NRC Publications Archive Archives des publications du CNRC

Laser-induced incandescence techniques for soot measurements: capabilities, opportunities, and challenges
Liu, Fengshan

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=8afb21cc-3051-4799-abc4-cc15b9779aa9 https://publications-cnrc.canada.ca/fra/voir/objet/?id=8afb21cc-3051-4799-abc4-cc15b9779aa9

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

NRC-CNRC

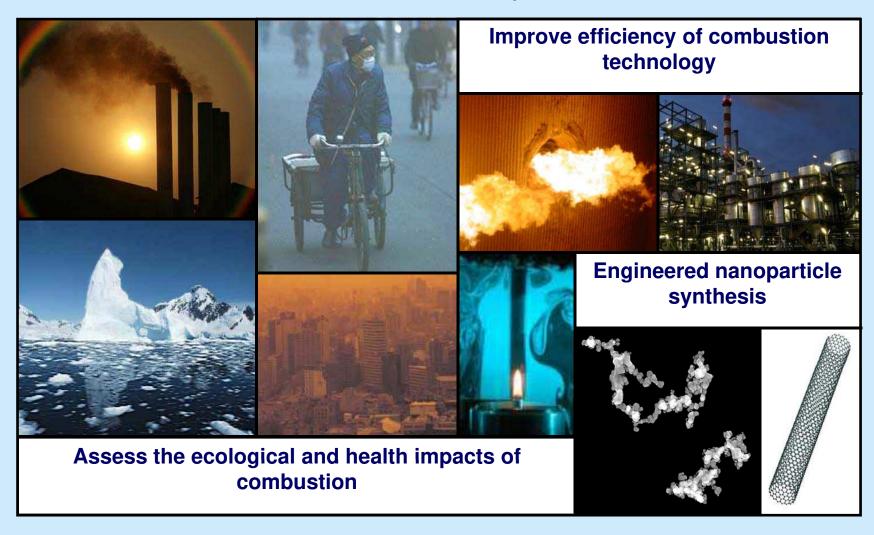
Institute for Chemical Process and Environmental Technology

Laser-Induced Incandescence Techniques for Soot Measurements: Capabilities, Opportunities and Challenges

Fengshan Liu

Institute for Chemical Process and Environmental Technology National Research Council Canada Ottawa, ON, Canada K1A 0R6

中国工程热物理学会 **2009** 年燃烧学学术年会 31 October 2009, Hefei, China


Outline

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

Institute for
Chemical Process
and Environmental
Technology

Background

Desired and undesired aspects of soot

Background

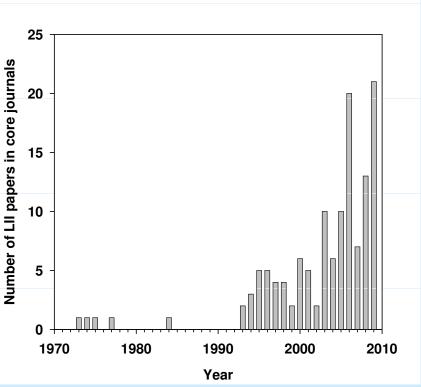
- Emission of soot from various combustion devices (automobiles, furnaces, gas turbines) into the environment is detrimental to human health and a major contributor to climate change
- Our understanding of soot formation is still quite limited
- Modern and future generation combustion devices (engines, combustors) produce less soot, which requires highly sensitive diagnostic techniques
- Morphological information of soot (fractal properties, primary particle size, aggregate size distribution) is required to gain further fundamental insights into soot formation and to assess their health impact

Background

- It is desirable to develop real-time, in-situ, and sensitive measurement techniques to meet these challenges
- Conventional techniques (e.g., light extinction, laser scattering) do not meet these requirements
- Laser-Induced Incandescence (LII) is a promising candidate technique and has been rapidly developed into a powerful diagnostic tool for soot and other nanoparticle characterization

