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Abstract—To meet the high demand for supporting and 

accelerating progress in breeding of novel traits, plant scientists 

and breeders have to make more efforts to deal with the need to 

accurately measure a large number of plants and their 

characteristics. A variety of imaging methodologies is being 

deployed to acquire data for quantitative studies of complex traits. 

When applied to a large number of plants, however, a complete 3D 

model is very time-consuming for high-throughput phenotyping 

with an enormous amount of data. In some contexts, complete 

rebuild of entire plants may not be necessary. With the aim of 

producing a smaller amount of data per plant, low-cost depth 

imaging systems can be useful. We propose the use of such a low-

cost depth camera, called Time-of-Flight (ToF), to have videos and 

pictures of the plant in 3D. An application has been developed to 

display 3D model of a plant and estimate certain characteristics. 

Counting the number of branches and seedpods of the canola plant 

have been implemented. Estimating the biomass and crop yield 

will be deployed in the near future. 

Keywords—3D plant phenotyping, image processing, time-of-

flight camera, counting branches and seedpods 

I. INTRODUCTION  

With the increasing demand of food supply in the world, 
agricultural scientists are facing a tremendous challenge in that 
the current production rate does not satisfy the need in the future 
[1]. To meet such high demand in food production, there is an 
obligation to increase breeding efficiency. Advances in genetic 
technologies, such as next generation DNA sequencing, have 
provided new methods to improve plant breeding techniques in 
the past decade. With these novel technologies, plant breeders 
can increase the rate of genetic improvement by molecular 
breeding [2]. However, the lack of access to phenotyping 
capabilities limits the ability to analyze the genetics of 
quantitative traits related to growth, crop yield, and adaptation 
to stress [3]. In the past few years, there has been increased 
interest in high throughput phenotyping approaches in the 
controlled indoor environment [4]. These new approaches 
linking functional genomics, phenomics, and plant breeding are 
needed to improve both crop production and crop yield stability 
and efficient screening of high-yielding or stress-tolerant 
varieties [5]. The currently used techniques, such as visible 
imaging, spectroscopy imaging, thermal infrared imaging, 

fluorescence imaging, etc., provide quantitative morphological 
measurements.  

Many studies have deployed laser systems (LemnaTec 
Scanalyzer) that scan the plant surfaces to acquire and analyze 
plant images, or 3D images, for extracting particular phenotypic 
traits [6-8]. Some larger scale facilities, such as the Australian 
Plant Phenomics Facility, the European Plant Phenotyping 
Network, and the USDA-NIFA have also been deployed 
robotics, precise environmental control, and remote sensing 
techniques to assess plant growth and performance in growth 
chambers or greenhouses. Kjaer and Ottosen used a high-
resolution 3D laser scanner (PlantEye, Phenospex) to track daily 
changes in plant growth with high precision in challenging 
environments [9]. Eitel et al found that, with the greater 
robustness, accuracy and resolution, the best known and most 
widely used type of sensor for 3D canopy reconstruction is 
LiDAR [10]. LiDAR creates accurate and detailed 3D models 
by structured light projection and laser range scanners. 
However, the system is expensive and requires longer imaging 
acquirement time. Therefore, these high-end platforms require 
far beyond budget that most research laboratories can afford and 
they may not be suitable to use in different environments. The 
objectives of our project are to: (1) present a low-cost depth 
camera system, (2) deploy high-throughput 3D phenotyping 
suitable for both greenhouses and fields, and (3) develop novel 
image processing algorithms for detecting and counting number 
of branches and seedpods. 

II. METHODOLOGY 

 This 3D plant phenotyping has some advantages over the 
current imaging systems as it uses a low-cost depth camera 
system to provide a high-throughput 3D phenotyping system 
with multi-platform capability. A low-cost depth camera 
(Agros3D-P100, developed by Bluetechnix) is used as an 
imaging acquisition system. With this time-of-flight (ToF) 
technology camera, phenotypic traits such as plant height, 
number of branches, number of seedpods,  and plant canopy 
(e.g., volume of plant) can be directly extracted and measured. 
The ToF depth sensor can capture depth map and 160x120 pixel 
data at up to 160 frames per second to simultaneously deliver 
depth information and grayscale image for each pixel. In 
addition, the data acquired from the depth camera is small 



enough for realtime phenotyping process as well as increase the 
storage capacity. The 3D phenotyping system can be deployed 
on a greenhouse or on a field platform. With the growth chamber 
platform, an imaging system can be fixed and the plant is turned 
around the camera or the camera is moved around a stationary 
plant. In the field platform, an imaging system can be mounted 
on a moveable carrying device (e.g., robot or slider) that moving 
over the field plots. In this work, a 3D plant phenotyping 
approach, combining of a depth camera and a digital camera, 
used in a chamber environment is deployed to measure plant 
height, number of branches, and number of seedpods. Matlab, 
Agros3D-P100 SDK and Kinect V2 SDK are used to connect 
the depth camera with a PC and supports the acquiring pf 
phenotypic data.  

