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Abstract

Genome wide transcription profiling is a powerful technique for studying the enor-
mous complexity of cellular states. Moreover, when applied to disease tissue it may
reveal quantitative and qualitative alterations in gene expression that give infor-
mation on the context or underlying basis for the disease and may provide a new
diagnostic approach. However, the data obtained from high-density microarrays is
highly complex and poses considerable challenges in data mining. The data requires
care in both pre-processing and the application of data mining techniques.

This paper addresses the problem of dealing with microarray data that come
from two known classes (Alzheimer and normal). We have applied three separate
techniques to discover genes associated with Alzheimer disease (AD). The 67 genes
identified in this study included a total of 17 genes that are already known to be
associated with Alzheimers or other neurological diseases. This is higher than any
of the previously published Alzheimer’s studies. Twenty known genes, not previ-
ously associated with the disease, have been identified as well as 30 uncharacterized
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Expressed Sequence Tags (ESTs). Given the success in identifying genes already
associated with AD, we can have some confidence in the involvement of the latter
genes and ESTs.

From these studies we can attempt to define therapeutic strategies that would
prevent the loss of specific components of neuronal function in susceptible patients
or be in a position to stimulate the replacement of lost cellular function in damaged
neurons.

Although our study is based on a relatively small number of patients (4 AD and
5 normal), we think our approach sets the stage for a major step in using gene
expression data for disease modelling (i.e. classification and diagnosis). It can also
contribute to the future of gene function identification, pathology, toxicogenomics,
and pharmacogenomics.

Key words: Data Mining, Genomics, Gene identifications, Gene expression,
Alzheimer’s disease and Microarray
PACS:

1 Introduction

Alzheimer’s disease (AD) is an incurable, chronic, progressive, debilitating
condition which, along with other neurodegenerative diseases, represents the
largest area of unmet need in modern medicine. Progress in understanding
these diseases is hampered by their complexity, but there is now renewed hope
that genomics technologies, particularly gene expression profiling, can have an
impact. Genome-wide expression profiling of thousands of genes provides rich
datasets that can be mined to extract information on the genes that best
characterize the disease state.

Gene expression profiling using microarrays is a complex task subject to many
variables that can obliterate the subtle differences that exist between the nor-
mal and diseased states [13] and [33]. The best results are usually obtained
when numerous samples are available and are all analyzed, in replicate, at the
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same time using the same lots of RNA (riboucleic acid) extraction and hy-
bridization reagents and the same lot of microarrays. However, clinical samples
from AD and normal, aged matched individuals are usually acquired in small
numbers over a prolonged period of time and analyzed at different times. To
date, only a few microarray studies relevant to Alzheimer’s disease have been
published [5], [7], [12], [21], [25] and [24]. All of these studies used small num-
bers of samples ranging from 1 to 6 AD patients. Significantly, there is little,
and in some cases no, overlap in the genes identified between these studies
and genes already known to be associated with or differentially expressed in
Alzheimer’s disease are seldom picked up. It is critical, therefore, to develop
data processing and data mining strategies that can account for discrepancies
in the data that are due to experimental variability from the true differences
between the normal and disease states in small sample sets (see also [18] and
32]).

In this paper we use a data mining strategy that can derive useful information
from a small number of samples acquired and analysed at different times. In
section 2 we explain the problem of gene expression profiling and in section 3
we provide details on our data preparation process. Section 4 discusses why
understanding gene expression and discovering useful genes is important. Sec-
tion 5 explains our data mining process and in section 6 we provide the results
of this research. We conclude the paper in section 7.

2 The problem of gene expression profiling and data reduction

Gene expression analysis using high-density cDNA (complementary deoxyri-
bonucleic acid) arrays presents a number of problems, both in terms of exe-
cution of the experiments and analysis of the data [10] and [40]. The primary
concern is the quality of the microarrays compromised by variability in both
the quality of the spotted features and imperfections in the substrate that
lead to variability in the level of background. This variability can exist even
within a batch of microarrays printed at the same time and there can be
even more substantial variability from batch to batch. The second source of
variability is in the hybridization reaction. Most microarray experiments are
conducted as a competitive hybridization between a control sample (i.e. nor-
mal tissue) labelled with one fluorochrome (usually Cy3) and a test sample
(i.e. disease tissue) labelled with a second fluorochrome (usually Cy5). Fluo-
rochrome labelling is carried out using enzymes that have bias both in terms
of incorporation efficiency of the different fluorochromes and in the efficiency
with which they can transcribe any given sequence. The hybridization reac-
tion, itself, is also biased in the degree to which any given probe sequence
can hybridize to its cognate target and in the overall stringency of the reac-
tion (i.e. the degree to which non-specific hybridization occurs). All of these



sources of variability contribute to the generation of artifacts, some of which
are remarkably reproducible.

To derive useful information from such experiments, samples must be ana-
lyzed in replicate and the data appropriately normalized and filtered to reject
poor quality spots. Although improving the overall quality of the data, such
pre-processing will not remove any “global” systemic biases such as those in-
troduced by performing experiments at different institutions or at considerably
different times. Methods must also be developed to assess and remove such
biased data.

3 Experimental Procedures and Data preparation

This section includes details of our experiments and data preparation process.
We briefly explain where our samples are obtained and how we performed our
hybridization process. We also elaborate on the microarray data acquisition
and data preprocessing steps that we have taken.