Outline

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions


Institute for Chemical Process and Environmental Technology

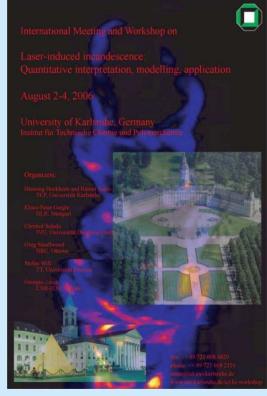
- The first reported study related to LII was perhaps made by Gelbwachs and Brinbaum in 1973 (Applied Optics) (Aerospace Corp., California)
- They reported the phenomenon of broadband "fluorescence of atmospheric aerosols" as an interfering signal to the molecular fluorescence used for detecting gaseous pollutants (NO₂ in their case) using a cw argon ion laser (458 nm to 515 nm)
- They suggested that "Fluorescence is a potentially useful means for aerosol identification and monitoring."
- In 1974, Weeks and Duley (York University, Toronto) published the very first paper (Aerosol-particle sizes from light emission during excitation by TEA CO₂ laser pulses) to use the concept of LII as a means to determine particle size
- These researchers are the pioneers of LII by recognizing that "the passage of intense laser radiation through a dusty atmosphere results in the momentary emission of visible light from particles in the path of the beam."

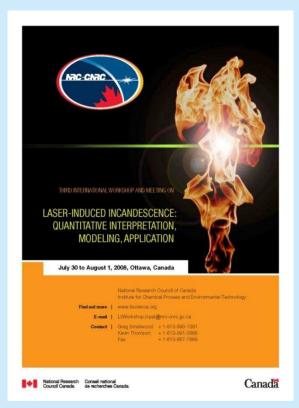
- Because the two pioneering studies are not in the area of soot and flame, the LII community and literature paid no attention to these two important pieces of work
- Eckbreth in 1977 also observed the phenomenon of LII in a sooting laminar propane diffusion flame (JAP: Effects of laser-modulated particulate incandescence on Raman scattering diagnostics)
- The particle laser energy absorption and the soot particle evaporation processes were analyzed
- Eckbreth also detected LII signals at two wavelengths to monitor the peak soot particle temperature

NRC-CNRC Institute for Chemical Process and Environmental Technology

- Melton in 1984 published the first paper to explicitly explore LII as a diagnostic for soot measurement (Soot diagnostics based on laser heating)
- Melton also formulated the first LII
 model, which remains the
 backbone of subsequent models

- Eckbreth's work and Melton's were regarded as the birth of modern LII techniques for measurement of soot and other nano-sized particles
- Research attention was paid to LII starting from the early 90's


- Early research and applications were in Europe, US, and Canada
- It has gained increased attention in Japan, South Korea, and China
- The driving force for the popularity of LII is the concerns of soot emissions from various combustion devices and the need to advance our fundamental understanding of soot formation


Institute for Chemical Process and Environmental Technology

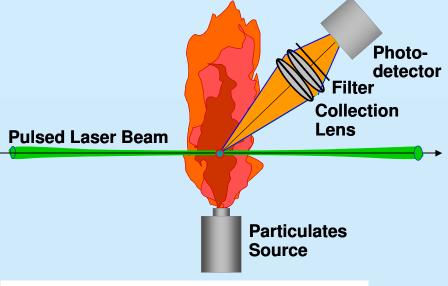
History of LII

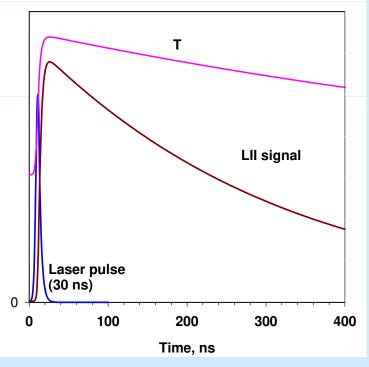
 Three international LII Workshops have been held in the last few years (www.liiscience.org)

2005 2006 2008

4th International Workshop and Meeting on Laser-Induced Incandescence 19-20 April 2010, Lake Como, Italy

