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Abstract

Projector-camera systems are used in many applications

that need geometric calibration of the projectors. As is the

case for cameras, calibration of a projector requires the es-

tablishment of the correspondence between known features

of a calibration target and the projector pixels. However, a

fundamental difference is that the method must rely on ex-

ternal sensors (i.e. cameras) for its calibration. This intro-

duces additional sources of error that affect the accuracy of

the projector calibration. As a solution, we propose a multi-

camera energy-based approach for establishing the corre-

spondence between the projector and a calibration target.

Performing projector calibration using the correspondence

obtained by our method allows a significant improvement

in accuracy. We demonstrate the validity of our approach

using off-the-shelf and low cost equipment, and validate the

results using a laser tracker.

1 Introduction

In the last decades, projector-camera systems have been

used in many applications such as 3D scanning, augmented

reality and multi-projector visualization. For many applica-

tions, geometric calibration of the projector is a delicate and

crucial step. By geometric calibration, we mean the calibra-

tion of the intrinsic and extrinsic (pose) parameters of the

projector. It requires the establishment of the correspon-

dence between known features of a calibration target and

the projector pixels. When calibrating a camera, establish-

ing this correspondence is straightforward. However, it is

no longer the case for a projector, which is mathematically

modeled in the same way as a camera, but one that can-

not capture an image of the calibration target. The method

must rely on external sensors (i.e. cameras) and structured

light techniques for calibration. This introduces extra error

sources that affect the accuracy of the projector calibration.

The limited depth of field, the lens aberration, the anti-

aliasing filter and the small fill factor are some of the error

Figure 1. Top) Setup used for projector calibration. Bot-

tom) Artifact present in decoded Gray code image with the

standard approach. Left) Original image Right) Decoded

Gray code pattern. Note that since the target is planar the

transitions should form straight lines.

sources originating from the cameras. Moreover, when us-

ing color cameras, artifacts are introduced by Bayer color

processing and the Bayer matrix itself. The number and

position of the cameras imaging the calibration target are

also important. Photogrammetry or metrology grade cam-

era and lens could be used to reduce the impact of those

error sources, but this would dramatically increase the cost

of a calibration bench. Futhermore, those error sources are

added to the ones already present in traditional calibration,

that is, the fitness of the calibration model, the quality of

the calibration target and the characteristics of the device

that must be calibrated. For projectors, the limited depth of

field, the lens aberration and the color wheel affect the de-



tectability of intensity-edge of the projected image. Also,

error is introduced by dithering and signal synchronization.

Figure 1 shows a calibration bench and an example of ar-

tifacts that impact the accuracy of the correspondence and

ultimately the accuracy of the recovered calibration param-

eters.

We propose a novel and robust energy framework for es-

tablishing the correspondence between the target and the

projector. We show that our approach allows a significant

improvement in accuracy when calibrating a projector using

planar calibration[23, 18]. In our approach, we use many

low resolution cameras with overlapping views of the cali-

bration target. Whilst projector calibration methods usually

rely on sparse correspondence between target and projector

[11, 22], ours uses dense correspondence. Our method im-

proves the robustness to noise and compensate for the dif-

ferent error sources. Also, the acquisition time is reduced

since low resolution cameras usually have a higher frame

rate than high resolution ones and are moreover cheaper.

This makes our approaches very suitable for 3D computer

vision applications. We demonstrate the validity of our ap-

proach using off-the-shelf and low cost equipment, and our

results are validated using a laser tracker. The remainder of

this paper is divided as follows: in Section 2, previous work

is presented; Section 3 presents our method for establish-

ing the correspondence between projector and calibration

target; Section 4 presents the minimization framework; ex-

perimental results are discussed in Section 5.

2 Previous work

Since the establishment of the correspondence for pro-

jector calibration relies on structured light techniques, we

will first briefly review the state of the art in structured light

systems before presenting the previous work more directly

related to our approach.

