

NRC Publications Archive Archives des publications du CNRC

Growth, survival, and whole-body proximate and fatty acid composition of haddock, Melanogrammus aeglefinus L., postlarvae fed a practical microparticulate weaning diet

Lall, Santosh P.; Lewis-McCrea, Leah M.; Tibbetts, Sean M.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

Publisher's version / Version de l'éditeur:

https://doi.org/10.1111/jwas.12462 Journal of the World Aquaculture Society, 2017-09-06

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=91e38424-3856-41df-9ab9-dd6d79b512d8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=91e38424-3856-41df-9ab9-dd6d79b512d8

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

1		
2		
3		
4		
5		
6		
7		
8	Growth, Survival and	Whole-body Proximate and Fatty Acid Composition of Haddock,
9	Melanogrammus aeglef	inus L. Post-Larvae Fed a Practical Microparticulate Weaning Diet.
10		
11	Santosh	P. Lall, Leah M. Lewis-McCrea, Sean M. Tibbetts*
12		
13	National Research Counc	il of Canada, Aquatic and Crop Resource Development, 1411 Oxford
14	St	treet, Halifax, Nova Scotia, Canada, B3H 3Z1
15		
16	[*] Corresponding author:	Sean M. Tibbetts
17		National Research Council of Canada
18		Aquatic and Crop Resource Development
19		1411 Oxford Street
20		Halifax, Nova Scotia, B3H 3Z1
21		Canada
22		Phone: + 1 902 868 3005
23		E-mail: Sean.Tibbetts@nrc-cnrc.gc.ca
24		

Abstract

26	Further development of high-quality feeds for hatchery-reared haddock in the North
27	Atlantic would benefit from a standard formulation that can be used as a reference for
28	hatcheries and laboratory studies. A practical marine diet (PMD) developed and evaluated
29	with newly metamorphosed juvenile haddock, <u>Melanogrammus</u> aeglefinus L., post-larvae is
30	proposed. Survival of fish fed PMD was just as high (88-89%; P>0.05) as those fed a high-
31	quality imported feed (Biokyowa). Alternatively, fish fed PMD had higher (P<0.05) final
32	fork lengths (39.5 vs. 35.1 mm), wet weights (851.3 vs. 580.2 mg) and weight gains (1637.2
33	vs. 1115.7%). No differences (P>0.05) in whole-body moisture (846-857 g/kg), ash (17-18
34	g/kg) or protein (101 g/kg) contents were found. Lipid content of fish fed PMD (26 g/kg)
35	was higher (P<0.05) than those fed Biokyowa (21 g/kg) despite PMD containing 15 g/kg
36	lower dietary lipid; suggesting higher intake and/or lipid retention. The PMD formulation
37	proved to be a highly-suitable weaning diet for haddock post-larvae based on high feed
38	acceptance, survival and fish growth. Given the economic and logistical difficulties
39	associated with importing commercial weaning feeds, this easily-produced practical
40	weaning diet has good potential for use by laboratory researchers and farm managers for
41	hatchery-based nutrition research with haddock post-larvae.

Haddock, Melanogrammus aeglefinus L., is a coldwater marine white fish, which will 48 reproduce in captivity and appears to adapt and grow well in salmon cages, making it a potential 49 candidate species for aquaculture in Atlantic Canada, Eastern USA and Norway (Frantsi et al. 50 2002; Paisley et al. 2010; Tibbetts 2012). While still modest relative to other cultured finfish, the 51 number of fingerlings stocked into sea pens has grown to 21 million in recent years (Paisley et al. 52 53 2010). Several studies have been directed to determine the utilization of certain nutrients by a similar gadoid fish species, Atlantic cod, Gadus morhua L. (Jobling et al. 1991; Dos Santos et al. 54 1993; Lall and Nanton 2002; Hamre 2006; Hamre and Mangor-Jensen 2006; Tibbetts 2012). 55 However, very little information is available for haddock (Kim and Lall 2001; Lall et al. 2003; 56 Treasurer et al. 2006; Treasurer 2008; Tibbetts 2012). In addition, knowledge gaps still exist for 57 both gadoid species with regard to ontogeny of the digestive tract and associated organs as well 58 as nutrient utilization during the larval and post-larval stages, particularly for haddock (Kjørsvik 59 et al. 1991; Hamlin et al. 2000; Perez-Casanova et al. 2004, 2006; Kvåle et al. 2007) and other 60 farmed marine fish species (Zambonino Infante et al. 2008; Micale and Muglia 2011; Hamre et 61 al. 2013; Rønnestad et al. 2013; Borsky and Bricknell 2016). Nutritional data obtained with fish 62 at the grower stage is often of little value when studying the requirements of fish at the larval and 63 64 post-larval stages since mechanisms of digestion and absorption change during their development and, thus, nutritional requirements and tolerance for various ingredients also 65 change (see reviews of Rønnestad et al. 2013 and Hamre et al. 2013). As a result, a major 66 67 obstacle for haddock culture is low feed acceptance, poor growth and high mortality associated with weaning from live food to formulated diets; rendering 'total' replacement largely 68 69 unsuccessful for most marine fish including haddock. Given that the digestive tract of most 70 marine fish is still under development during the earliest larval phases, a deficiency of

71 appropriate digestive enzymes is likely to account for poor weaning of fish from live foods to formulated diets. While earlier reports proposed that exogenous enzymes supplied by consuming 72 live prey have an essential role in marine fish larval digestion (Munilla-Moran et al. 1990), this 73 does not appear to be entirely the case for haddock. Perez-Casanova et al. (2006) demonstrated 74 that while α -amylase activity in haddock larvae was enhanced when consuming rotifers, their 75 76 contribution to protein and lipid digestion was negligible. Another reason for the lack of success in the weaning of most marine fish is that, aside from essential fatty acids (EFAs), very little is 77 known of their nutrient utilization from formulated feeds and quantitative nutrient requirements 78 79 at this stage. As a result, commercially available feeds may be marginal in certain essential dietary nutrients and trace elements. Recent reviews have summarized a significant amount of 80 new data on the qualitative and quantitative nutritional requirements of various marine species 81 such as Senegalese sole, gilthead seabream, European seabass, Atlantic cod, Atlantic halibut, 82 turbot and Japanese flounder (Rønnestad et al. 2013; Hamre et al. 2013). However, the essential 83 micronutrient requirements for most other marine fish, including haddock, remains to be 84 investigated. 85

In order to increase fingerling production of haddock through enhanced feed acceptance, 86 87 survival and growth rate, it is necessary to have high quality formulated diets available locally for laboratory or hatchery-based nutrition research as importation of small quantities of 88 commercial feeds is costly (Yúfera et al. 2005) and logistically difficult due to the different 89 90 hatching periods and earlier larval feed production in Europe and Asia. Significant research has been published on weaning diets for cod in Norway (Kvåle et al. 2006, 2009; Hamre 2006; 91 Hamre and Mangor-Jensen 2006; Bogevik et al. 2012; Hamre et al. 2013; Chauton et al. 2015). 92 93 Haddock diet development research was initiated in our laboratory in 2002 (Frantsi et al. 2002;