Outline

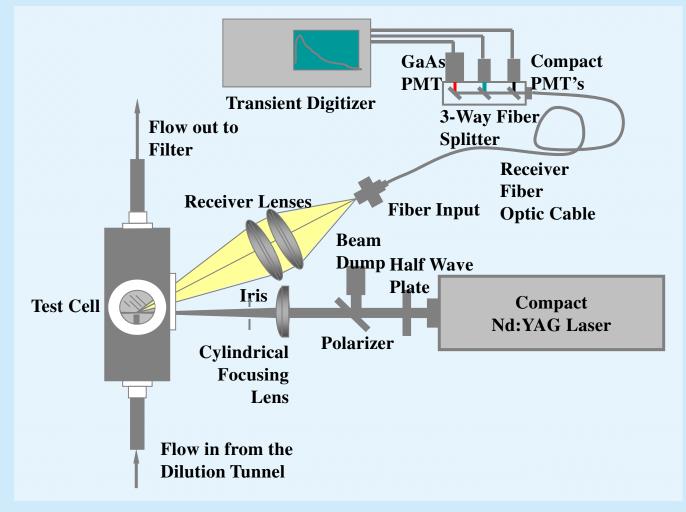

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

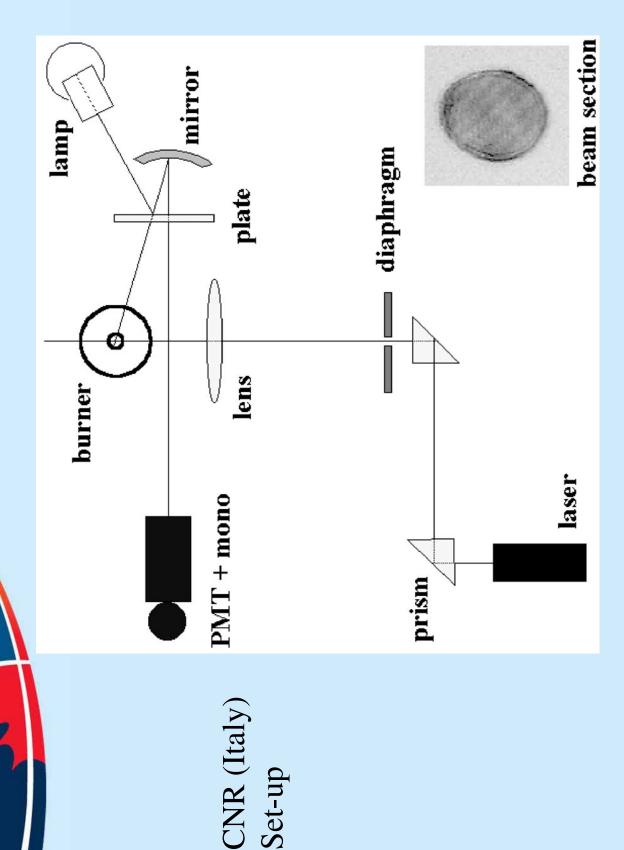

NRC-CNRC Institute for Chemical Process and Environmental Technology

Principle of LII

- LII experiment:
 - pulsed laser beam (ns)
 - rapid heating of soot to about 4000 K
 - soot radiates incandescence while cooling to ambient temperature
 - incandescence signal is collected to determine soot concentration, specific surface area, and primary particle diameter

 $f_v \propto \mathsf{LII}_{\mathsf{max}}$

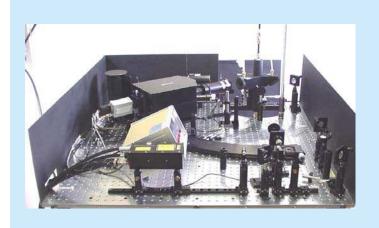


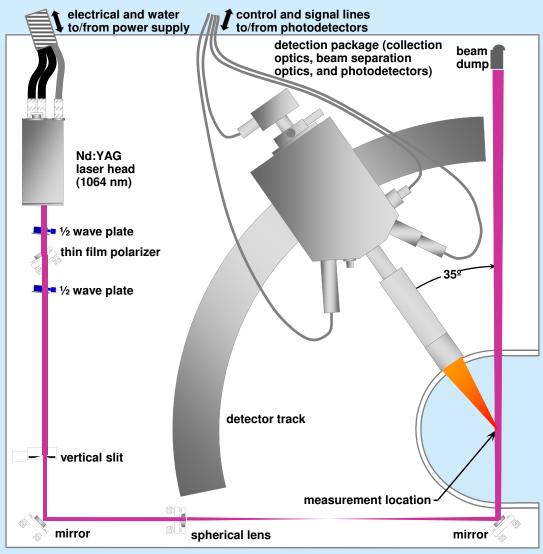


LII Set-ups

 LII components: Laser source, particle source (flame or generator), signal collection system