3.1 Patient samples and RNA extraction

A total of 4 clinically diagnosed AD patients and 5 normal patients of similar
age were used in this study. Post mortem intervals ranged from 4 — 8 hours.
Previous studies [37] demonstrated that there is little loss of RNA integrity
during this timeframe and the RNA quality is suitable for use in microarray
analysis experiments. However, we cannot rule out the loss of some short half-
life transcripts. All of the work was performed under a protocol approved by
the National Research Council of Canada Human Ethics committee. Detailed
patient information is listed in Figure 3. Total RNA was extracted from the
frontal cortex of samples of post mortem brain using the Tri Reagent (MRC
Inc. Cincinnati, OH). There was no obvious RNA degradation in these samples
as judged by agarose gel electrophoresis. The purity of total RNA was assessed
by optical density ratios, A260/A280, which ranged from 1.8-2.0. The extrac-
tions were performed according to the manufacturer’s instructions for tissue
samples. Poly (A)" messenger RNA (mRNA) was then obtained from the total
RNA samples using the Oligotex kit (Qiagen, Mississauga, ON Canada).

3.2 ¢DNA microarray hybridization

Fluorescently-labelled AD and normal patient cDNAs were hybridized to the
Human 19K microarray slides obtained from The Microarray Center of the



University Health Network, Toronto, Canada (http://www.microarrays.ca/).
The two slide set contains 19,200 characterized and unknown human ESTs
together with a number of control features. The slides are designated as Slide
A and Slide B and each slide has 9,600 ESTs spotted in duplicate, organized
into 32 sub-arrays of 600 spots each. The hybridizations were carried out
using a common control sample created by pooling equal amounts of RNA
obtained from the 4 normal patients. This sample was labeled with Cy3. The
samples obtained from the 4 AD patients and the 5 normal patients (labelled
with Cy5) were arrayed individually against this pooled normal control in a
competitive hybridization reaction. At least three replicate hybridizations were
performed for each sample. Fluorescence-labelled first strand ¢cDNA probes
were generated from 1ug of mRNA in a 40ul reaction mix, containing 1 X first
strand buffer, 150 pmole AncT (5’ T(20) VN 3’) primer, 20 mM each of dATP,
dGTP and dTTP, 2mM dCTP, 1 mM Cyanine 3-dCTP (Cy3, control samples)
or Cyanine 5-dCTP (Cyb, individual normal and AD samples) and 0.4M DTT.
The reaction mixture was first heated to 65°C' for 5 min and then cooled to
42°C for another 5 min to denature the RNA and anneal the AncT primer.
Reverse transcription was accomplished by adding 24l of Superscript 11 reverse
transcriptase (Invitrogen Life Technologies, Burlington, ON) and 1l of RNase
inhibitor (Promega, Madison, WI) and incubation at 42°C' for 2-3 h. The
reaction was stopped by adding 5 ml of 50 mM EDTA and the RNA templates
were hydrolyzed by adding 2ul of 10 N NaOH to the cDNA reaction, followed
by an incubation at 65°C' for 20 min. The reaction was then neutralized by
adding 4ul of 5 M acetic acid. Before hybridization, the Cy3 and Cy5 probes
were combined and precipitated with an equal volume of isopropanol. The
pellet was washed with 70% ethanol and air-dried in the dark. The labelled
cDNA probe mix was then resuspened in 5ul water and combined with 80ul of
DIG Easy Hyb buffer (Boehringer Manheim, Germany) containing 0.5ug/ml
yeast tRNA and salmon sperm DNA. This hybridization solution was heated
to 65°C' for 2 min, cooled to room temperature and injected between a paired
set of the human 19K microarray slides. Hybridization was carried out in the
dark at 37°C' for 18 h. After hybridization, the slides were washed three times
in 1x SSC containing 10% SDS for 10 min, plus a final wash with 1x SSC alone.
The slides were dried by centrifugation at 40xg in a Sigma 4K 15 centrifuge
for 5 min.

3.8  Microarray data acquisition

The slides were scanned using a ScanArray 5000 confocal scanner (Packard
BioScience, Meriden CT, USA) with excitation/emission wavelengths of 543
nm / 570 nm for Cy3 and 633 nm / 670 nm for Cy5, at 10 pm resolution. The
resulting 16-bit grayscale image files, one for each channel, were quantitated
together with QuantArray v3.0 (Packard BioScience) using an adaptive spot



finding method to generate spot intensities from mean pixel values and local
area background measurements were derived from a background mask (dough-
nut) surrounding the spot. Poor quality spots were flagged manually by the
user and recorded in the output file to be used as an “ignore spot” filter. The
tab delimited text data files produced were subsequently pre-processed using
macros in Microsoft Excel 2000 (Microsoft Corporation, Redmond, WA).

3.4 Maicroarray data pre-processing

For each sample replicate there was a data file for each of the slides, A and
B. Each data file contained intensity data for 19200 features (i.e. 9,600 EST's
in duplicate) measured in two channels, Chl and Ch2. Chl data represents
intensity measurements from the pooled control sample and Ch2 data rep-
resents intensity measurements from the sample prepared from each individ-
ual patient who was either clinically diagnosed with AD or an age matched
normal. Median subarray background values were calculated for each chan-
nel and subtracted from the respective intensity values. Spots flagged by the
user during quantization (the “ignore” filter) and spots failing to meet the
following criteria; intensity > 2.5-fold background and intensity > 5 and
< 98t"_percentile of all intensities for each channel, were filtered out and not
used in the computation of normalization correction factors. The corrected
intensity data were logged (base 2) and corrected for dye bias (normalized)
using a linear-regression correction applied to the Ch2 intensities for all the
spots in each subarray. This correction yielded a Ch2 versus Chl scatter plot
with a linear regression best-fit line having slope 1 and intercept 0. Log2 ra-
tios representing expression values for sample versus pooled control were then
calculated by subtracting the Log2 Ch1 intensity from the corrected Log2 Ch2
Intensity values for each spot. Data for control spots were removed and finally
the spot duplicates were averaged. The resulting data set contained 9600 Slide
A and 9381 Slide B relative expression values in triplicate (or more) for the
4 AD patients and 5 age-matched controls. For this study only the data from
slide A were used for gene discovery. Figure 1 shows intensity scatter (a) and
M vs. A (b) plots of data from a typical microarray from a hybridization
performed in this study. The raw data is shown in yellow and the processed
data in blue. Normalization and filtering using the criteria described removes
anomalous data and improves the fit. This is demonstrated more dramatically
in the pseudo-array images of raw and processed data (Figure 2). The bias
caused by preferential dye incorporation is removed and the data improved
considerably.