Lall et al. 2003). Biokyowa is widely used for the early feeding of warm water marine fish in 94 Asia. In an exploratory study in our laboratory, Biokyowa exhibited suitable physical properties 95 as compared to other commercial feeds, such as uniformity of particle size and stability in the 96 water column and it was palatable to haddock post-larvae resulting in high growth rates. The use 97 of this product in Canada, however, is limited due to its high cost of importation and currently 98 99 under Canadian Feeds Regulations it cannot be imported for commercial use due to the potential presence of banned ingredients. To undertake research for this study, an exemption under the 100 provisions of the Feeds Act had to be obtained from the Canadian Food Inspection Agency 101 102 (CFIA). There are also concerns that the quality of imported commercial weaning diets may vary significantly from year-to-year, batch-to-batch and within batch during transport. Companies 103 producing these types of products experience high costs with poor returns, since the demand for 104 weaning diets is limited and their shelf-life is short. For these reasons, it is imperative that 105 countries involved in haddock aquaculture develop formulations for high quality and effective 106 diets that can be produced locally for laboratory or hatchery-based nutrition research. While the 107 Biokyowa diet used in this study is not commercially available for use in Canada, our 108 preliminary studies have demonstrated its effectiveness for successful weaning of haddock. 109 110 Thus, for the purposes of this study, it provides an ideal 'benchmark' as locally-sourced weaning diets are further developed. The objective of this study was to develop and evaluate the 111 suitability of a formulated practical microparticulate weaning diet that promotes good feed 112 113 acceptance, high survival and growth rate of haddock post-larvae that can be adopted by laboratory researchers and farm managers as a tool for hatchery-based research, development 114 115 and benchmarking of other commercially available weaning feeds.

Materials and Methods

118

Practical Microparticulate Diet (PMD)

The formulation of the PMD diet is shown in TABLE 1. All dry ingredients were finely 119 ground and mixed with micronutrients and lipid components. Once all ingredients were 120 thoroughly blended, 200 g/kg boiling distilled water was incorporated and the dough was passed 121 122 through a Hobart meat grinder (Model H600T, Rapids Machinery Co., Troy, OH, USA) with a 2 mm die to produce long strands which were immediately frozen at -20°C and then freeze-dried. 123 The freeze-dried strands were crumbled using a Roskamp Grappler (Series 6.5, Roskamp 124 125 Manufacturing, Inc., Waterloo, Iowa, USA) and the resulting particles were roughly size-graded through a Sweco Vibro-Energy Particle Separator (Model LS1884443, Sweco Inc., Florence, 126 Kentucky, USA) and then finely graded by hand with laboratory sieves. Particles between 400-127 600 and 600-800 µm were used in the experiment to match those of the commercial Biokyowa 128 weaning feed. 129

- 130
- 131

Experimental Conditions

Fertilized haddock eggs received from the St. Andrews Biological Station (Fisheries and 132 133 Oceans Canada, St. Andrew's, New Brunswick) were incubated at 7°C for 14 d. Newly hatched larvae were then transferred to a 3500-L larval tank where they were acclimated to a temperature 134 of 11°C where they stayed for 40 d. During this period, they were fed algae-enriched rotifers 135 136 from 0 to 10 d post-hatch (DPH), Algamac 2000-enriched rotifers from 10 to 33 DPH and Algamac 2000-enriched Artemia from 33-54 DPH. At 54 DPH, the post-flexion larvae were 137 transferred into nine, 350-L dark green tanks, each receiving filtered (30 µm) seawater (28-30 138 g/L salinity) at a flow rate of 1 L/min. The salinity optima for survival and growth of haddock 139

140 larvae, has been reported at 25-30 g/L (Opstad 2003). At this developmental stage (e.g., 54 DPH, 52 mg live weight, 17 mm fork length) the fish's fin rays, swim bladder, notochord, teeth and 141 digestive organs should all be developed (Auditore et al. 1994; Perez-Casanova et al. 2006). The 142 9 tanks were each stocked with 500 fish (stocking density, 1.43 post-larvae/L) and fed 300,000 143 live Artemia twice daily under continuous dim light (~60 lux at water surface). The experiment 144 145 evaluated a commercially-produced imported weaning diet (Biokyowa, Kyowa Hakko Kogyo, Tokyo, Japan) and a practical microparticulate diet (PMD) formulated and produced in our 146 laboratory. The nine experimental tanks (Biokyowa was fed to triplicate tanks and PMD was fed 147 to six replicate tanks) contained 500 fish each (initial mean weight, 52.2 ± 0.2 mg) at a water 148 temperature of 12°C over a period of 20 d. After the pre-trial weaning phase (54 DPH), the 149 experiment began. The selection of the post-larval developmental stage for the beginning of the 150 study was based on the results of our previous pilot feeding trials and light microscopy 151 information which involved investigations related to intake and assimilation of macronutrients 152 from live organisms and food particles within the digestive tract of the fish (unpublished data). 153 Beginning at 55 DPH, the test diets (400-600 µm size class) were introduced and were fed in 154 excess every h between 0900 and 1700 h with a subsequent feeding at 2200 h each night. 155 156 Concurrently, the amount of live Artemia fed to each tank was reduced from 300,000 daily at 54 to 56 DPH to 200,000 daily at 57 DPH, 150,000 daily at 58 DPH, 100,000 daily at 59 DPH, 157 50,000 daily at 60 DPH and 0 at 61 DPH. The diet particle size was gradually increased as the 158 159 fish grew so that the final food particle sizes ranged between 600-800 µm. Mortalities were collected daily from the experimental tanks and dissolved oxygen levels $(9.5\pm0.1 \text{ mg/L}, 106\pm1\%)$ 160 161 saturation) and water temperatures (11.9±0.1°C) were monitored daily. Tank bottoms were 162 gently siphoned and the surface water skimmed every second d. At the end of the feeding trial

(74 DPH), the fish were unfed for 24 h and live counted. At the beginning of the feeding trial (54 163 DPH), 100 fish were sacrificed with an overdose of tricaine methanesulfonate (TMS) after 24 h 164 food deprivation and individual fork lengths (mm) and wet weights (mg) were recorded. These 165 fish were pooled into three groups, frozen on dry ice, stored at -80°C, freeze-dried and then 166 finely ground for subsequent whole-body compositional analysis. At the end of the experiment 167 168 (74 DPH), 25 fish from each tank (225 in total) were collected and measured in the same manner. Initial and final fish samples were analyzed in triplicate for whole-body proximate 169 composition (moisture, ash, protein and lipid) and fatty acid profile using procedures described 170 171 in the following section.