Fig. 1 describes the steps to be used to count the number of 
branches. First, the 3D ToF camera provides the depth 
information. The camera is stationary and the plant is rotated on 
a turntable. Noise and background are then removed by applying 
a 3D filter. From the filtered 3D images, 2D images are extracted 
in the third step. Before applying a thinning algorithm (to 
acquire skeleton) and a tubeness algorithm (to achieve thicker 
and smoother tubes) in step 5, the images are converted to 
grayscale images in step 4. A region of interest (ROI), 
containing stems and branches, are extracted in step 6 before 
detecting and counting the number of branches in step 7. Finally, 
the result of the counting is displayed in step 8. 

Fig. 1. Workflow diagram of counting the number of  branches 

Fig. 2 illustrates the process to count the number of 
seedpods. In this process, a digital camera is used to capture 
color images of the canola plant. The color images are converted 
to grayscale images. Next, the Frangi 2D Vesselness filter 
algorithm [11] is applied to detect tube-like structures of stems 
and branches from the grayscale images. A thinning algorithm 
is then used to get the skeleton of the plant. Finally, an algorithm 
for detecting and counting the number of seedpods is developed. 
The algorithm also refines the result after applying Frangi filter 
and determines the locations of end points in the skeleton of the 
plant. From these end-point locations, seedpods can be detected 
and the number of seedpods can also be estimated.  

III. EXPERIMENTAL RESULTS 

In this work, the Agros3D-P100, Kinect V2 and Sony SLT-
A58 cameras were used in the experiments. First, a combination 
of Agros3D-P100 and Sony SLT-A58 were used to compare 
with the combination of Kinect V2 and Sony SLT-A58. After 
applying the processes previously described, the best approach 
will be proposed. The experimental results are shown as below.  

Fig. 2. Workflow diagram of counting the number of seedpods 

A. Results from a combination of Agros3D-P100 and Sony 

SLT-A58 

3D images (in term of point cloud) of a canola plant are 

extracted from the Agros3D-P100 by using APIs mentioned in 

the MatlabSDK_BtaP100 package. Then, noise and 

background of these depth images will be removed by applying 

a filter as illustrated in the Fig. 3.  

Fig. 3. 3D image acquired from the ToF camera Agros3D-P100, plant image 

with background (a), plant image after removing background (b). 

From the 3D cleaned point cloud above, the next steps are to 

extract 2D images and convert to grayscale images as shown in 

Fig. 4. Then, acquiring the skeleton of the canola by applying 

the thinning filter and implementing the tubeness filter to get a 

thicker and smoother skeleton is performed before extracting 

the ROI (see Fig.5). Finally, with ROI information, an 

algorithm of counting the number of branches is deployed and 

shown the results as in Fig. 6.  

Fig. 4. Extracting 2D image from the filtered 3D image (a) and converting to 

grayscale image (b). 

Ten images from a canola plant with different angles were 

captured and processed. The results were compared to manual 

count, as listed in Table I. Although there are low-resolution 

images acquired from the low-cost depth camera, the counting 

branches algorithm can achieve an accuracy up to 93%. 
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Fig. 5. Results of extracting skeleton, implementing tubeness filter, extracting 

ROI (red color), and counting the number of branches. 

Fig. 6. Results of other branches detection with different images acquired by 

the Agros3D P100 

TABLE I.  MANUAL AND ALGORITHM COUNTING NUMBER OF CANOLA 

BRANCHES – FROM THE AGROS3D-P100 CAMERA 

Image number from 

Agros ToF camera 

Manual 

count 

Algorithm 

count 

Error rate

(%) 

1 5 5 0 

2 4 4 0 

3 5 4 20 

4 5 4 20 

5 5 5 0 

6 5 5 0 

7 4 3 25 

8 5 5 0 

9 5 5 0 

10 4 4 0 

Average 7 

As the results shown in the Fig. 6 and Table I, the algorithm 
successfully detects branches in most cases. However, in image 
number 4, there are only four branches were counted by the 
algorithm instead of five. The reason is that the hidden branch 
was not detected due to branch overlapping. Other sources of 
error include viewing angle and distance between the camera 
and the plant. 