The next task was to identify the total number of missing values in the data.
The distribution was not even across the samples, ranging from 7.8-37.7%.
Overall, 15.68% of all the data was missing. Using BioMiner (our data mining
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Fig. 1. The Intensity Scatter (a) and M vs. A (b) plots above show the effect of
pre-processing the raw intensity data. Raw data is shown in yellow and pre-processed
data in blue. (a) shows that the background correction, linear regression, normal-
ization and filtering results in a best-fit line with y = x, and a slight improvement in
the correlation (R?). The M vs. A plot (b) is used to more clearly show differential
expression (Loga Ratio) and can reveal intensity dependent bias in the data.
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Fig. 2. The PseudoArray is used to plot raw or pre-processed data back onto the
original microarray layout. Spatial biases, such as edge effects, background problems,
poorly hybridized areasand localised dye bias can be observed using this represen-
tation. The plots above show raw (left) and pre-processed (right) Logs ratio data.
The scale shows the colours used to represent the ratio values, green for down- and
red for up-regulation. Blue spots represent filtered data.

software introduced in Section 5) to compute statistics and generate virtual
reality representations of the ratio data from each hybridization, a total of 6
samples that were poor representatives of the whole data set were identified.
Based on these criteria, the 6 microarrays were rejected and the composition
of the final dataset is shown in Figure 3. This data set, called F0O, was used
for subsequent gene discovery experiments.

4 Understanding gene expression data and discovering useful genes

Gene expression data mining involves studies that combine the use of domain
knowledge with data obtained from two or more classes (e.g. disease and nor-
mal) to discover genes that are associated with a particular problem. Since our
data consists of two classes, those with Alzheimer’s Disease and those with-
out, the investigation is focused on using inductive and statistical techniques
to identify the most informative genes amongst all the genes in the data sets.
This is done through searching for patterns and relations that exist in the
data. We used the following approaches to perform this search:



Patient Sex Postmortem Pathology Sample_|D Fejected | Replicates
Dementia, zenile AL
AD1 2
AD109-95 male  |4-8 hours changes of AD type R 4
maderste A0 4
Subdural hematomas, AD2 A
. AD22
Al 112-96 male |G hours zenile changes of AD 3
AD2 3
type AD2 4 "
Dementia, zenile AD3
AD 22704 male  |4-8 hours changes of A0 type AD3 2 3
moderste AD3 3
AD, demertia A0 1
AL A0-96 female [4-5 hours Aldg 2 2
AD4 5 X
Mormal M1.1
Mormal 102-97 male |6 hours M2 2
M1.3 x
Mormal M2.1
Mormal 154-94 female |4-5 hours M2 2 2
M2.3 i
Mormal M3.1
Mormal 211-35 male  [4-8 hours M3 2
M3.3 i
Marmal 4.1
Mormal 67-97 male |45 hours Mg 2 3
M43
Mormal MS.1
Mormal S55-96 female [4-8 hours M5 2 2
M55 x

Fig. 3. Table containing the number of patients and replicates used to construct the
dataset.

e Pattern recognition: (see Section 5.1 for details) We arbitrarily repeated
each data mining experiment 20 times to identify the most informative
genes. The gene(s) identified in each experiment were then removed from
the data set and the experiment was repeated until 20 experiments were
completed. By doing this, we forced the algorithm to only focus on the
available genes in each run. Knowing that in each run, the gene(s) with the
highest information value are identified and reported, we therefore forced
the algorithm to discover all important genes that could be identified in
20 runs. This approach has been used in a previous study related to gene
identifications using leukemia data and has generated interesting results
[11].

Individual dichotomization: This is a search technique performed within
the scope of the information associated individually with each gene (i.e. the
intensity or the ratio values). The goal is to find the best level which parti-
tions the expression values into two sets which are maximally related (in a
probabilistic sense), with two previously defined groups (in the present case,



the Alzheimer and the Normal classes). Section 5.2 describes the method in
detail.

e P-value and ratio thresholding: In section 5.3, a combination of two-
tailed one-sample and 2-sample t-tests assuming unequal variance and ratio
thresholding was applied to the gene expression data to identify gene expres-
sion changes that are both statistically significant and biologically relevant.

e Virtual Reality for visualizing Databases: Relational database tables
usually contain information about large collections of objects described in
terms of many properties (attributes, fields). In general these attributes are
composed of numeric and non-numeric information (real-valued, qualitative
information, etc.), and often many of them are missing. This technique con-
structs a visual representation of the heterogeneous and multidimensional
space of the original database objects, in the form of a virtual reality space
trying to preserve as much structure of the database as possible. The result
is a virtual reality environment where one can navigate and visually inspect
the main features of the data. Section 5.4 describes the technique in more
detail.