- 172
- 173

Analytical Methods

Test diets and freeze-dried whole fish were analyzed in triplicate by the same procedures. 174 Lipid content was determined according to Bligh and Dyer (1959). Fatty acid methyl ester 175 (FAME) derivatives were prepared using 7% boron trifluoride in methanol and heating to 100°C 176 for 1 h (Christie 1982). Individual FAMEs were separated by gas chromatography (Hewlett 177 Packard 6890 GC system equipped with a flame-ionization detector) using an Omegawax 320 178 capillary column (Supelco) and identified by comparison of retention times with those of known 179 standards (Supelco 37, Menhaden Oil). The total extracted lipids were further separated into 180 polar and non-polar fractions according to Nanton et al. (2001) using a silica gel column 181 182 comprised of a Pasteur pipette plugged with glass wool, a thin layer of anhydrous sodium sulphate and silica gel (40 µM flash chromatography packing; J.T. Baker Inc., Phillipsburg, NJ, 183 USA). The polar and non-polar lipids were separated using chloroform followed by methanol 184 185 with the FAME compositions determined using the procedure described above. Following

186	AOAC (1990) methods, the moisture content was determined by drying in an oven for 24 h at
187	110°C and ash by incineration in a muffle furnace at 550°C for 24 h. Crude protein (N × 6.25)
188	was measured using a nitrogen determinator (model FP-528, Leco Corporation, St. Joseph,
189	Michigan, USA). Gross energy content of the diets was determined using an adiabatic bomb
190	calorimeter (Parr Instrument Company, Moline, Illinois, USA) and carbohydrate was calculated
191	by difference (1000 – [moisture + ash + protein + lipid]). All samples were analyzed in triplicate.
192	
193	Statistical Analyses
194	Mean±SE was calculated from the average of multiple tanks receiving each test diet.
195	Statistical analyses were performed using ANOVA with a 5% level of probability and in the case
196	of a statistically significant difference, treatment means were differentiated using Tukey's test
197	(SYSTAT [®] 8.0). Correlations between response variables were calculated by Pearson correlation
198	analysis (r) using Microsoft Excel.
199	
200	
201	Results
202	Experimental Diets
203	The test feeds had similar levels of dietary crude protein (608-626 g/kg), lipid (154-169 g/kg)
204	and gross energy (22-23 MJ/kg). However, dietary ash content of Biokyowa (140 g/kg) was
205	higher than PMD (73 g/kg) while carbohydrate levels were higher for PMD (146 versus 83 g/kg).
206	Total and polar fatty acid compositions of PMD and Biokyowa are shown in TABLES 3 and 4.
207	The ratio of polar to non-polar lipids was similar between the test diets at 37:63 (PMD) and
208	35:65 (Biokyowa). As for individual fatty acids, Biokyowa contained higher levels than PMD of

209	16:0, 18:1n-9, 18:2n-6, 20:4n-6 and 20:5n-3 and lower levels of 20:1n-9 and 22:1n-11. Fatty acid
210	levels were similar for 14:0, 16:1n-7, 18:0, 18:1n-7, 18:3n-3, 20:4n-3, 22:5n-3 and 22:6n-3. As
211	for fatty acid groups, Biokyowa contained higher levels than PMD of total SFA (28 vs 22%),
212	total PUFA (44 vs 36%), total n-3 PUFA (17 vs 15%), total n-6 PUFA (13 vs 7%) and lower
213	levels of total MUFA (29 vs 45%). The DHA:EPA ratio was higher for PMD (1.3) than
214	Biokyowa (1.1) and this was also the case for the EPA:ARA ratio (16.3 and 10.2, respectively).
215	In terms of the polar fatty acids, Biokyowa contained higher levels than PMD of 16:0, 18:1n-9,
216	18:1n-7 and 20:5n-3 and lower levels of 18:2n-6 and 22:6n-3. Fatty acid levels were similar for
217	14:0, 16:1n-7, 18:0, 18:3n-3, 18:4n-3, 20:1n-9, 20:4n-6, 20:4n-3, 22:1n-11 and 22:5n-3. As for
218	fatty acid groups, Biokyowa contained higher levels than PMD of total SFA (31 vs 28%), total
219	MUFA (22 vs 18%) and total n-3 PUFA (19 vs 14%) and lower levels of total PUFA (50 vs
220	57%) and total n-6 PUFA (16 vs 19%). The DHA:EPA ratio was higher for PMD (2.3) than
221	Biokyowa (1.0) while the EPA:ARA ratio was similar (10.2-10.7, respectively).
222	
223	Fish Performance
224	Survival was high throughout the experiment at 88.2-89.1% and there were no significant
225	differences (P>0.05) between PMD and Biokyowa (FIGURE 1). The majority of mortalities
226	occurred within the first 3 d after introduction of the weaning diets and then stabilized at a low
227	rate (generally <10 fish/d) for the duration of the experiment and at similar levels for PMD and
228	Biokyowa. With regard to growth performance, haddock fed PMD outperformed those fed
229	Biokyowa (TABLE 5). Final fork lengths and wet weights of fish fed PMD (39.5 mm and 851.3
230	mg) were significantly higher (P<0.05) than those fed Biokyowa (35.1 mm and 580.2 mg)

231	resulting in significantly higher (P<0.05) weight gains for fish fed PMD (1637% of initial
232	weight) than those fed Biokyowa (1116% of initial weight).
233	Whole-Body Composition
234	As expected, all aspects of final whole-body proximate composition, regardless of diet,
235	changed from initial values in a predictable manner with final fish containing significantly lower
236	(P<0.05) moisture levels and significantly higher (P<0.05) levels of ash, protein and lipid. Final
237	whole-body moisture, ash and protein levels of fish fed PMD and Biokyowa were statistically
238	the same (P>0.05%) at 846-857 g/kg, 17-18 g/kg and 101 g/kg, respectively. However, whole-
239	body lipid content of fish fed PMD (26 g/kg) was significantly higher (P<0.05) than those fed
240	Biokyowa (21 g/kg).
241	Final lipid profiles of the fish highly reflected those of the diets with correlation (r) values
242	between fatty acid composition of the diet and those of the final fish of 0.80-0.87. No significant
243	differences (P>0.05) in whole-body fatty acid composition were observed between fish fed PMD
244	or Biokyowa for 18:3n-3, 20:4n-3, 20:5n-3 and 22:5n-3. Haddock fed PMD contained
245	significantly higher (P<0.05) levels than Biokyowa of 14:0, 16:1n-7, 18:1n-9, 18:4n-3, 20:1n-9
246	and 22:1n-11 and significantly lower (P<0.05) levels of 16:0, 18:0, 18:1n-7, 18:2n-6, 20:4n-6
247	and 22:6n-3. As for fatty acid groups, fish fed PMD contained significantly higher (P<0.05)
248	levels than those fed Biokyowa of total SFA (47 vs 35%) and significantly lower (P< 0.05%)
249	levels of total PUFA (41 vs 53%) and total n-6 PUFA (1.9 vs 3.2%) while there were no
250	significant differences (P>0.05) observed in the levels of total MUFA (5.8-6.2%) and total n-3
251	PUFA (13.9-14.8%). The DHA:EPA ratio was lower for fish fed PMD (1.5) than Biokyowa (2.0)
252	while the EPA:ARA ratio was higher for PMD (11.0) than Biokyowa (5.5).
253	

255

Discussion

While a limited amount of data is available on weaning diets for haddock (Hamlin and Kling 256 2001; Blair et al. 2003), reference formulations for this species for further nutritional work do 257 not exist. Not surprisingly, attempts to raise hatchery-reared haddock from first feeding through 258 259 metamorphosis on formulated diets have not provided a high rate of survival under commercial conditions and, indeed, hatchery mortalities have been high in published laboratory studies (36-260 98%). The high mortalities during early weaning of haddock are related to a number of factors. 261 262 The fish likely do not have a fully functional digestive system prior to introduction of microparticulate diets, the feeds lack the attractive chemosensory properties required to promote 263 rapid ingestion of the particles and the nutrient composition is likely unbalanced as a result of 264 knowledge gaps on specific dietary requirements and also as a result of leaching of essential 265 nutrients while in the water column. 266