NRC Set-up

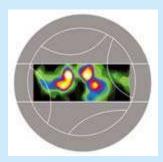



Set-up

NRC-CNRC

Institute for Chemical Process and Environmental Technology

NRC LII Apparatus



La Vision

http://www.lavision.de/techniques/lii.php

soot formation in a Common Rail 2l diesel

Applications:

- in-situ and real time characterization of soot emission in diesel and direct injection spark ignition engines, gasturbines, flames and various kinds of metal or ceramics
- particle flows

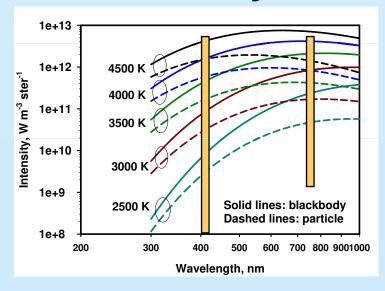
Commercial LII Devices

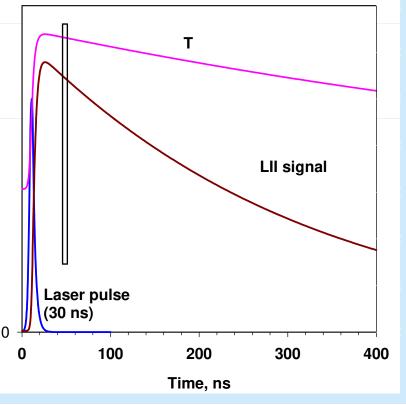
LII 200 Laser - Induced Incandescence Instrument for Soot Characterization

Measures Soot Volume Fraction, Specific Surface Area, and Primary Particle Size in Real-Time

- Fast, convenient, reliable and easy to use
- Measures raw exhaust or from CVS
- Measures elemental carbon (EC) independent of condensed material
- Proprietary NIST Traceable
 Calibration method
- Rugged system capable of extended operation without maintenance

Artium


http://www.artium.com


NRC-CNRC

Institute for Chemical Process and Environmental Technology

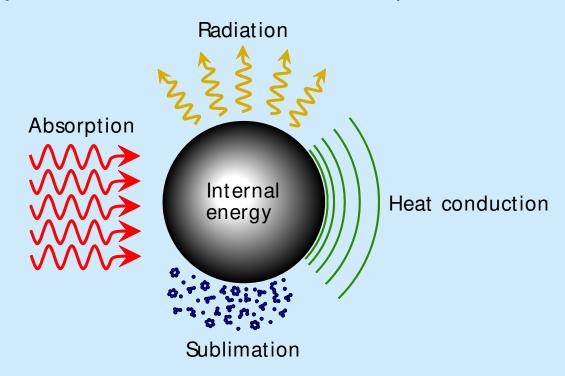
- Excitation wavelength (1064 nm or 532 nm)
- Laser fluence choice: high or low
- Detection issues: wavelength, gated or time-resolved, gated width and timing
- Point LII (PMT) or 2D LII (ICCD)
- Calibration:
 - (1) conventional approach $f_v = C S_{LII}$ (often through comparison with laser extinction)
 - (2) absolute intensity approach (detect absolute LII intensity and particle temperature) (particle temperature is measured through two-color LII detection)

Issues for LII System

NRC-CNRC Institute for Chemical Process and Environmental Technology

Features of LII

- Relatively easy to implement
- Non-intrusive (?)
- Very high temporal resolution (turbulent flames, engine combustion)
- Very high dynamic range (ppb up to ppm)
- Good spatial resolution for point measurement
- 2D setup (soot imaging in laminar and turbulent flames, engine cylinder)
- Provides soot volume fraction and primary particle size
- However, it requires sophisticated theory to quantitatively understand the processes to determine primary particle size (distribution)