5 Gene discovery

This section includes our data mining process where we introduce our re-
search in discovering patterns in our data and identifying genes associated
with Alzheimer. We also introduce our data mining software used in these
experiments.

5.1 Pattern recognition

Figure 4 shows the structure of the data sets each consisting of a matrix
containing p genes for n samples and an attribute vector containing labels for
all samples. In each data set p=9600 and n=23. The overall goal of the research
reported here was to identify from all the genes: (i) the most informative genes
that are correlated with classification of AD vs normal, and (ii) models (set
of rule(s)) consisting of one or more genes that contain a particular threshold
to be used for accurate discrimination of AD samples from others.

5.1.1 The BioMiner software

The BioMiner data mining software was used for the data mining experiments
reported in this paper. This software has been designed and built in house to
provide support for biologists and bioinformaticians performing data mining

10
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Fig. 4. Structure of gene expression data (Labels = Patient classes (i.e. AD=1 or
Control=2)).

research in functional genomics. One of the key advantages of the software
is that all available forms of data pre-processing and analysis functionality
are integrated into one environment. The pre-processing and data analysis
modules consist of a collection of algorithms and tools to support data mining
research activities in an interactive and iterative manner. Figure 5 shows the
interface for the BioMiner software.

5.1.2  Overview of data mining experiments performed using BioMiner
The following experiments were performed on the data:

e A number of data preprocessing experiments to examine the data. These
helped us to obtain a general view of the data. It was also possible to identify
missing values, abnormal or interesting characteristics, such as anomalies in
the data.

e Hierarchical clustering to identify the inherent class characteristics of the
data.

e A set of machine learning experiments, using inductive algorithms to iden-
tify the most informative genes with an associated threshold for classifica-
tion along with a measure of strength.

e Use of data visualization techniques to better investigate the overall patterns
of identified genes.

5.1.3 Data selection for pattern recognition using BioMiner

In addition to the pre-filtered dataset, designated FO, which was generated
as described in Section 3.4, a total of 3 additional data subsets were gener-
ated and used as input to the BioMiner Pattern Recognition module. These
data subsets, called F1, F2 and F3, employ statistical tests designed to re-

11
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Fig. 5. The BioMiner interface.

move from consideration, genes with expression profiles that are biologically
meaningless (See Figure 6).

Datasets F1 and F2 were filtered using single-sample t-test p-value thresh-
olds combined with expression ratio cut-offs on the normal patient samples
only. Two different p-value/ratio threshold combinations were used: Filter F1
employed thresholds of a < 0.05 for the single sample t-test and an absolute
value of the average Log2 ratio > 0.6. The settings for Filter F2 were o < 0.01
for the single sample t-test and an absolute value of the average Log2 ra-
tio > 0.5. These filters reject data that show apparent differential expression
where none is expected, i.e., genes with mean expression across normal samples
significantly different from zero. Lowering the o value for the t-test decreases
the number of genes filtered out, while lowering the threshold for the absolute
value of the Log2 ratio increases the number of genes filtered out. Datasets
F1 and F2 filtered 222 and 220 genes, respectively, from the FO dataset. Of

12



Data set Criteria for selection No. of genes filtered| No. of genes
FO Pre-filtered dataset 57 8543

1 sample t-test of Nvs. 0, a < .05
F1 AND 279 a3z

IN|>06

1 sample t-test of Nvs. 0, a < .01

F2 AND 277 9323
IN|>05
F3 | AD | <0.5 9519 81

Fig. 6. Table containing the data for data mining experiments.

these, 106 were filtered by F1, 104 by F2 and 116 by both. Dataset F3 was
a much more aggressive filter applied to the AD samples only. All genes with
an absolute value of the average Log2 ratio < 0.5 were filtered out, removing
9519 genes from the 9600 gene dataset. This filter selects for genes with an
average 1.4-fold change in gene expression or greater in AD samples.

5.2  Individual Dichotomization

The transformation of numeric attributes into discrete values (discretization)
is a very useful technique, especially in relation to supervised classification
and the use of induction-based methods of machine learning. Moreover, the
characterization of the different attributes in terms of discrete categories sim-
plifies the interpretation of the data and especially the relationships between
single or combined attributes and the class structure. Here a simple screening
algorithm was used with the purpose of finding individual relevant genes from
the point of view of their ability to differentiate the class of samples having
Alzheimer’s disease from the normal ones. The inputs for the algorithm are: a)
the values of a given attribute A (gene) for all the studied objects (in this case,
the ratio between channel-2 and channel-1 for all samples, b) the classes (1,
(5 associated with each sample (Alzheimer vs Normal), and c¢) a probability
threshold pr . The algorithm then proceeds as follows:

(1) construct the set of distinct values of A (call it A ). That is, if O is the
set of objects and A(o) is the value of the attribute for any object o € O,
A = {01,...,0,} with the following properties: (Vd;,0; € A, 0; # 0;),
(Vo€ 0,30 € Ast. A(o) =46 ) and (V6 € A,Jo € O s.t. Ao) =0 ).

(2) sort A in increasing order.

13



(3) construct the set A composed by the mean of all consecutive values of
A . That is, for every pair 8;, ;41 , compute 0 = (0; + 0;1+1)/2 . Clearly,
A has one element less than A.

(4) use each 0 € A as the binary threshold for the values of attribute A .
This divides the set of objects into two disjointed classes A1, As.

(5) compute the contingency table of Ay, Ay vs C1, Cs.

(6) on the table, compute the conditional probabilities p; = P(C1/A;) ,
p2 = P(C1/A,) and retain pre. = maz(p1, p2).