This study demonstrates that high survival (>88%) of haddock can be obtained through the 267 weaning stage from 54-61 DPH. The survival rates found in our study are much higher than 268 those previously reported for haddock of 35% (Hamlin and Kling 2001) and 2-5% (Blair et al. 269 270 2003). In addition to the dietary formulation, the major difference is the period of co-feeding of live feed and dry feed. Where we co-fed the larvae from 54-61 DPH (88-89% survival), these 271 studies co-fed from 30-37 DPH (35% survival) and 25-29 DPH (2-5% survival). Thus, it is clear 272 273 and somewhat predictable that the earlier the co-feeding period occurs, the less likely it is that high survival rates will be possible. This was also the case for summer flounder, Paralichthys 274 dentatus and southern flounder, P. lethostigma where it was found that larval survival was 275 significantly improved by weaning older larvae (Bengtson et al. 1999; Alam et al. 2015). The 276

fact that we could achieve such high survival success by beginning weaning at 54 DPH is 277 supported by Hamlin et al. (2000), Hamlin and Kling (2001) and Otterå and Lie (1991) who 278 reported that differentiation of the larval gadoid digestive system into one that resembles that of 279 the adult does not fully occur until at least 50-53 DPH when the larvae are at least 15 mm in 280 length. The weaning period in this experiment began at 54 DPH with fish at a length of 16.7 mm. 281 282 This is also the case for greenback flounder, Rhombosolea tapirina where highest larval survival (>80%) occurred when weaning was done at 23 DPH, roughly the same time that the stomach of 283 the flounder is fully differentiated (20 DPH) (Hart and Purser 1996). The high haddock survival 284 rates found in this study (>88%) are also much higher than those reported for Atlantic cod 285 (<40%) under several co-feeding period variations (Baskerville-Bridges and Kling 2000a,b; 286 Callan et al. 2003). The initial spike in mortality of fish fed PMD between 54-56 DPH is likely 287 due to handling stress of moving the larvae into the experimental tanks as this was also observed 288 in similar studies with haddock (Blair et al. 2003) and gilthead seabream, Sparus aurata larvae 289 (Koven et al. 2001). Interestingly, this initial mortality spike was less pronounced in the larvae 290 fed Biokyowa. This may be attributed to the fact that the Biokyowa contained more than double 291 (240%) the concentration of arachidonic acid (ARA, 20:4n-6) than PMD. Koven et al. (2001) 292 293 found that gilthead seabream larvae showed increased resistance to transportation stress and subsequently lower mortality when fed ARA-enriched rotifers. 294

Growth performance of haddock in this study was high with specific growth rates of over 13%. Lower growth rates (7-9%) have been reported for cod (Otterå and Lie 1991; Baskerville-Bridges and Kling 2000a; Callan et al. 2003). In some studies of weaning cod and seabream, microdiets with a higher moisture content generally provided highest survival rates (Otterå and Lie 1991; Yúfera et al. 2015). This is likely related to increased olfactory attractiveness and a

greater ease of particle disintegration in the developing gut; however moist feeds are logistically 300 problematic. In the present study, PMD and Biokyowa were dry feeds, yet still promoted good 301 feed acceptance and provided high survival and growth rates throughout the experimental 302 weaning period. While we cannot be sure of the ingredients within Biokyowa, the attractiveness 303 of PMD is likely related to the use of krill and squid hydrolysates, both of which are known as 304 305 potent feed attractants for fish and specifically for marine gadoids (Lie et al. 1989). The relatively low survival and growth of haddock in previous studies conducted in North America is 306 likely related to a lack of these chemosensory-rich ingredients in the experimental diets used. 307 308 Only one of the studies with a related gadoid species (Atlantic cod) used experimental diets containing krill protein; and feed acceptance, growth and survival were still poor (Baskerville-309 Bridges and Kling 2000b). As such, it may be that the most potent feed attractant for young 310 gadoid fish is squid protein. This is consistent with a recent report by Alam et al. (2015) who 311 observed significantly higher survival and growth rates of larval southern flounder fed microdiets 312 containing squid meal when compared to microdiets containing only krill meal as an attractant. 313 In addition to other key components having chemo-attractant properties, squid protein is 314 uniquely rich in taurine and betaine which have been correlated with enhanced feed intake by 315 316 other species of marine fish larvae such as Asian sea bass, Lates calcarifer, summer flounder, gilthead seabream and Japanese flounder, Paralichthys olivaceus (Lee et al. 1996; Kolkovski and 317 Tandler 2000; Kim et al. 2005; Lian et al. 2008). These marine products presented in hydrolysate 318 319 form as opposed to native form have also been shown to improve development of hatcheryreared marine fish, presumably through an increased ease of absorption of short-chain peptides 320 321 and free amino acids through the immature intestinal microvilli (Zambonino Infante et al. 2008). 322 Anecdotally, we suspect this to be the case for other marine fish species as well where we have

observed similar highly encouraging results using a modified PMD formulation for hatchery reared Atlantic halibut, <u>Hippoglossus hippoglossus</u>, bluefin tuna, <u>Thunnus thynnus</u> and sablefish,
<u>Anoplopoma fimbria</u>. In addition to its possible feed attractant properties, taurine is increasingly
becoming considered as a conditionally-essential amino acid for many farmed fish species and
recently Zheng et al. (2015) have suggested a dietary requirement of 10 g/kg (1% of the diet) for
marine fish post-larvae feeds.

In the present study, the significantly higher growth rate found for haddock fed PMD also 329 corresponds to significantly higher whole-body lipid content; despite the fact that PMD 330 331 contained 15 g/kg less dietary crude lipid than Biokyowa. Presumably, fish fed PMD ingested more total digestible energy than those fed Biokyowa, which may have been stored as liver lipid. 332 However, by the end of this experiment, the fish were still too small to effectively remove the 333 livers in order to calculate the hepatosomatic index or determine the liver composition. The 334 lower levels of total n-3 fatty acids and total PUFA in PMD resulted in fish having lower levels 335 of total PUFA but no appreciable decrease in total n-3 PUFA. Alternatively, fish consuming 336 PMD had higher levels of total SFA and a reduced DHA/EPA ratio. In comparison of the initial 337 haddock samples to the final samples, the deposition of total SFA, MUFA and n-3 PUFA 338 339 followed the same pattern as European sea bass, Dicentrarchus labrax where there was an overall increase in deposition of SFA and an overall decrease in MUFA and n-3 PUFA (Fontagné et al. 340 2000). Of course, it is not only the fatty acid profile, but the form in which the lipid is supplied in 341 342 the diet which is an important consideration for early developmental stages. Previous work indicates that marine fish larvae may utilize phospholipids more efficiently than triglycerides 343 (Shields et al. 1999) and, as such, dietary inclusion of phospholipid-rich ingredients has been 344 345 recommended for weaning feeds (Zambonino Infante et al. 2008). However, it should be noted