2.1 Structured light

In a structured light system used for projector calibra-

tion, the projector “applies” textures to the calibration tar-

get and the images (or patterns) are designed such that it is

possible to determine which projector pixel illuminates the

part of the target viewed by a camera pixel. A recent sur-

vey by Salvi et al. [16] classified structured light techniques

in 3 categories: time-multiplexing, neighborhood codifica-

tion and direct codification. Codes from the direct codi-

fication category use a single pattern that contains all the

information needed to establish the correspondence. How-

ever, it is sensitive to noise. Codes based on neighborhood

codification establish a sparse correspondence using a sin-

gle pattern. The spatial resolution is reduced in order to

gain robustness to noise. In this paper, we limit ourselves

to the last category that uses many patterns in order to ob-

tain a dense correspondence. The Gray code is probably the

best known time-multiplexing code[8]. It uses a sequence

of patterns composed of white and black stripes. For this

reason, it is also known as a stripe-based code. The width

of the stripes vary with the patterns. Whilst we use Gray

code patterns, our approach is applicable to other codes.

Energy-based methods for decoding structured light pattern

have been proposed [2, 21, 9, 10, 19]. Some methods use

minimization to remove ambiguity in their code[2, 21, 9].

In contrast, we use it to remove ambiguities introduced by

the different error sources. In [10] an energy minimization

phase shift method that adapts the patterns to the scene ge-

ometry is proposed. In [19] an off-line ICM-based method

is presented.

2.2 Correspondence for projector calibra-
tion

Zhang et al. propose to project phase shift patterns in

order to obtain a one-to-one mapping between pixels of the

camera and of the projector [22] (similar remapping was

also proposed for Gray code [20]). Then, fiducial markers

on the calibration target are localized in the camera image

and transferred to the projector image using the camera-

projector mapping. This allows to match fiducial markers

with projector pixels. Note that it is also possible to use this

mapping to compute the homography between camera and

projector that is used to transfer the fiducial markers’ cam-

era coordinates into projector coordinates. Legarda-Sáenz

et al. have proposed a method where it is not necessary

to have the complete one-to-one mapping [11]. Fiducial

markers are localized within the image and a phase shift

method is used to obtain the projector pixel corresponding

to the camera points viewing fiducial markers[11]. All those

methods allow to find which projector pixel matches a fidu-

cial marker but do not allow to know which fraction of the

pixel. We propose to use the frontier between projector pix-

els as features and for each frontier which we call transition

we find the corresponding point on the calibration target.

The correspondence problem is thus reversed: we no longer

search for the position of a fiducial marker in the projec-

tor, but we search for the position of the projector pixels

on the calibration target. This allows to obtain a dense cor-

respondence rather than a sparse one as in [22, 11]. The

fiducial markers are by nature strong intensity variations on

the calibration target that make decoding of structured light

patterns more prone to error. In the proposed approach,

the frontiers between projector pixels are usually located

on an untextured area of the calibration target, thus reduc-

ing structured light decoding error. As will be shown, our

approach allows a significant improvement of accuracy.

An algorithm for auto-calibration of the pose between



the camera and projector of a reconfigurable structured-light

scanner has been proposed[12]. Okatani and Deguchi[13]

have proposed an auto-calibration method of projector-

camera system where internal parameters of the projector

must also be known. Our method for establishing the corre-

spondence is complementary to those algorithms. Projector

calibration is also discussed in [17] and [15].

3 Establishing the correspondence

Our algorithm for establishing the correspondence be-

tween a projector and a calibration target takes as input two

sets of images G and R. The first one contains the im-

ages Gc
h,b of a planar calibration target acquired by camera

c while the horizontal Gray code pattern representing bit b
is projected. The set also contains the images Gc