(7) if pmaz > pr select the attribute as relevant, and discard it otherwise.

The process is repeated for all attributes describing the objects, and the result-
ing set of selected attributes gives an indication on how many of them (genes
in this case) contain a differentiation power equal or better than the pre-set
probability threshold pr. Specifically, if pr = 1 the algorithm will give a set
of genes such that each of them will perfectly differentiate the corresponding
classes (Alzheimer/Normal).

5.3 P-value and ratio thresholding

A standard method for determining whether two means are significantly dif-
ferent is the t-test. While this test, when conducted over a number of samples,
can provide confidence in a mean, its application to gene expression data it
may yield expression changes which are too small to be biologically meaning-
ful. It has been suggested that simply observing a difference in the mean can
serve as a proxy for more rigorous statistical approaches if the difference is
large [20], however using a large difference in means as a threshold for dif-
ferential gene expression excludes many small, but significant changes. The
FO dataset was filtered using a combination of p-value and ratio thresholding
according to the following criteria:

(1) Data points were rejected if the p-value from a two-tailed single-sample
t-test of the Logs Ratio of the AD samples versus 0 was greater than
0.01.

(2) Data points were rejected if the p-value from a two-tailed two-sample
t-test with unequal variance of the Log, Ratios of the AD samples versus
the normal samples was greater than 0.01.

(3) Data points were rejected if the absolute value of the mean of the Logs
Ratios of the AD samples was less than 0.41 (1.33-fold change).
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5.4 Use of Virtual Reality

This is a technique for visual data mining of heterogeneous databases based on
virtual reality (http://www.hybridstrategies.com), [38] and [39]. The purpose
is to facilitate the process of understanding the underlying structure of single
or compound databases of a general kind. The method is based on parameter-
ized mappings between the heterogeneous space H representing the original
data and the virtual reality space. They can also be constructed for unions
of information systems (e.g. heterogeneous and incomplete data sets together
with knowledge bases composed by decision rules), simplifying the process of
discovery of interesting patterns as well as relationships between the original
data and the symbolic expressions representing the structured knowledge.

A virtual reality space () is composed of different sets and functions in the
following way: Q) =< O, G, B,R™ go, [, g., b,r > , where O is a relational struc-
ture (a set of objects and attributes, endowed with a set relations I'V defined
over the objects), G is a non-empty set of geometries representing the different
objects and their relationship in the visual space (an empty or invisible geom-
etry is a possibility), B is a non-empty set of behaviors (i.e. ways in which the
objects from the virtual world will express themselves: movement, response to
stimulus, etc.), ™ is a metric space of dimension m (R C R, the reals), which
will be the actual virtual reality geometric space (usually m = 3). The rest of
the elements are mappings: go: O - G, [: O - R, g, : IV — G ,and r is a
collection of characteristic functions for I'”.

The representation of an extended information system (i.e. database) S im-
plies the construction of another one S” in the virtual world. It requires the
specification of several sets and a collection of extra mappings. There are
many ways in which it can be done. A desideratum for the virtual reality
heterogeneous space H" is to keep as many properties from S as possible, in
particular, the similarity structure of the original data. In this sense, the idea
is to maximize some metric/non-metric structure preservation criteria as in
multidimensional scaling [4] and [16], or minimize some error measure of in-
formation loss. If d;; is a dissimilarity measure between any two objects ¢, j ,
and &;; is another dissimilarity measure defined on objects ¢, j” in the virtual
reality space (the images of the original objects ) , an error measure frequently

_(6i5—&i)? 3
1 D Gi—tis) [30]. The transformation [

i iy
i<j Y J
is implicit, as no functional representations are found.

used is the Sammon error = 5=

The possibilities derived from this approach are practically unlimited, since
the number of different similarity, dissimilarity and distance functions defin-
able for the different kinds of source sets is immense. Moreover, similarities
and distances can be transformed into dissimilarities according to a wide va-
riety of schemes. This provides a rich framework where appropriate measures
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capable of detecting interrelationships hidden in the data can be found, more
suited to both its internal structure and to external criteria. The virtual re-
ality representation of heterogeneous data sets is a technique available within
the BioMiner software.

6 Results

This section includes results from all of our experiments. We start with our
results with hierarchical clustering in which we investigated the separation
between the two classes. We then continue with other results from the use
of virtual reality and pattern recognition techniques to search for interesting
genes among mean genes available in these experiments.

6.1 Hierarchical clustering

Since class attributes were known for each sample, we used the agglomerative
hierarchical clustering algorithm with Euclidean as a distance measure and
single linkage (Ward method) as options on the entire ratio data (F0) to iden-
tify the hierarchical partitioning properties among all cases. Figure 7 shows
the detailed dendogram representation of the results, which illustrates how
perfectly the neighboring samples are grouped together. From these results,
the ratio data has only one sample (N5.1, indicated by a blue arrow) that
has been incorrectly included in the first group. The red line in this figure
indicates the natural separation between the two classes.

6.2 Virtual reality representation

Virtual reality representations of different data sets were constructed in order
to obtain an idea of the structure of the data. For obvious reasons, it is im-
possible to illustrate appropriately the look, feel and immersion of a virtual
reality 3D environment within the limits imposed by printed paper. Screen
snapshots from different application examples are presented only to give a
rough idea. The design of the virtual reality spaces was kept simple in terms
of the geometries used (spheres for representing the objects and colors for
representing the classes), and in particular, behaviors were excluded (objects
in the virtual world are inanimate). In all cases the snapshots were simplified
with regard to the information included in the corresponding virtual world to
avoid information overload.