Outline

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

Theory of LII

- LII theory
 - Numerical model of nanoscale (temporal and spatial) heat and mass transfer to and from the particles
 - LII theory is essential to interpret the detected signals,
 especially for time-resolved LII to obtain particle size information

Institute for Chemical Process and Environmental Technology

Structure of soot

- Need to know the structure of soot to establish LII theory
- How soot particles look like?
 - form fractal aggregates
 - not isolated spherical particles
- Primary particles are more or less uniform in size

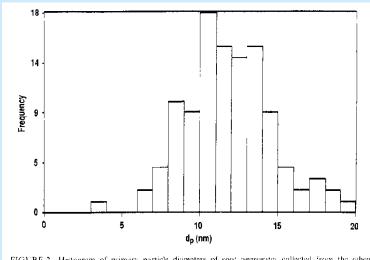
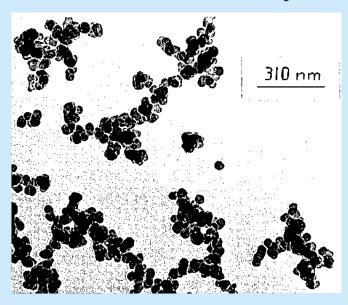
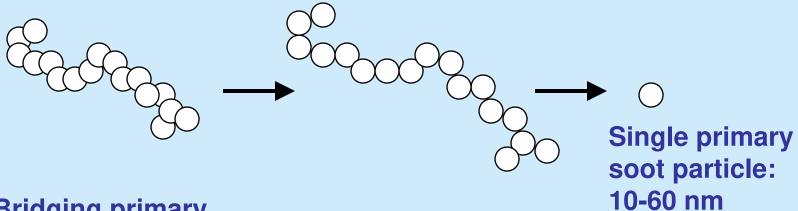
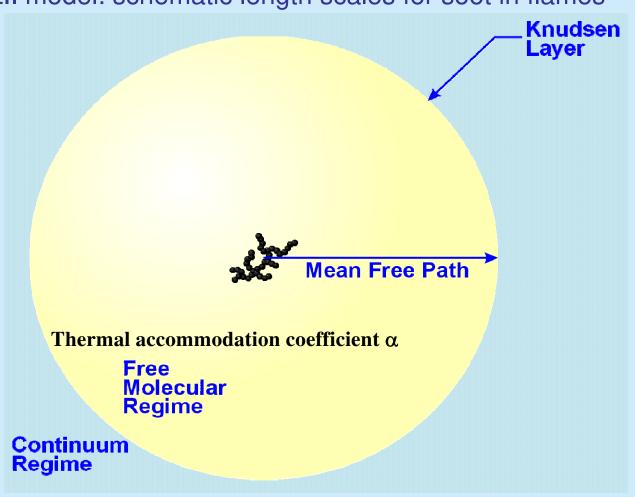



FIGURE 2. Histogram of primary particle diameters of soot aggregates collected from the othere diffusion flame at a height $z=15\,\mathrm{mm}$, and a radial location $r=3\,\mathrm{hmm}$.



Megaridis and Dobbins, Combust. Sci. Tech. Vol.71, pp.95-109, 1990

Conventional LII Model: single particle based


 Assumptions: neglect the effect of aggregation on particle laser absorption and particle cooling

Bridging primary soot particles in an aggregate

Just-touching primary soot particles in an aggregate

• LII model: schematic length scales for soot in flames

1 atm

T = 1700 K

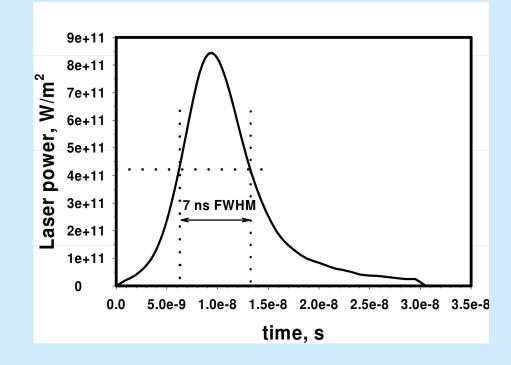
MFP: 600 nm

Institute for Chemical Process and Environmental Technology

LII Theory

 Time and length scales for laser absorption

Primary soot particle: 30 nm Laser wavelength: 1064 or


532 nm

Heat diffusion time:

$$\tau_d = \frac{d_p^2}{k_s / \rho c_p}$$

which is in sub-nanosecond

→ Particle is isothermal

 $\pi d_p / \lambda$ is a small value (~0.1), i.e. Rayleigh regime Absorption and emission is a volumetric process