v,b that are

similarly defined for the vertical Gray code patterns. The

images Rc
h,b and Rc

v,b of the other set are the images Gc
h,b

and Gc
v,b respectively where white and black stripes of the

Gray code are reversed. Using both G and R increases the

robustness of the technique. There are 2B images in each

set G and R, that is, one for each pattern (bit) and orienta-

tion of the Gray Code. Note that the cameras do not need

to be fully calibrated, we only need the homographies be-

tween the calibration target and the cameras and possibly to

pre-warp the images in order to compensate for radial (and

possibly tangential) distortions. The set P contains points

on the calibration plane. Those are chosen so that they form

a regular lattice on the calibration plane at a specified sam-

pled rate λ. Discussion on the determination of λ is post-

poned until Section 3.1. These points are not the same as

the fiducial markers used to establish the correspondence

between the cameras and calibration target. Also, there is

in general no intensity variation on the target at the loca-

tion of the points. This makes the decoding of structured

light patterns less error prone. The coordinate system of

the lattice is aligned with that of the fiducial markers. It is

thus possible to know the position of a lattice point on the

calibration target even if it is not visible in an image. Fig-

ure 2 shows a representation of the calibration target with

both fiducial markers and points. Since the homographies

between the cameras and calibration target are known (us-

ing fiducial markers from the the ARTag system [5]), it is

possible to warp the images from G and R onto the lattice

of points. Figure 2 also shows the warped images. Sec-

tion 4 will present an energy formulation that combines the

information from all the cameras and allows for each corre-

sponding pair of images in G and R to determine whether

each point of the lattice is on a white or black stripe of the

projector image (see fig. 3 A and B). Once all the verti-

cal patterns are processed, it is possible to decode the Gray

code and identify the column of the projector that illumi-

nates each point on the lattice. The same can be done for all

the rows of the projector using the horizontal stripe patterns.

It is thus possible to construct a pixel map that associates a

projector’s pixel to each point of the lattice (see fig. 3-C).

The transitions in the pixel map are used as feature points

in order to compute the homography between the projec-

tor and calibration target which is then used to perform the

calibration of the projector. The localization error of the

transition found using our discrete labeling is expected to

shrink as the sampling rate of the lattice increases. The next

sub-section discusses the selection of the sampling rate of

the lattice of points P . Note that some points of the lattice

may not be visible from the projector, those are simply re-

moved from the set P (see Fig. 3). In our experiments, we

project a white frame and a black frame and points of P
that do not exhibit a significant change of illumination are

removed from P .

Figure 2. Representation of the calibration target.

3.1 Sampling the calibration target

Rather than directly specifying λ, it is much more in-

tuitive to specify the desired mean magnification factor ω
between the pixels in the different images and the points in

P (i.e. ω controls the amount of sub-sampling that occurs

in the images). In order to compute λ from the user-defined

ω, we need the relation between a point (x, y)T in P and a

pixel (xc, yc)T belonging to camera c which is

x = λ
hcw

1 · (xc, yc, 1)

hcw
3 · (xc, yc, 1)

and y = λ
hcw

2 · (xc, yc, 1)

hcw
3 · (xc, yc, 1)

(1)

where hcw
i is the ith row of the matrix representing the ho-

mography hcw that maps a point from the camera c to the

calibration plane. When this transformation preserves the

area, the determinant of the Jacobian

∂(x, y)

∂(xc, yc)
=

(
∂x
∂xc

∂y
∂xc

∂x
∂yc

∂y
∂yc

)

(2)

is equal to one [1]. Similarly to the rectification algorithm

of [6], the sampling rate λ is obtained by minimizing

∑

c<C

∑

Xc

(det
∂(x, y)

∂(xc, yc)
− ω)2 (3)



which is linear in λ2 and where C is the number of cameras

(indexed from 0 to C − 1). The choice of ω depends on the

quality of the cameras used. For example, it will be large

with a high-resolution photogrammetry-grade camera and

small with a consumer webcam.

Figure 3. Process of establishing the correspondence be-

tween projector and calibration target: A) pixels are labeled

as being lit by white or black vertical stripe of the projector;

B) Idem for horizontal stripe; C) combining all the horizon-

tal and vertical stripes allows to obtain the mapping between

lattice points and projector pixels.

3.2 Target and camera position

In our experiments, the size of the calibration target was

approximately 76 × 98 cm, printed on paper that was lami-

nated on fiberboard, and was thus produced at very low cost.

However, this process resulted in a calibration plane that is

not perfectly planar. Table 4 contains planarity error metrics

measured with a laser tracker of various calibration targets

that we used to produce the results shown in Section 5.3.

Also, another source of error is the non-uniform stretching

of the paper during the making of the target; however, we

did not quantify this error.