16



Fig. 7. Results of hierarchical clustering of Ratio data. The red line indicates the
separation of two classes. The blue arrow indicates a misclassified sample.

In the case of FO ratio data, each object (sample) is described by a collection
of 9600 attributes (genes), therefore, each one is a vector from a 9600 dimen-
sional space, also containing missing values. The virtual reality space (VR) is
a 3D Euclidean space with the images of these objects and with non-missing
values. In the first experiment, the entire FO set was used in computing the
virtual reality space. After 335 iterations, the absolute error obtained was
0.1034 (with an absolute difference = 9.9¢-07). This error level indicates that
the considerable non-linear dimensionality reduction which took place when
going from 9600 to 3 attributes, satisfactorily retained most of the similarity
structure present in the original data. The presence of a meaningful structure
in the VR space characterized by a small information loss with respect to the
original data (see below), clearly suggests that there is a subset of informative
or relevant genes within the sample. A snapshot of the virtual worlds is shown
in Figure 8. The samples corresponding to the Alzheimer’s class are colored
red, and the normal ones green. In this case it is clearly seen that the sam-
ples corresponding to the Alzheimer’s class appears as more homogeneous and
compact (i.e. more similar to each other) than those from the normal class.
Moreover, the Alzheimer class appears “wrapped” by the normal class, which
is more irregular.
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6.3 Searching for genes and patterns using BioMiner software

With this understanding of the data, acquired from preprocessing, and know-
ing that the data was labelled, we then initiated our search for patterns
through the Pattern Recognition module in BioMiner. This was done pri-
marily to identify the most informative genes, from amongst all 9600 gene
expressions. The pattern recognition module of BioMiner software provides
support for various forms of supervised techniques which include discrimina-
tion and prediction, in which one can develop models from historical data to
predict future cases. There are several algorithms for discrimination and pre-
diction that are mainly from WEKA [41] and the J48 Decision Tree induction
algorithm was used for these experiments. Decision trees and rule learners
generate tree structures or rules directly for class assignments. A decision tree
can be used to classify a case by starting at the root of the tree and moving
through it until a leaf is encountered [26]. Rules are in L — R formats, in
which L represents attributes-based tests and R is a class [26]. Rules could be
derived from decision trees.

A number of machine learning experiments were performed to search for genes
in the data. In each series of experiments, the J48 [41] rule learner was used 20
times to analyze the Ratio data and to identify the target genes from all the
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genes available in the data set. Figures 9-10 shows the genes discovered from
all data mining experiments. The % values given for each gene indicate how
accurately the gene discriminates between the two classes for that experiment.
There are four groups of genes in this table that are interesting to pay atten-
tion to. Group 1 (in green) are three genes that were discovered, in all four
experiments, regardless of our filtering criteria. These three genes were able
to correctly discriminate 22/23 (96%) of cases (samples). Group 2 (in red) are
three genes that were identified in the first three experiments. All these genes
were able to discriminate between the two classes by themselves with 100%
accuracy. Group 3 (in blue) are all the genes that were discovered in the first
three experiments, all with 96% accuracy (22/23 samples). And finally, group
4 consists of the remainder of the genes identified. Some of these genes are
also important in this gene discovery process. For example, genes 16 and 17
were identified with 96-100% accuracy in the first two runs. In fact, gene 16
(in purple) has been identified as the first (perhaps the most informative of
all genes) with 100% accuracy for discrimination in the first two runs.

Following the process of identification of informative genes from the ratio data,
we plotted different groups of genes for both classes and from all experiments.
These plots illustrate interesting patterns between all the genes for both class 1
(AD) and 2 (normal) samples. Similarly, we used these genes to create intensity
spectrum plots which also show interesting patterns. Figures 11 and 12 show
plots of genes from all ratio data for both classes. Figure 13 is a spectrum
plot of the top 20 genes discovered from all ratio data and Figure 14 shows
the spectrum intensity pattern of the three groups of genes in Figures 9-10
(green, red and blue). In these figures, the color code is a small square for
each element in the vector representing the gene. The red square represents a
value greater than the center point value, and the value less than the center
point is colored green. By default zero is the center point. The intensity of the
color is a measure of the relative difference between values at the same side of
center point. For example, the lowest values will have lightest green color and
the highest ones the lightest red.

6.4 Individual Dichotomization

The Individual Dichotomization algorithm (Section 5.2) was applied to the FO
data set described in Section 3.4, with a series of probability thresholds ranging
from 0.1 to 1. The dependency between the number of perfectly differentiating
genes and the probability threshold is shown in Figure 15.

In the case of a probability threshold equal to 1 (perfect classification be-

tween the Alzheimer and the Normal classes), from the 9600 genes only 4
were found having the perfect dichotomic property: (Gene #s 4,5,6 and 16 in
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Figures 9-10). When only these genes are considered, the overall sample set
drastically collapses to a data set of 23 objects and only 4 attributes. The
virtual reality representation of this data set is shown in Figure 16 (represen-
tation error = 0.002). The Alzheimer class (red) and the Normal class (green)
are displayed with a wrapping semi-transparent membrane covering all objects

|Eene #| Gene Name Symbol |Run_F0|Run_F1}Run_F2| Run_F3|p-¥al| OiCh| Fold Change| Azsociation®

