

 

ages are (from top left, clockwise): Maximum, Minimum, Ceiling Boost,
Neutral.
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Father: 1 0 0 0 0  0 0 0 1 0  1 1 0 1 0  0 0 1 0 0  

 
 
 

Mother: 0 0 0 0 0  0 0 1 0 1  1 1 0 1 0  1 0 1 1 1  
 
 
 
 
 
 

Son: 1 0 0 0 0  0 0 1 1 0  0 1 0 1 0  0 0 1 1 1  

Crossover 
occurs 

Crossover 
occurs

Mutation 
occurs

Crossover 
occurs

 
 
 
 
 
 
 
Figure 5.  Crossover and mutation from parents’ phenotypes (lower two images in Figure 
4) to create a son phenotype; mother’s genes are underlined.  Resulting combination of 

surface luminances is shown.
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Figure 6.  Experimental set-up.  Participants viewed the projected image 
through a viewport (photo on left).  The space into which they looked was 

black except for the projected image.  Diagram shows side elevation, 
approximately to scale.
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Figure 7.  Calibration of projector screen luminance vs. image pixel grey 
level.  Shown upper right is the image that was projected onto the screen 
to make the calibration measurements.  Diamond symbols with heavy 
(red) line shows original calibration.  Lighter lines show measurements 
made prior to each participant doing the experiment.
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 percentile 
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Figure 8.  Comparison of mean semantic differential appearance ratings 

for the Best, 75th percentile, Neutral, Ceiling Boost, Maximum, and 
Minimum images.  Table shows standard deviations associates with each 

graph point.
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 Screen 42 

 

 Miscellaneous 592 

 
Figure 9.  How the image was divided into areas for luminance analyses.  

Also shown are the number of data points for each surface from the 
Prometric output file, indicative of the relative area of each surface.
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Figure 10.  Preferred luminance in the field of view, for this study and 

a study done in a real space [Veitch & Newsham, 2000]. 