that many marine fish weaning studies to date have utilized sovbean lecithin as the 346 supplementary source of dietary phospholipids. It has been demonstrated that phospholipids from 347 marine sources are more highly assimilated by marine fish than those from soybean lecithin 348 (Leifson et al. 2003; Saleh et al. 2015). It appears that, in addition to enhanced digestion and 349 absorption, marine-derived phospholipids may improve larval survival, stress resistance, growth 350 351 rate and bone mineralization compared to diets formulated with soybean lecithin-derived phospholipids. In the present study, in addition to soybean lecithin, PMD was also supplied with 352 freeze-dried fish roe, a highly rich source of marine-based phospholipids. 353 In conclusion, high survival (~90%) of haddock post-larvae fed PMD was possible under 354 laboratory conditions when the transition from live food to formulated diets occurred after 53 355 DPH when the digestive system was thought to be fully differentiated. The PMD formulation 356 used in the present study promoted good feed acceptance, high survival and rapid growth; greatly 357 exceeding those of previous studies and these findings are likely the result of several factors. 358 Incorporation of feed ingredients with strong chemoreceptive properties (e.g., krill and/or squid 359 hydrolysates) is important to promote rapid ingestion of microparticles by young haddock and 360 that higher levels (>1%) of dietary arachidonic acid (AA) may help reduce larval stress and 361 362 subsequent mortality during the first few d of transition from live food to formulated weaning diets. Additionally, the high survival and growth rates of haddock fed PMD may provide 363 additional evidence for the importance of incorporating phospholipid-rich marine sources (e.g., 364 365 cod muscle and herring roe) into microparticulate weaning diets for hatchery-reared haddock. Additional work is required to better define the nutrient requirements of haddock, specifically at 366 the larval and post-larval stages, and to improve weaning feed production technologies that 367 368 minimize leaching of essential nutrients into the water column. Overall, given the logistical and

369	economic difficulties associated with importation of small quantities of commercially-produced
370	marine fish weaning feeds, the good feed acceptance, high survival and rapid growth of haddock
371	fed PMD demonstrated in this study suggests that it is a highly suitable, easily produced practical
372	weaning diet formulation that can be used by laboratory researchers and farm managers for
373	hatchery-based nutrition research with haddock.
374	
375	
376	Acknowledgments
377	The authors wish to thank Joyce Milley, Dominic Nanton, Michael Seaman, Kristen
378	Thompson, Steven Leadbeater, Laura Garrison, Deborah van Beusekom and Stewart Johnson for
379	valuable advice and technical expertise and John Achenbach for reviewing a draft of this
380	manuscript. This work was supported by Heritage Aquaculture Limited (Blacks Harbour, NB,
381	Canada) and NRC's Industrial Research Assistance Program (Halifax, NS, Canada) and is
382	NRCC publication #56199.
383	
384	
385	
386	Literature Cited
387	Alam, M.S., W.O. Watanabe, T.C. Rezek, A.R. Myers, P.M. Carroll and H.V. Daniels.
388	2015. Growth performance, survival and body composition of southern flounder Paralichthys
389	lethostigma larvae fed different formulated microdiets. Aquaculture Research 46:1924-1936.
390	

391	Association of Official Analytical Chemists. 1990. Official methods of analysis, 15 th edition.
392	Association of Official Analytical Chemists, Washington, DC, USA.
393	
394	Auditore, P.J., R.G. Lough, E.A. Broughton. 1994. A review of the comparative development
395	of Atlantic cod (Gadus morhua L.) and haddock (Melanogrammus aeglefinus L.) based on an
396	illustrated series of larvae and juveniles from Georges Bank. NAFO Sci. Coun. Studies 20:7-
397	18.
398	
399	Baskerville-Bridges, B. and L.J. Kling. 2000a. Early weaning of Atlantic cod (Gadus morhua)
400	larvae onto a microparticulate diet. Aquaculture 189:109-117.
401	
402	Baskerville-Bridges, B. and L.J. Kling. 2000b. Development and evaluation of
403	microparticulate diets for early weaning of Atlantic cod Gadus morhua larvae. Aquaculture
404	Nutrition 6:171-182.
405	
406	Bengtson, D., L. Lyndon and J.D. Ainley. 1999. Green-water rearing and delayed weaning
407	improved growth and survival of summer flounder. North American Journal of Aquaculture
408	61:239-242.
409	
410	Blair, T., J. Castell, S. Neil, L. D'Abramo, C. Cahu, P. Harmon and K. Ogunmoye. 2003.
411	Evaluation of microdiets versus live feeds on growth, survival and fatty acid composition of
412	larval haddock (Melanogrammus aeglefinus). Aquaculture 225:451-461.
413	

414	Bligh, E.C. and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification.
415	Canadian Journal of Biochemistry and Physiology 37:911-927.
416	
417	Bogevik, A.S., S. Natário, Ø. Karlsen, A. Thorsen, K. Hamre, G. Rosenlund and B.
418	Norberg. 2012. The effect of dietary lipid content and stress on egg quality in farmed
419	Atlantic cod Gadus morhua. Journal of Fish Biology 81:1391-1405.
420	
421	Borsky, A.J. and I.R. Bricknell. 2016. The ontogeny of neurosensory structures in larval
422	Atlantic halibut, Hippoglossus hippoglossus (Linnaeus, 1758). Journal of Applied
423	Ichthyology 32:669-674.
424	
425	Callan, C., A. Jordaan and L.J. Kling. 2003. Reducing Artemia use in the culture of Atlantic
426	cod (<u>Gadus morhua</u>). Aquaculture 219:585-595.
427	
428	Chauton, M.S., T.F. Galloway, E. Kjørsvik, T.R. Størseth, V. Puvanendran, T. van der
429	Meeren, Ø. Karlsen, I. Rønnestad and K. Hamre. 2015. ¹ H NMR metabolic profiling of
430	cod (Gadus morhua) larvae: potential effects of temperature and diet composition during
431	early developmental stages. Biology Open, doi: 0.1242/bio.014431.
432	
433	Christie, W.M. 1982. Lipid Analysis, Isolation, Separation, Identification and Structural
434	Analysis of Lipids, 2 nd edition. Pergamon Press, New York, New York, USA.
435	

436	Dos Santos, J., I.C., Burkow and M. Jobling. 1993. Patterns of growth and lipid deposition in
437	cod (Gadus morhua L.) fed natural prey and fish-based feeds. Aquaculture 110:173-189.
438	
439	Fontagné, A., J. Robin, G. Corraze and P. Bergot. 2000. Growth and survival of European sea
440	bass (Dicentrarchus labrax) larvae fed from first feeding on compound diets containing
441	medium-chain triacylglycerols. Aquaculture 190:261-271.
442	
443	Frantsi, C., C. Lanteigne, B. Blanchard, R. Alderson, S.P. Lall, S. Johnson, S. Leadbeater,
444	D. Martin-Robichaud and P. Rose. 2002. Haddock culture in Atlantic Canada. Bulletin of
445	the Aquaculture Association of Canada 102-1, 31-34.
446	
447	Hamlin, H.J., I.H.V. Herbing and L.J. Kling. 2000. Histological and morphological
448	evaluations of the digestive tract and associated organs of haddock through post-hatching
449	ontogeny. Journal of Fish Biology 57:716-732.
450	
451	Hamlin, H.J. and L.J. Kling. 2001. The culture and early weaning of larval haddock using a
452	microparticulate diet. Aquaculture 201:61-72.
453	
454	Hamre, K. 2006. Nutrition of cod (Gadus morhua) larvae and juveniles. ICES Journal of Marine
455	Science 63:267-274.
456	