The diagram in Figure 4 shows two cameras imaging a

perfect and a distorted calibration target. For camera 1, the

variation in z (∆z) of the target induces a large variation of

localization of the feature in the camera (∆x1). This would

introduce significant error when warping the image from the

camera to the target and would impact the accuracy of the

calibration. This is not the case for camera 2 since ∆x2 is

small. Consequently, we should attempt to place the cam-

eras such that the impact of an imperfectly planar target on

the accuracy of the calibration is minimized. To do so, the

perspective effect in hcw must ideally be eliminated. This

is achieved when the first two elements of hcw
3 are zero.

As presented in [23], the homography hcw is defined by

the superior triangular matrix Ac containing the internal pa-

rameters of camera c, the rotation matrix Rc and translation

vector T c both representing external parameters of the cam-

era c. Explicitly,

hcw =



Ac





rc
11 rc

12 tc1
rc
21 rc

22 tc2
rc
31 rc

32 tc3









−1

(4)

where rc
ij is the element of the ith row and jth column of

the rotation matrix Rc, tci is the i element of the translation

vector T c. The first two elements of hcw
3 are zero when rc

31

and rc
32 are zero, which corresponds to having the camera

focal plane parallel to the calibration target. In our experi-

ments, the camera position had a significant impact on the

accuracy of the calibration. We position the cameras such

that the image plane is as parallel as possible to the calibra-

tion target without being in the field of view of the projector.

Figure 4. The planarity error of the calibration target has

a bigger impact on camera 1 than on camera 2.

4 The energy function

Once λ is computed, the set of points P can be con-

structed and, for each pattern of the Gray code, every point

can be labeled as illuminated by either a black or a white

stripe of the projector. We define the set L as {0, 1} where

0 and 1 represent a black and white stripe respectively. Ex-

plicitly, a B-configuration f : P 7→ L associates a label to

every point. The energy function for the pattern represent-

ing the bit b of the vertical Gray code is Ev,b(f) =

∑

p∈P

(

ev,b(p, f(p))

︸ ︷︷ ︸

likelihood

+
∑

q∈Np

γδ(f(p), f(q))

︸ ︷︷ ︸

smoothing

)

(5)

where δ is 0 at 0 and 1 elsewhere and γ is a user-defined

parameter. Further discussion about γ is postponed until

Section 5. The neighborhood of point p is Np. Since we



use many cameras that acquire close-up views of the cal-

ibration target, we expect that the lattice of points will be

large. As an example, the lattice can reach 10000 × 10000
points while the resolution of common projectors is usually

limited to 1024× 768 or 1280× 1024. In this case, there is

approximately 100 lattice points that are illuminated by the

same projector pixel. There is a high probability that two

neighboring points are lit by the same projector pixel. Thus,

a 4-connected neighborhood is used in the smoothing term

of Eq. 5. Note that, when radial distortion is present, the

transitions do not form straight lines. The solution of Eq. 5

could be obtained using Graph Cut [7]. However, finding a

label to every point is computationally intensive. It is more

efficient to find a location for each label discontinuity using

the Border-Cut algorithm[3]. In the next section, we show

how to modify the Border-Cut framework for the energy

function of Eq. 5. The likelihood term of Eq. 5 is

ev,b(p, d) =
∑

c∈C(p)

eo(d)(Gc
v,b(M

wc(p))−Rc
v,b(M

wc(p)))

#C(p)
(6)

where C(p) is the set of index of the cameras viewing point

p, # is the cardinality of a set and o(d) is 1 when d is 0 and

−1 otherwise. Mwc is the function that applies the homog-

raphy mapping a point p from the calibration plane onto a

pixel in camera c ( obviously Mwc is not a matrix since p is

in Euclidean coordinate ). The homography for each camera

is computed automatically using the ARTag fiducial system

[5]. The intensity values of the image are assumed to range

from zero to one. Mutatis mutandis, the energy function is

defined similarly for horizontal patterns.

Figure 5. Line partitioning of the lattice.

4.1 Minimization using Border-Cut

The Border-Cut framework will be briefly presented for

the energy function of Eq. 5 with vertical stripes. The mod-

ification for horizontal stripes is straightfoward, and more

details about Border-Cut can be found in [3]. The points on

the lattice P are partitioned into the set L of its horizontal

lines. Each line α is a vector of points (pα
1 , . . . , pα

N ), N be-

ing the number of points on each line. Two lines are neigh-

bors if two of their points are. The neighborhood of line α

is denoted Nα and is 2-connected since Np is 4-connected.