For the second experiment to count the number of seedpods, 
ten images of the canola plant were taken by the Sony SLT-A58 
camera. As the workflow introduced in Fig. 2, these color 
images were converted into grayscale, then tube-like structures 
(vessels) were distinguished by applying Frangi 2D Vesselness 
filter, as shown in the Fig. 7. By using Frangi filtered image, the 
skeleton of the plant is extracted. Finally, the skeleton is refined 

before applying an algorithm to detect the end points in the given 
skeleton. From these certain end points (the red stars in the 
image), the seedpods can be detected and the number of 
seedpods is to be estimated (see Fig. 8). 

Fig. 7. Acquiring a color image (a), converting to grayscale image (b), and 

applying Frangi Vesslness filter (c). 

Fig. 8. Extracting skeleton (a) detecting end points (b). Based on these end 

points, calculate the number of seedpods. 

The other images of the same plant were used to evaluate the 

algorithm at different angles. The results were quite similar, 

however they are dependent on the viewing angle (see Fig. 9). 

For example, the actually number of seedpods of the plant is 

124, the algorithm detects and counts only 117 in the image 

‘Color_image_6’ because some seedpods were shaded by the 

others. On the other hand, in the image ‘Color_image_5’, the 

number of seedpods was 130 due to background noise. In 

overall, in the detection of seedpods experiments, the accuracy 

rate can reach up to about 97% as shown in Table II. 

 

Fig. 9. Detected end points on different images at different viewing angles 
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TABLE II.  RESULTS OF MANUAL AND ALGORITHM COUNTING THE 

NUMBER OF CANOLA SEEDPODS 

Image number from 

Digital camera 

Manual 

count 

Algorithm 

count 

Error rate

(%) 

Color_image_1 124 125 1 

Color_image_2 124 128 3 

Color_image_3 124 126 2 

Color_image_4 124 124 0 

Color_image_5 124 130 5 

Color_image_6 124 117 6 

Color_image_7 124 131 2 

Color_image_8 124 127 2 

Color_image_9 124 127 2 

Color_image_10 124 122 2 

Average 3 

B. Results from a combination of Kinect V2 and Sony SLT-

A58 for green house environment 

In contrast to the Agros3D P100 that can acquire depth 

information without light or under directly sunlight, the Kinect 

V2 requires good illumination environment when captures a 

point cloud of the canola plant. Obviously, the Kinext camera 

provides higher resolution compared to the ToF counterpart. 

The next steps were performed as the same as previous 

experiment (from step 3 to step 8 in Fig. 1). The results are 

illustrated in Fig. 10 and Table III. Due to the higher resolution 

than the depth camera, the performance of the algorithm on 

Kinect V2’s images is better.   

Fig. 10. Images from Kinect V2 greyscale (a), tubeness filtered (b), extracting 

ROI (c) 

TABLE III.  MANUAL AND ALGORITHM COUNTING THE NUMBER OF 

CANOLA BRANCHES – FROM KINECT V2 

Image number from 

Kinect V2 camera 

Manual 

count 

Algorithm 

count 

Error rate

(%) 

Kinect_image_1 5 5 0 

Kinect _image_2 5 5 0 

Kinect _image_3 4 5 25 

Kinect _image_4 5 4 20 

Kinect _image_5 5 5 0 

Kinect _image_6 5 5 0 

Kinect _image_7 4 4 0 

Kinect _image_8 5 5 0 

Kinect _image_9 5 5 0 

Kinect _image_10 4 4 0 

Average 5 

IV. CONCLUSION 

Our proposed approach deals with some obstacles in 3D 
plant phenotyping. Algorithms were developed to improve 
the Frangi 2D Vessel Filter, extract and validate skeleton end 
points and then estimate the number of branches and 

seedpods. From both experiment results performed on a 
single canola plant by the ToF Agros3D P100 and the Kinect 
V2 cameras, it is seen that the error rates of counting the 
number of branches (7% and 5% respectively) and seedpods 
(3%) are acceptable. The Kinect V2 is suitable to implement 
in the greenhouse because it cannot cope with direct 
sunlight. The ToF Agros3D P100 camera is more suitable for 
both in the greenhouse and out to the field by its advantages 
such as high frame rate and an independent of environment 
illumination. With a combination of a ToF camera and a 
digital camera, the imaging system is capable of being 
scaled up for indoor and outdoor facility high-
throughput plant phenotyping on different environment 
platforms. In the future, the algorithms need to be 
improved in accuracy when applied to a large number of 
canola plants in the field. Biomass, crop yield, and other 
characteristics can be estimated using the images from 
these cameras.   
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