457	Hamre, K. and A. Mangor-Jensen. 2006. A multivariate approach to optimization of
458	macronutrient composition in weaning diets for cod (Gadus morhua). Aquaculture Nutrition
459	12:15-24.
460	
461	Hamre, K., M. Yúfera, I. Rønnestad, C. Boglione, L.E.C. Conceição and M. Izquierdo.
462	2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for
463	advances in larval rearing. Reviews in Aquaculture 5:S26-S58.
464	
465	Hart, P.R. and G.J. Purser. 1996. Weaning of hatchery-reared greenback flounder
466	(Rhombosolea tapirina Günther) from live to artificial diets: Effects of age and duration of
467	the changeover period. Aquaculture 145:171-181.
468	
469	Jobling, M., R. Knudsen, P.S. Pedersen and J. Dos Santos. 1991. Effects of dietary
470	composition and energy content on the nutritional energetics of cod (Gadus morhua).
471	Aquaculture 92:243-257.
472	
473	Kim, J.D. and S.P. Lall. 2001. Effects of dietary protein level on growth and utilization of
474	protein and energy by juvenile haddock (Melanogrammus aeglefinus). Aquaculture 195, 311-
475	319.
476	
477	Kim, S.K., T. Takeuchi, A. Akimoto, H. Furuita, T. Yamamoto, M. Yokoyama and Y.
478	Murata. 2005. Effect of taurine supplemented practical diet on growth performance and

479	taurine contents in whole body and tissues of juvenile Japanese flounder, Paralichthys
480	olivaceus. Fisheries Science 71:627-632.
481	
482	Kjørsvik, E., T. van der Meeren, H. Kryvi, J. Arnfinnson, P.G. Kvenseth. 1991. Early
483	development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and
484	starvation. Journal of Fish Biology 38:1-15.
485	
486	Kolkovski, S. and A. Tandler. 2000. The use of squid protein hydrolysate as a protein source in
487	microdiet for gilthead seabream Sparus aurata larvae. Aquaculture Nutrition 6:11-15.
488	
489	Koven, W., Y. Barr, S. Lutsky, I. Ben-Atia, R. Weiss, M. Harel, P. Behrens and A. Tandler.
490	2001. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to
491	handling stress in gilthead seabream (Sparus aurata) larvae. Aquaculture 193:107-122.
492	
493	Kvåle, A., M. Yúfera, E. Nygård, K. Aursland, T. Harboe and K. Hamre. 2006. Leaching
494	properties of three different microparticulate diets and preference of the diets in cod (Gadus
495	morhua L.) larvae. Aquaculture 251:402-514.
496	
497	Kvåle, A., A. Mangor-Jensen, M. Moren, M. Espe and K. Hamre. 2007. Development and
498	characterization of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic
499	halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457-468.
500	

501	Kvåle, A., T. Harboe, A. Mangor-Jensen and K. Hamre. 2009. Effect of protein hydrolysate
502	in weaning diets for Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus
503	hippoglossus L.). Aquaculture Nutrition 15:218-227.
504	
505	Lall, S.P. and D. Nanton. 2002. Nutrition of Atlantic cod. Bulletin of the Aquaculture
506	Association of Canada 102:23-26.
507	
508	Lall, S.P., D.A. Nanton, S.M. Tibbetts, P.K. Roy and J.E. Milley. 2003. Nutrient requirements
509	and feeding of haddock. In: Early Rearing of Haddock: State of the Art, ed. D.E. Aiken, 79-
510	86. Aquaculture Association of Canada, Special Publication Number 7. St. Andrew's, New
511	Brunswick, Canada.
512	
513	Lee, P.S., P.C. Southgate and D.S. Fielder. 1996. Assessment of two microbound artificial
514	diets for weaning Asian sea bass (Lates calcarifer, Bloch). Asian Fisheries Science 9:115-
515	120.
516	
517	Leifson, R.M., J.M. Homme, J.P. Jøstensen, Ø. Lie, R. Myklebust and T. Strøm. 2003.
518	Phospholipids in formulated start-feeds - Effect on turbot (Scophthalamus maximus L.) larval
519	growth and mitochondrial alteration in enterocytes. Aquaculture Nutrition 9:43-54.
520	
521	Lian, P.L., C.M. Lee and D. Bengtson. 2008. Development of a squid-hydrolysate-based larval
522	diet and its feeding performance on summer flounder, Paralichthys dentatus, larvae. Journal
523	of the World Aquaculture Society 39:196-204.

525	Lie, Ø., E. Lied and G. Lambertsen. 1989. Feed attractants for cod (Gadus morhua).
526	Fiskeridirektoratet 2:227-233.
527	
528	Micale, V. and U. Muglia. 2011. Comparative ontogeny of the digestive tract in Sharpsnout sea
529	bream Diplodus puntazzo Cetti and common Pandora Pagellus erythrinus L. The Open
530	Marine Biology Journal 5:34-41.
531	
532	Molvik, G., K. Hjelmeland, E. Ringo and J. Raa. 1984. Properties of a new artificial diet for
533	fish larvae, including cod Gadus morhua L. Floedevigen Rapportser 1:203-211.
534	
535	Munilla-Moran, R., J.R. Stark and A. Barbour. 1990. The role of exogenous enzymes in
536	digestion in cultured turbot larvae (Scopthalamus maximus L.). Aquaculture 88:337-350.
537	
538	Nanton, D.A., S.P. Lall and M.A. McNiven. 2001. Effects of dietary lipid level on liver and
539	muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquaculture
540	Research 32:225-234.
541	
542	Opstad, I. 2003. Growth and survival of haddock (Melanogrammus aeglefinus) larvae at
543	different salinities. In: H.I. Browman and A.B. Skiftesvik, editors. The Big Fish Bang.
544	Proceedings of the 26 th Annual Larval Fish Conference, Institute of Marine Research,
545	Bergen, Norway.
546	

547	Otterå, H. and Ø. Lie. 1991. Weaning trials with cod (Gadus morhua L.) fry on formulated
548	diets. Fiskeridirektoratet 4:85-94.
549	
550	Paisley, L.G., E. Ariel, T. Lyngstad, G. Jónsson, P. Vennerström, A. Hellström and P.
551	Østergaard. 2010. An overview of aquaculture in the Nordic countries. Journal of the World
552	Aquaculture Society 41:1-17.
553	
554	Perez-Casanova, J.C., H.M. Murray, J.W. Gallant, N.W. Ross, S.E. Douglas, S.C. Johnson.
555	2004. Bile salt activated lipase expression during larval development in the haddock
556	(Melanogrammus aeglefinus). Aquaculture 235:601-617.
557	
558	Perez-Casanova, J.C., H.M. Murray, J.W. Gallant, N.W. Ross, S.E. Douglas, S.C. Johnson.
559	2006. Development of the digestive capacity in larvae of haddock (Melanogrammus
560	aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377-401.
561	
562	Rønnestad, I., M. Yúfera, B. Ueberschär, L. Ribeiro, Ø. Sæle and C. Boglione. 2013.
563	Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and
564	bottlenecks in research. Reviews in Aquaculture 5:S59-S98.
565	
566	Saleh, R., M.B. Betancor, J. Roo, V. Benítez-Dorta, M.J. Zamorano, J.G. Bell and M.
567	Izquierdo. 2015. Effect of krill phospholipids versus soybean lecithin in microdiets for
568	gilthead seabream (Sparus aurata) larvae on molecular markers of antioxidative metabolism
569	and bone development. Aquaculture Nutrition 21:474-488.