This allows the use of efficient dynamic programming algo-

rithms.

There are only two labels in our formulation: if we as-

sume that there is a single label discontinuity in a line, then

there is only one discontinuity point pα
d in the line α pre-

ceding a point with a different label (see Fig. 5). Otherwise,

it is possible to work on a subset of the lattice for which

such a partition exists. A D-configuration d : L 7→ D as-

sociates a discontinuity point to every line. The set D is

simply {1,2,. . . ,N} and represents the index of the discon-

tinuity point. For simplicity, we assume that all the points

on the left of the discontinuity have the same label and all

those on the right have the other label. In our experiments,

most of the time this is the case, since most of the error

comes from discontinuity localization. The general case is

presented in [3]. Allowing only one discontinuity per line

with the pixel at the left of the discontinuity having label g,

the energy to minimize is Eg
v,b(b) =

∑

α∈L
eg
v,b(α, b(α))

︸ ︷︷ ︸

discontinuity

likelihood

+
∑

α∈L

∑

α′∈Nα

sd(α, α′, b(α), b(α′))

︸ ︷︷ ︸

inter-line smoothing

(7)

with respect to b, where the discontinuity likelihood eg con-

tains the likelihood of points on the same line and intra-line

smoothing, which is the smoothing of neighboring point be-

longing to the same line (see Fig. 5). More details can be

found in [3]. The inter-line smoothing (see Fig. 5) is the

pixel smoothing of neighboring points belonging to differ-

ent lines (see Fig. 5).

When all the points on the left of the discontinuity have

the same label and all those on the right have the other label,

the 2-connected inter-line smoothing function between two

neighbor lines is simply the difference of the discontinuity

location multiplied by γ. Thus, the fast message passing

presented in [4] can be used. The complexity of the entire

algorithm of Border-Cut when n discontinuities of the Gray

code are present is Θ(n.N.M) where N is the length of a

line and M the number of lines. For our problem, even if

the set P is huge the interval in which the discontinuities

move is limited and is N is small.

Note that we do not need to hold the entire lattice in

memory, and we only require to compute the cost function

for a relatively small number of lattice points. The Border-

Cut framework requires an initialization which is provided

by the solution obtained without smoothing by decoding

the Gray code independently in each image. The discon-

tinuities are found in the image and then projected onto the

lattice. Also, note that rather than using the discrete Border-

Cut framework [3], the level set framework could have been

used [14]. However, a discretization already occurs in the



image formation process and the sampling rate of the lat-

tice is computed taking into account this discretization. We

believe that our discrete setting is adequate and our experi-

mental results yield a significant improvement in accuracy.

When no radial distortion is expected, level set would allow

us to include the constraint that straight lines should remain

straight lines under projective transformed.
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Figure 6. Results from simulation of the calibration of

internal and external parameters. Top left) localization error

(in mm) of the center of projection of the projector. Top

right) orientation error (in degrees) of the optical axis of the

projector Bottom left) focal length error (in pixels) Bottom

right) localization error (in pixels) of the principal point.

5 Experimental results

We compare our approach for establishing the corre-

spondence between projector and calibration target with the

standard method of finding the fiducial markers of the cali-

bration target in the camera’s image, and decoding the Gray

code at those points to obtain the projector-target correspon-

dence [22, 11]. We choose the accuracy of projector calibra-

tion as a performance metric for our comparison. In the next

sub-section we present the projector model that was used.