1 |dystrobrevin, alpha DOTMA FOp3eR) |FiSex] |Fa[9es]) [Fa[sex]) [Py [DCI 14

2 |EST FO[aEx) |Fiaex] |[F2[aemx] [Fa[3ex) [Fv  [DC1 20

3 |beta-2-microglobulin B2M FO[9EK] |Fi#ex] [Fe[aemx] [F3faex]) [P [DCI 15 2008
4 | amyloid beta precursor-like protein 1 |APLP1 | FO[00:) [FII00%) | F2I00:) Py |DCO 13 A0z
5 |EST FO[00:] |FI00%] |Faion) Do 14

£ |complement component 4B CiB FOpinm:) |Fi0s) (F2apiom:) Do 15 SC[26)
T |UM and senescent cell antigen-fike 2 LIMS2 FO[gEx] |FU96%:] |F2[96%] OC1 15

3 |EST FOpa6m]) |Fifaes) |F2[9em) OC1 A3

9 |EST FOp3Ex] |[FUSEx] |F2[96%) D 14

i [EST FO[36m) |[Fi3Ex] |F2[36m) OC1 14

i [EET FO[3E) |F3E] |F2[36%) OC1 13

12 |immunoglobulin heawy constant mu |GHM FO[SEx] |FU9es) |F2[96x) OC1 14

13 [EET FO[a6m]) [Fi9ex) |F2[aes) ]| 15

% [EET FO[3Ex]) |FiSEx] |Fa[9es) D1 1B

15 |glucoze regulated protein, 58k0a GRPRE FO[96%] |FU96%] |F2[96%) OC1 -3

& |keratin & KRTS A0 [3
7 |EET FOpaes) [Fijaex) O A8

18 | activating transeription Factar 4 ATF4 F1j36:] DOC1 18

18 [EET FO[3E] OC1 13

a0 |EST FO[36) (U] A7

Y1 |Ran GTPase activating protein 1 RANGAFP|FI[36%) OCi 18 AD 1)
22 |EST FU96%) |F2[96%) OC1 15

23 |EST FU86%) |F2[56%) OC1 15

4 |EST Fa[a6m) OC1 14

25 |glutathione S-tranzferase M2 G5TM2 Fainn) 18 a0
26 |EST 12

27 |EST Feiine) -4

X |EST 11

23 | TUIA pratein TUZA Fapino) Py 18

0 |adducin 3 [gamma] ADDZ P 13 AD[28)
31 |ferritin, light polypeptide FTL Fa[ams) |py 26 B0
32 [hemoglobin, beta HEE P P 13

3 |clusterin CLU P 24 A0 [8)
M |EST Fapino) Py ]

38 [hemoglobin, gamma G HEG2 P 2

Fig. 9. Table containing the results from all experiments (part 1).
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Gene ¥| Gene Name Symbol |Run_F0|Run_F1|Run_F2| Run_F3|p-¥al| DiCh|Fold Change| Association

36 |EST Faffoi) P 30

37 |angiotensinogen AGT Py 17

38 |proteolipid protein 1 PLP1 FiEm) Py a7 BO[26)
39 |EST Faffoi) Py Zh

40 |proteolipid protein 1 PLP1 & 14 AD[25)
4 |hemoglobin, beta HEE Fa(gw) Py 25

42 |adducin 3 [gamma) ADD3 Py 14 AD28)
43  |peroziredozin 1 PROX1 Fafions) Py 14 AD[14)
44 | G-pyruvoyltetrahydropterin synthase |PTS 14 A00
45 | hemoglobin, beta HEE Fa(gw) ) 1E

46 |G-pyruvogltetrahydropterin synthase |PTS 25 AD[3)
47 |hemoglobin, beta HEE Fa(gw) Py 17

48 |EST 14

43 |hemoglobin, gamma & HEG1 Fafgew] Py 15

B0 | proprotein convertase sk 1inkibitor FCEEIN 15

W | dystrophia myatonica-protein kinase OMPE Fa(gw) ) 15

hz  |EST 2.8

B3 |prenyleysteine lyase PCL1 15

54 | ribosomal protein L3 RPLA Fia) 13

55 | metallothionein 1G MTIG 15 A0 (24)
BE |EST Fa(gev) 14

57 | chimerin [chimaerin] 2 CHNZ 20 WEIT)
B8 |EST Fa(98r) P 13

53 |ferritin, light polgpeptide FTL 15 AD[)
B0 | cwysterol binding protein-like 3 05BFL3 Py 12

& | pleckstrin homolagy domain B PLEKHEH FaEex) Py 42

E2 | eukaryotic translation elongation Factor 141 |EEF1A1 12

£3 | proteolipid protein 1 PLP1 ) 22 AD[2A)
E4  |proteolipid protein 1 PLP1 Py 20 AD[25)
B |EST P 15

EE | glutathione S-transferase b2 G5TM2 Py 13 ADj21)
E7 |EST P 18

B | major histocompatibility comples, class | B |HLA-B Py 13

E9  |EST P 17

70 |RAP, GTP-GOP dizzocistion stimalator 1 | RAPIGOST ) 14

71 |CD#H1 antigen CD81 P 18 SC1[9)
72 |cell division cycle 10 homolog CDC10 Py 13 AD18)
T3 |tetrazpan 3 T5PAN-3 PY 13

T4 |neural expressed, devel. down-req 5 |NEDDS ) 13 ADE)
7% |EST P 15

76 |EST P 12

7T |EST Oc1 16

Fig. 10. Table containing the results from all experiments (part 2).

belonging to the corresponding class. In this virtual reality space both classes
are very clearly differentiated.

When the probability threshold is lowered by allowing one misclassified sample
out of the original 23 (threshold = 0.9565), then 25 genes are found relevant
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(Figures 9-10). Lowering the threshold to allow two misclassifications (thresh-
old = 0.9130) revealed 94 genes (data not shown).