Energy Equation for a Single Primary Soot Particle

$$\frac{\pi D^3}{6} \rho_s c_s \frac{dT}{dt} = C_a q - \frac{2 k_a (T - T_0) \pi D^2}{(D + G \lambda_{MFP})} + \frac{\Delta H_v}{M_v} \frac{dM}{dt} + q_{rad}$$

particle internal energy variation rate

II laser heating

III heat transfer to surrounding gas

IV soot evaporation

V radiative heat loss

$$C_a = \frac{\pi^2 D^3 E_m}{\lambda}$$

$$G = \frac{8f}{\alpha(\gamma + 1)}$$

$$f = (9\gamma - 5)/4$$

Large uncertainty in \boldsymbol{E}_m and α exists

 Other physical processes neglected, such as photodesorption, annealing, and oxidation

Mass Transfer Equation for Soot Particle

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \frac{1}{2} \rho_s \pi D^2 \frac{dD}{dt} = -\pi D^2 N_v \frac{M_v}{N_A}$$

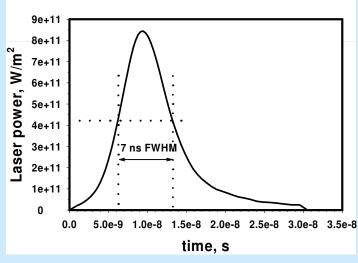
particle mass loss rate vaporization rate

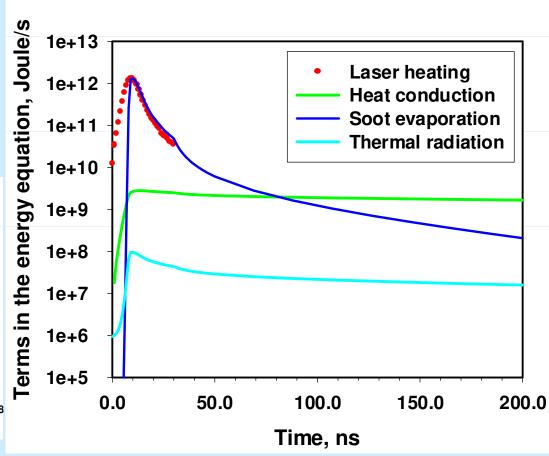
$$N_v = \beta \frac{P_v N_A}{RT} \sqrt{\frac{RT}{2\pi M_v}}$$
 molecular flux

Radiation loss term

$$q_{rad} = 8\pi^3 D^3 E(m) \frac{k^5}{h^4 c^3} T^5 \int_0^\infty \frac{t^4}{e^t - 1} dt$$

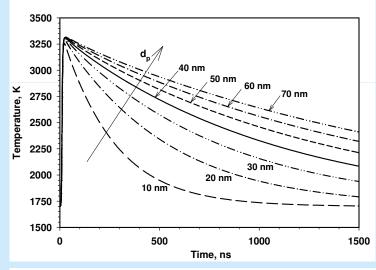
LII signal intensity

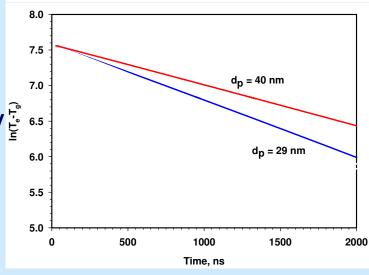

$$S_{LII} \propto \frac{8\pi c^2 h E(m)}{\lambda^6} D^3 \exp(-\frac{hc}{\lambda kT})$$


Institute for Chemical Process and Environmental Technology

Some numerical results

• Relative importance of heating and cooling terms Tophat spatial profile at 6 mJ, $d_p = 32$ nm, E(m) = 0.261.