5.1 Projector calibration model

The projector model used in our experiments is similar to

the one presented in [23] and [15]. A point in the world P =
(Xw, Y w, Zw)T is first transformed into the coordinate sys-

tem of the projector using (Xp, Y p, Zp)T = RP +T where

R is a rotation matrix and T is a translation vector. The

point (Xp, Y p, Zp)T is then projected onto the normalized

image coordinate with (x, y)T = (Xp/Zp, Y p/Zp)T . The

radial distortion is then taken into account and the distortion

point (x′, y′)T is computed using

x′ = x
[
1 + k1r(x, y)2 + k2r(x, y)4

]
(8)

y′ = y
[
1 + k1r(x, y)2 + k2r(x, y)4

]
(9)

where k1 and k2 are radial distortion coefficients and

r(x, y) =
√

(rx − x)2 + (ry − y)2 (10)

with radial center located at (rx, ry)T . Finally, the pixel co-

ordinates are (fxx′ + sy′ + cx, fyy′ + cy)T where fx and

fy are focal length, s is the skew and (cx, cy)T is the prin-

cipal point. Note that, since we calibrate projectors using

DLP chips which are manufactured with high accuracy and

with square pixels, we set fx = fy and s = 0. We use

the planar calibration algorithm presented in [23]. Note that

many calibration approaches for projectors do not model ra-

dial distortion. We provide results with and without radial

distortion modeling.

5.2 Simulated data

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.0 0.2 0.4 0.6 0.8 1.0

position error  as a function of noise

Std 4
Ours 4

Std 2
Ours 2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.0 0.2 0.4 0.6 0.8 1.0

angle error as a function of noise

Std 4
Ours 4

Std 2
Ours 2

Figure 7. Results from simulation of the calibration of the

external parameters when internal ones are known. Left)

localization error (in mm) of the center of projection of the

projector. Right) orientation error (in degrees) of the optical

axis of the projector

We first provide results with simulated data where the

images of the structured light patterns were corrupted.

When decoding Gray code, the patterns with the narrowest

stripes are the ones that are most error prone. In our simu-

lation, each pixel of the image viewing those patterns have

a probability of having it labeled from L ( white stripe or

black stripe) changed by one picked from a uniform distri-

bution. Also, when an error occurs, the decoding is usually

ambiguous and never just plain wrong. Our simulations re-

flect this. Figure 6 shows the error when the calibration uses

4 homographies for both our method and the standard one.

The probability of a pixel to be corrupted ranges from 10%

to 80%. Note that our method outperforms the standard ap-

proach [22, 11]. Figure 7 contains the results of simulations

of the recovery of external parameters (pose) of a projector

when internal parameters are known. We simulate the re-

covery for our algorithm and the standard one using 2 and 4

cameras. Also, since the pose sometime needs to be recov-

ered in less controled environments, we allow corruption

level to reach 100%, that is, all the low order bits of the

Gray code have labels randomly assigned in each camera.

Our method allows a significant improvement for all levels

of corruption.



5.3 Real data
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Figure 8. Variation of the error ratio as a function of

smoothing for projector A (left) and C (right) with ω = 2

(results are similar for ω =
√

2).

A calibration plane was imaged by 4 cameras while Gray

codes are projected on it. The resolution of the cameras is

1024 × 768. The projector was fixed on two translation ta-

bles allowing 2 DOF. The displacement was independently

measured by a laser tracker accurate to 0.025 mm. Note

that the laser tracker is only used to validate the results. We

calibrated three projectors of different models, all based on

DLP technology. The system setup is illustrated in Fig. 1.

Note that in our experiments, the lattice is aligned with the

checkerboard and the distance between adjacent points of

the lattice is less than 0.2 mm. Moreover, 3 others were

obtained by moving the projector in a triangular path in

front of the fixed calibration plane. The displacement for

the projectors A, B and C is respectively 339.94, 336.28

and 344.49 mm, at a projection distance of approximately

1.2 m. The displacement of the projector was measured by

the laser tracker and compared to the one obtained from the

homographies [23].

Table 1 shows the results for two values of ω, and the

best values of γ for our algorithm and the standard algo-

rithm. The results are provided for calibration with and

without radial distortion modeling. Detailed results are pre-

sented in Table 2 for projector C. For two of the projectors,

the accuracy is reduced when using the model with radial

distortion. Projector A uses only one half of the lens, thus

making the estimation of the distortion very difficult and un-

stable. For all projectors, our approach yields a much lower

error rate. For projector C (using radial distortion model-

ing) we could achieve an error ratio of 8
10000 which is more

than 4 times less than the other method. For this projector,

when using our method, the addition of radial distortion to

the calibration model allows to improve the accuracy by a

factor of 4. For the standard method, the accuracy is only

improved by a factor of 2. Figure 1 shows some artifacts

present in a decoded Gray code image using the standard

approach. These artifacts impact the accuracy of the cal-

ibration as was shown in Table 1. Table 4 contains met-

rics measured with a laser tracker of the calibration target

used for projector A,B and C. Table 3 contains the trans-

lation error obtained by comparing the values of the laser

calibration error
with radial no radial

mm ratio reproj. mm ratio reproj.