6.5 P-value and ratio thresholding

The thresholding strategy described in section 5.3 was applied to ratio data
set F0, yielding 40 genes. Of these, 10 were different clones representing just
3 genes. The cDNA microarrays used in this study contain a number of such
redundancies, i.e., genes represented by cDNA from multiple different clones.
Clone redundancy on the microarray can prove useful in terms of result vali-
dation. We can be more confident that a gene discovery is real when it is cor-
roborated by independent clones that report the same expression behaviour.
Genes PLP1 and HBB, were detected by 4 different clones and ADD3 was
detected by 2 clones. Significantly, this represents all known clones on the
microarray that target these 3 genes adding further confidence to the result.
After removing clone redundancies from the list, there were 11 different genes
known to be associated with AD, 12 not previously associated with the disease
and 10 ESTs. Six of the AD associated genes were not discovered by either the
pattern recognition or dichotomization methods used in this study. A complete
list of genes discovered by this method is shown in Figures 9-10 and Figure 17
presents a summary of the gene discoveries for all the methods. Both of these
tables include the redundant gene clones. The p-value and ratio cut-offs ap-
plied to the data in this strategy are somewhat arbitrary and obviously the
list of genes produced by this method would be altered somewhat by choosing
different thresholds. The thresholds used were selected for their potential to
discover genes with significant differential expression in AD combined with a
significant difference between AD and normal sample means. Retrospective
analysis of the results indicated that all 15 AD-related gene discoveries would
have been detected with thresholds of AD vs. 0 a < 0.0005, AD vs. normal
a < 0.006 and |AD| > 0.411.

7 Conclusion

This paper reports the results of our data mining research in which we have
searched for patterns in microarray data that come from two known classes
(AD and normal). Applying data mining techniques (classical machine learn-
ing) is probably the most promising way to identify genes and their behaviour,
as the samples come from classes that are known in advance. The results would
therefore be more meaningful and easier to interpret, validate and apply. From
the data mining point of view, a measure of success in identifying disease-
associated, differentially expressed genes is the extent to which the algorithms
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Run_F0 Run_F1 Run_F2 Run_F3 pVal DiCh AnyMethod 1method | Allmethods

ESls Oy 1100 1403 | B3 | 1005 15011 30 12 1
Associated with AD S0 4000 401y 13¢5 A5(8) 40 24 12 1
Moprevious sssocistion | 4007 | S(00 401 | 164 15(3) B(D) 23 7 1
Total 0000 20000 22(4) I 40014) 2501 77 3 3

MNote: Mumnbers in brackets ) are results unigue to that method.
Fig. 17. Table containing results summary.

identify genes that have previously been associated with disease using inde-
pendent methodologies. However, from the medical point of view, success is
ultimately measured in terms of a more accurate prediction and diagnosis of
a disease.

In this research we applied 3 separate techniques to discover genes associated
with Alzheimer’s disease. Figure 17 shows the summary of the results for all
of our experiments. In the first four runs (F0-F3), we used a machine learning
algorithm 20 times, to identify the most informative genes through a discover-
and-mask approach, in which a gene identified in a run was removed from
the data set, before the next run, until all experiments were completed. This
identified 20 or more of the most informative genes, as some experiments from
runs F2 and F3 identified 2-3 genes. In the second technique (pVal), a sta-
tistical thresholding technique, aimed at improving the biological relevance of
the results, was applied to the FO data set. Forty genes were identified, 15 of
which have been previously associated with Alzheimer’s or other neurological
diseases. The high yield of disease-relevant genes discovered clearly demon-
strates the potential of this relatively simple method. In the third approach
(DiCh), the individual dichotomizer algorithm was applied. It identified in-
dividual genes with high classification power associated with Alzheimer and
normal and also the optimal ratio values differentiating these classes.

Of the 77 clones identified in this study, 24 represented 17 different genes that
are already known to be associated with Alzheimer’s or other neurological
diseases (see Table 3 and references therein). This is higher than any of the
previously published Alzheimer studies. Five of the 17 genes were represented
by multiple clones. Twenty-three clones representing 20 different known genes
(1 gene was represented by 4 clones), not previously associated with the dis-
ease, have been identified as well as 30 uncharacterised ESTs. The number of
AD associated genes discovered using these data mining strategies is signifi-
cantly higher than one would expect by chance. A literature study of 3 sets of
50 genes selected randomly from the microarray data revealed that 10 percent
of the known genes had an association with AD, compared to 53 percent in
the data mining study. Given the success in identifying genes already associ-
ated with AD, we can have some confidence in the involvement of the latter
genes and ESTs. For example, one of the genes, identified by all of the meth-
ods, but not previously associated with AD, is dystrobrevin. Dystrobrevin is
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a dystrophin-associated protein found in dystrophin-associated protein com-
plexes in the brain [1]. Given that one third of Duschenne muscular dystrophy
patients, a disease caused by mutations in the dystrophin gene, have a mild
dementia, it is possible that altered expression of dystrobrevin could be re-
lated to dementia of the Alzheimer type. Similarly, there is a high probability
that proprotein convertase inhibitor (PSK1IN) could be AD-associated given
the role of proprotein convertase in (-amyloid processing [34]. The biological
significance of the AD-associated genes found in this paper will be discussed
further in a subsequent publication.

We think our approach sets the stage for a major step in using gene expression
data for disease classification and diagnosis. It can also influence the future
of gene function identification, pathology, toxicogenomics, and pharmacoge-
nomics.
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