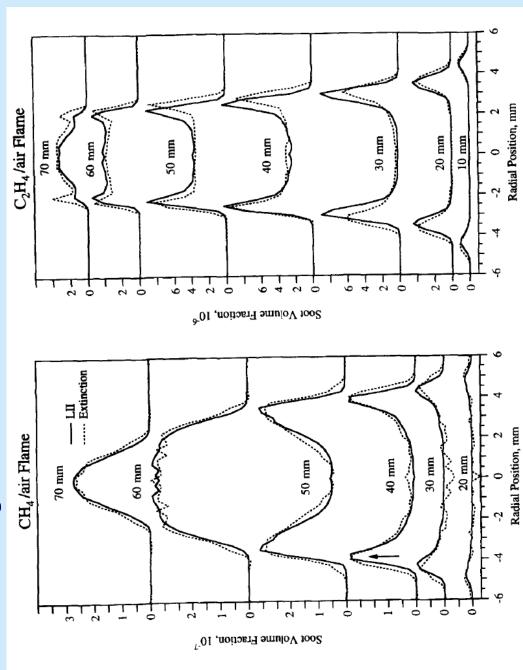

NRC-CNRC Institute for Chemical Process and Environmental Technology


Particle sizing strategies

Larger particles cool slower than smaller ones:

Internal energy $\propto d_p^3$ Conduction cooling $\propto d_p^2$

- The time-resolved LII signal carries information about the particle size
- Particle temperature can be inferred from two-color or multi-color LII detection
- The Temp decay rate is inversely proportional to d_p


Outline

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

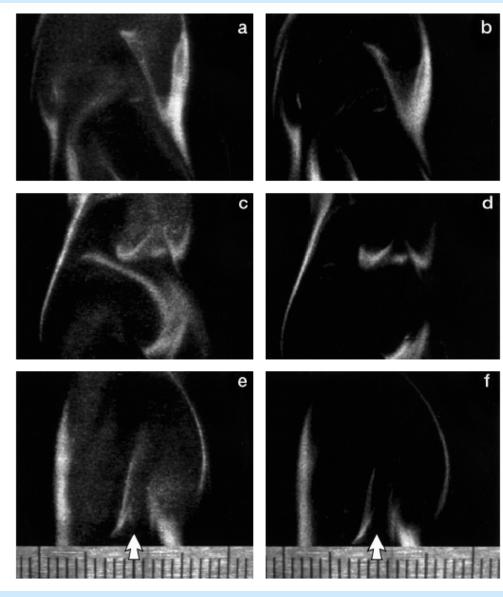
Capabilities of LII

Institute for Chemical Process and Environmental Technology

Steady and flickering laminar diffusion flames

Shaddix and Smyth, CNF 1996

NRC-CNRC


Institute for Chemical Process and Environmental Technology

 Turbulent jet diffusion flames (ethylene)

7.6 to 9.5 cm above the burner

Capabilities of LII

266 nm 1064 nm

Vander Wal, Exp. In Fluids 1997

NRC-CNRC

Institute for Chemical Process and Environmental Technology

Laminar diffusion flames (dp)

Will et al., Optical Letters, 22, pp. 2342-2344, 1995.