571	Shields, R.J., J. Bell, F.S. Luizi, B. Gara, N. Bromage and J.R. Sargent. 1999. Natural
572	copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus
573	hippoglossus) in terms of survival, pigmentation and retinal morphology: relation to dietary
574	essential fatty acids. Journal of Nutrition 129:1186-1194.
575	
576	Tibbetts, S.M. 2012. Protein and energy nutrition of marine gadoids, Atlantic cod (Gadus
577	morhua L.) and haddock (Melanogrammus aeglefinus L.). Doctoral thesis. Wageningen
578	University, Wageningen, the Netherlands.
579	
580	Treasurer, J.W., H. Sveier, W. Harvey, R. Allen, C.J. Cutts, C. Mazorra de Quero, L. Ford.
581	2006. Growth, survival, diet and on-growing husbandry of haddock, Melanogrammus
582	aeglefinus in tanks and netpens. ICES Journal of Marine Science 63:376-384.
583	
584	Treasurer, J. 2008. Haddock culture: Current knowledge and challenges. Fish Farming Expert
585	2:62-65.
586	
587	Yúfera, M., C. Fernández-Díaz, E. Pascual. 2005. Food microparticles for larval fish
588	prepared by internal gelation. Aquaculture 248:253-263.
589	
590	Yúfera, M., J.A. Mata-Sotres, C. Navarro-Guillén, F.J. Moyano and G. Martínez-
591	Rodríguez. 2015. Potential effect of increasing the water content in the digestibility of
592	microdiets for fish larvae. Aquaculture Nutrition, doi: 10.1111/anu.12336.

594	Zambonino Infante, J.L., E. Gisbert, C. Sarasquete, I. Navarro, J. Gutiérrez and C.L.
595	Cahu. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. In:
596	J.E.P. Cyrino, D.P. Bureau and B.G. Kapoor, editors. Feeding and Digestive Functions of
597	Fishes. CRC Press, Boca Raton, Florida, USA.
598	
599	Zheng, K., B. Qin and Q. Chang. 2015. Effect of graded levels of taurine on growth
600	performance and Ptry expression in the tongue sole (Cynoglossus semilaevis) postlarvae.
601	Aquaculture Nutrition, doi: 10.1111/anu.12345.

Ingredient	g/kg
Herring meal ^a	313
Cod muscle (freeze-dried)	150
Pre-gelatinized corn starch ^b	130
Herring roe (freeze-dried)	120
Soluble fish protein concentrate ^c	80
Herring oil ^d	50
Gelatin ^e	50
Krill hydrolysate ^f	25
Squid hydrolysate ^a	20
Molasses	20
Soy lecithin ^g	20
Mineral premix ^h	10
Vitamin premix ⁱ	9
Choline chloride ^e	2
Ascorbic acid (Stay-C) ^j	1
Total	1000

⁶²⁵ ^a Corey Nutrition Ltd. (Fredericton, NB, Canada).

^bNational Starch and Chemical Company (Bridgewater, NJ, USA).

⁶²⁷ ^c Sopropêche CPSP-G (Northeast Nutrition, Truro, NS, Canada).

- ^dComeau Seafoods (Saulnierville, NS, Canada).
- ^eUnited States Biochemical (Cleveland, OH, USA).
- ^{630 f}Specialty Marine Products Ltd. (Vancouver, BC, Canada).
- ^gLV Lomas (Montreal, QC, Canada).
- ^h Manganous sulfate, 40 mg/kg; ferrous sulfate, 30 mg/kg; copper sulfate, 5 mg/kg; zinc sulfate,
- 633 75 mg/kg; sodium selenite, 1 mg/kg; cobalt chloride, 2.5 mg/kg; sodium fluoride, 4 mg/kg;
- 634 ground wheat.
- ⁱ Vitamin A, 8000 IU; vitamin D₃, 4500 IU; vitamin E, 300 IU; vitamin K, 40 mg/kg; thiamin, 50
- mg/kg; riboflavin, 70 mg/kg; pantothenate, 200 mg/kg; biotin, 1.5 mg/kg; folic acid, 20 mg/kg;
- vitamin B₁₂, 0.15 mg/kg; niacin, 300 mg/kg; pyridoxine, 20 mg/kg; ascorbic acid, 300 mg/kg;
- 638 inositol, 400 mg/kg; butylated hydroxy toluene, 15 mg/kg; butylated hydroxy anisole, 15 mg/kg;
- 639 ground wheat.
- ^jDSM Nutritional Products Canada Inc. (Ayr, ON, Canada).
- 641

643 TABLE 2. Proximate composition (dry matter basis) of the practical microparticulate diet (PMD)

and a commercial control diet (Biokyowa).

)				
7	Proximate composition	PMD	Biokyowa ^a	
3				
)	Crude protein (g/kg)	626±1	608±1	
)	Lipid (g/kg)	154±1	169±3	
L	Carbohydrate ^b (g/kg)	146±3	83±1	
,	Ash (g/kg)	73±1	140±3	
	Gross energy (MJ/kg)	22.8±0.2	21.7±0.2	

- 655 ^a Kyowa Hakko Kogyo, Tokyo, Japan.
- b Carbohydrate = (100 [moisture + protein + lipid + ash]).

TABLE 3. Total fatty acid composition of the practical microparticulate diet (PMD) and a
commercial control diet (Biokyowa).

		PMD	Biokyowa
-	Total lipid (%, dry matter basis)	15.4±0.1	16.9±0.3
	Polar lipids (% of total FAME)	36.7±0.3	35.5±0.2
	Non-polar lipids (% of total FAME)	63.3±0.3	64.5±0.2
]	Fatty acid ^a		
	14:0	5.0±0.2	4.2±0.1
	16:0	13.7±0.4	18.9±0.2
	16:1n-7	5.7±0.1	4.7±0.1
	18:0	1.9±0.1	3.4±0.1
	18:1n-9	8.5±0.1	14.6±0.4
	18:1n-7	2.5±0.0	4.3±0.1
	18:2n-6	5.9±0.0	10.6±0.2
	18:3n-3	1.0±0.0	1.5±0.0
	18:4n-3	1.5±0.0	1.4±0.0
	20:1n-9	11.0±0.1	1.9±0.1
	20:4n-6 (ARA)	0.5±0.0	1.2±0.1
	20:4n-3	0.4±0.0	0.5±0.0
	20:5n-3 (EPA)	9.2±0.1	11.4±0.7
	22:1n-11	15.4±0.4	1.6±0.1
	22:5n-3	1.3±0.1	0.8±0.0
	22:6n-3 (DHA)	11.6±0.2	13.1±0.7
	Σ SFA	21.7±0.5	27.6±0.1

692 —			
691	EPA:ARA ratio	16.3±0.1	10.2±0.1
690	DHA:EPA ratio	1.3±0.0	1.1±0.0
689	Σ n-6 PUFA	7.1±0.1	13.0±0.2
688	Σ n-3 PUFA	14.5±0.2	16.6±0.7
687	Σ PUFA	35.6±0.5	44.3±1.0
686	Σ MUFA	45.0±0.3	28.9±0.8

⁶⁹³ ^a Expressed as area percentage of total FAME.