Projector A

ω =
√

2 0.914 0.00807 0.44 0.879 0.00776 0.62

ω = 2 0.956 0.00844 0.38 0.892 0.00787 0.50

Std 1.388 0.01225 0.43 1.527 0.01348 0.61

Projector B

ω =
√

2 0.954 0.00851 0.27 0.764 0.00681 0.35

ω = 2 0.953 0.00850 0.28 0.800 0.00714 0.34

Std 1.135 0.01012 0.27 1.054 0.00940 0.34

Projector C

ω =
√

2 0.086 0.00075 0.37 0.262 0.00228 0.57

ω = 2 0.058 0.00051 0.34 0.229 0.00200 0.52

Std 0.234 0.00204 0.32 0.478 0.00416 0.49

Table 1. Best results in reprojective error and displace-

ment ratio using two different values of ω.

tracker and those obtained through pose estimation with a

bundle adjustment. Our approach allows a decrease in the

error by factors 2.8, 3.3 and 4.0 for projector A, B and C

respectively. Figure 8 shows, for two projectors, a stability

analysis for the smoothing parameter γ for our algorithm,

giving the error in displacement ratio over a broad range of

values. The error value for the standard approach is also

shown. Our approach gives lower error over the complete

range.

detailed calibration results for Projector C
parameter Std Ours

focal (pixel) 2033.433 2037.928

center (pixel) (492.408, 929.146) (492.810, 929.784)

radial center (pixel) (0.003196, -0.115120) (0.003024, -0.112467)

(k1,k2) (-0.106738, 0.569304) (-0.106022, 0.555041)

position world 1 (mm) (708.98, 528.33, 996.87) (709.69, 528.53, 998.98)

position world 2 (mm) (691.56, 532.17, 897.94) (692.15, 532.45, 899.74)

position world 3 (mm) (592.69, 532.67, 913.31) (593.34, 532.77, 915.20)

Table 2. Detailed results for the calibration of projector C

using radial distortion model.

6 Conclusion

A new procedure for establishing the correspondence be-

tween a projector and a calibration target was proposed. It

is based on a multi-camera energy-based approach where

many low resolution cameras having overlapping views of

the calibration target are used. Our formulation includes a

data term that takes into account all camera images and a

smoothing term that regulates noise. Moreover, the opti-

mization is performed on the calibration target coordinate

system. We demonstrated the validity of our approach on

simulated data and on real imagery using off-the-shelf and

low cost equipment; our results were validated using a laser

tracker. Our results show that performing projector cali-

bration using the correspondence obtained by our method



Error in millimeter as measured by the laser tracker

parameter Std Ours

calibration result for Projector A (no radial)
translation 1 3.903 0.326

translation 2 1.627 0.113

translation 3 0.102 1.553

total 5.632 1.992

calibration result for Projector B (no radial)
translation 1 0.690 1.487

translation 2 2.981 0.216

translation 3 2.385 0.110

total 6.056 1.813

calibration result for Projector C (with radial)
translation 1 0.383 0.049

translation 2 0.284 0.107

translation 3 0.036 0.019

total 0.703 0.175

Table 3. Error on the length of translation (in mm) as

measured by calibration. Note that the computation is done

through a bundle adjustment thereby explaining why some

individual values may increase.

calibration plane used for each projector
A B & C

RMS 0.187 mm 0.244 mm

Form 0.550 mm 1.135 mm

Table 4. Standard metrics used to evaluate the fitness of

the calibration plane computed using the laser tracker.

allows a significant improvement in accuracy. As for future

work, we would like to investigate how our method would

improve the accuracy of a 3D structured light scanner.
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