695 TABLE 4. Fatty acid composition of the polar lipid FAMEs of the practical microparticulate diet

696 (PMD) and commercial control diet (Biokyowa).

	PMD	Biokyowa
Fatty acid ^a		
14:0	2.2±0.1	1.8 ± 0.1
16:0	21.7±0.4	23.8±0.1
16:1n-7	2.3±0.1	2.8±0.1
18:0	3.4±0.1	3.9±0.1
18:1n-9	7.8±0.1	11.0±0.1
18:1n-7	3.1±0.1	4.7±0.2
18:2n-6	16.9±0.2	13.8±0.1
18:3n-3	2.0±0.0	1.6±0.0
18:4n-3	0.5±0.0	0.7 ± 0.0
20:1n-9	2.0±0.1	1.4 ± 0.4
20:4n-6 (ARA)	0.9±0.0	1.5±0.0
20:4n-3	0.3±0.0	0.3±0.0
20:5n-3 (EPA)	10.0±0.0	14.7±0.3
22:1n-11	1.0±0.1	0.5 ± 0.0
22:5n-3	0.2±0.0	0.4 ± 0.1
22:6n-3 (DHA)	22.7±0.4	14.1±0.3
ΣSFA	28.5±0.6	30.6±0.3
Σ MUFA	17.6±0.4	22.3±0.4
Σ PUFA	56.8±0.6	50.3±0.3
Σ n-3 PUFA	14.2±0.0	18.7±0.3

722	Σ n-6 PUFA	18.6±0.2	16.1±0.2
723	DHA:EPA ratio	2.3±0.0	1.0±0.0
724	EPA:AA ratio	10.7±0.0	10.2±0.3
725 —			

⁷²⁶ ^a Expressed as area percentage of FAME.

- TABLE 5. Survival and growth performance of haddock post-larvae fed the practical
- microparticulate diet (PMD) and a commercial control diet (Biokyowa) until 74 DPH^{a,b}.

731					
732			Final fork	Final wet	Weight
733	Diet	Survival (%)	length (mm)	weight (mg)	gain (%)
734					
735	PMD	88.2±1.7 ^{ns}	39.5±0.5 ^a	851.3±33.0 ^a	1637.2±63.1 ^a
736	Biokyowa	89.1±1.5	35.1±0.7 ^b	580.2±24.3 ^b	1115.7±46.6 ^b
737					

^aMean±standard error of replicate tanks (PMD, n=6; Biokyowa, n=3) and values within the same

column with different superscripts are significantly different (P<0.05).

^b Average initial fork length = 16.7 ± 0.2 mm and wet weight = 52.2 ± 0.2 mg (n=100).

741 ^{ns} Not significant.

FIGURE 1. Survival (%) of fish fed the practical microparticulate diet (PMD) and a commercial
control diet (Biokyowa) until 74 DPH.

- TABLE 6. Whole-body proximate composition (wet weight basis) of haddock post-larvae fed the
- ⁷⁶¹ practical microparticulate diet (PMD) and a commercial control diet (Biokyowa) until 74 DPH^a.

763					
105					
764		Moisture	Ash	Protein	Lipid
765	Diet	(g/kg)	(g/kg)	(g/kg)	(g/kg)
766					
/00					
767	Initial fish	881±6 ^a	13±1 ^a	91±5 ^a	18 ± 1^{a}
		o 4 c · 4 h	1 	101 · 1b	26.00
768	PMD	846±1°	$1/\pm 1^{\circ}$	101±1°	26±0°
769	Biokvowa	857+1 ^b	18+1 ^b	101 ± 0^{b}	$21+0^{b}$
10)	Diokyowa	007±1	10±1	101±0	21-0
770					

^aMean±standard error of replicate tanks (PMD, n=6; Biokyowa, n=3) and values within the same

column with different superscripts are significantly different (P<0.05).

- TABLE 7. Whole-body fatty acid composition of haddock post-larvae fed the practical
- microparticulate diet (PMD) and a commercial control diet (Biokyowa) until 74 DPH^a.

Fatty acid ^b	Initial fish	PMD	Biokyowa
14:0	$0.7\pm0.0^{\mathrm{a}}$	2.0±0.1 ^c	1.1±0.0 ^b
16:0	15.0±0.1 ^b	13.2±0.3 ^a	15.4±0.5 ^b
16:1n-7	1.6±0.0 ^a	4.0±0.1 ^c	2.2±0.1 ^b
18:0	6.5±0.0 ^c	3.4±0.1 ^a	5.4±0.2 ^b
18:1n-9	14.9±0.1 ^b	14.0±0.4 ^b	12.1±0.4 ^a
18:1n-7	5.9±0.1 ^c	3.3±0.1 ^a	3.8±0.1 ^b
18:2n-6	3.3±0.0 ^a	4.7±0.1 ^b	5.6±0.2 ^c
18:3n-3	7.0±0.1 ^b	$0.8{\pm}0.0^{a}$	0.7 ± 0.0^{a}
18:4n-3	1.0±0.0 ^b	0.9 ± 0.0^{b}	0.5 ± 0.0^{a}
20:1n-9	0.8 ± 0.0^{a}	8.8±0.3 ^c	2.2±0.1 ^b
20:4n-6 (ARA)	4.1±0.0 ^c	$0.9{\pm}0.0^{a}$	2.0±0.0 ^b
20:4n-3	$0.7{\pm}0.0^{a}$	0.6±0.1 ^a	0.7±0.1 ^a
20:5n-3 (EPA)	9.3±0.0 ^a	9.7 ± 0.4^{ab}	10.9±0.3 ^b
22:1n-11	0.1 ± 0.0^{a}	5.8±0.3 ^c	1.1±0.1 ^b
22:5n-3	0.2±0.1 ^a	0.4±0.1 ^b	0.3±0.0 ^{ab}
22:6n-3 (DHA)	13.5±0.3 ^a	14.9±0.7 ^a	22.0±0.7 ^b
Σ SFA	23.7±0.0 ^a	47.4±0.9 ^c	35.4±0.8 ^b
Σ MUFA	24.5±0.2 ^a	5.8±0.2 ^b	6.2±0.4 ^b
Σ PUFA	49.0±0.2 ^b	41.0±0.9 ^a	53.4±0.6 ^c
Σn-3 PUFA	20.0±0.2 ^c	13.9±0.3 ^b	14.8±0.2 ^b

800	Σ n-6 PUFA	13.0±0.1 ^c	1.9±0.3 ^a	3.2 ± 0.5^{b}
801	DHA:EPA ratio	1.5±0.0 ^a	1.5±0.0 ^a	2.0±0.0 ^b
802	EPA:ARA ratio	2.2 ± 0.0^{a}	11.0±0.3 ^c	5.5±0.1 ^b
803 -				

^a Mean±standard error of replicate tanks (PMD, n=6; Biokyowa, n=3) and values within the same

- row with different superscripts are significantly different (P<0.05).
- ^b Expressed as area percentage of FAME.