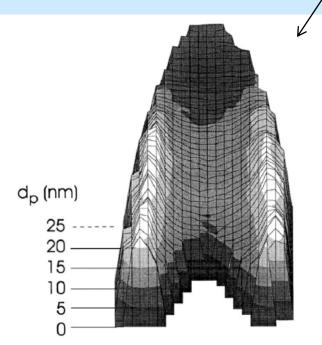
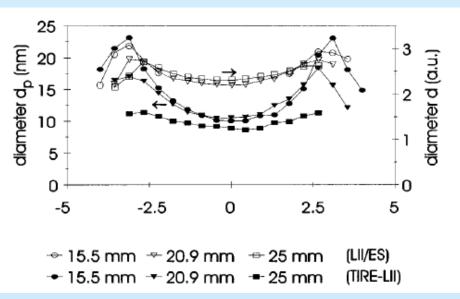
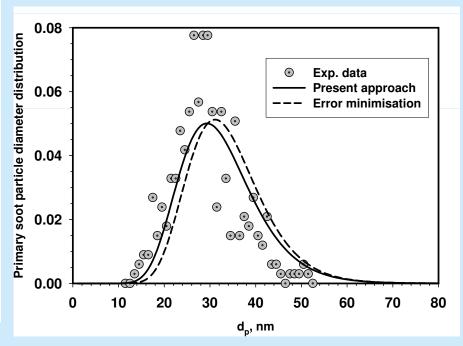
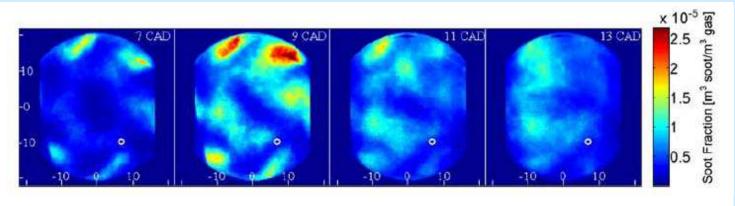
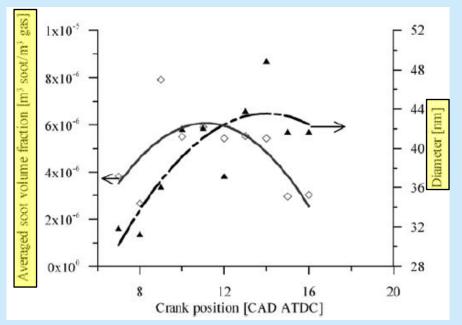




Fig. 3. Three-dimensional representation of the distribution of primary particle sizes within the observation plane. The image was acquired in a laminar ethene—air diffusion flame by time-resolved LII.

Capabilities of LII



Liu et al., Int. J. Heat Mass Transfer, 2006


Institute for Chemical Process and Environmental Technology

Capabilities of LII

 $^{\circ}$ 2D Two-Color Time-Resolved LII (f_v and d_p)

Averaged 2D soot fraction distribution inside an engine combustion chamber. From left to right: 7,9,11,13 CAD ATDC

Mean soot volume fraction and local mean diameter evolution for different crank angle

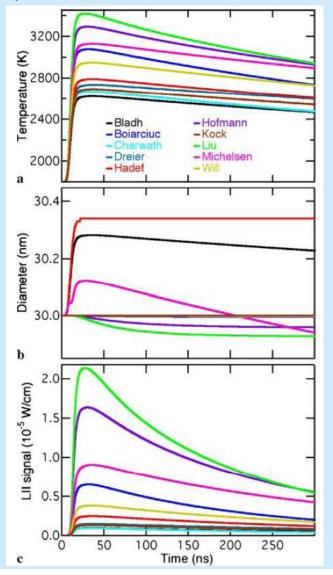
Boiarciuc et al., Appl. Phys. B, 83: 413-421 (2006)

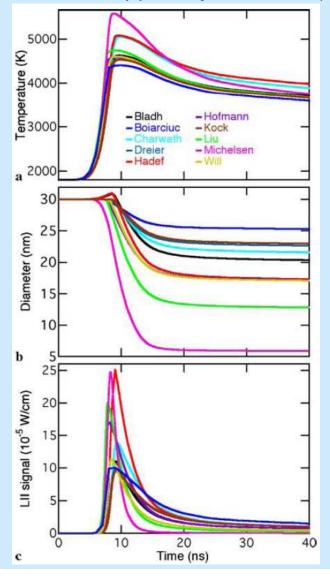
Summary of LII Applications

- LII has become the preferred method for soot measurement in many areas of combustion:
 - laminar flames (atmospheric and elevated pressures)
 - shock tube
 - droplet combustion
 - in-cylinder engine combustion
 - turbulent flames
 - engine exhaust
 - particulate concentration in environment (high sensitivity LII)
- LII has been applied to carbon black industry to do real-time monitor of particle size and to medical applications
- LII has also been used to other non-carbon refractory particles, such as metal oxides, synthesized in flames

Opportunities for LII in Soot Studies

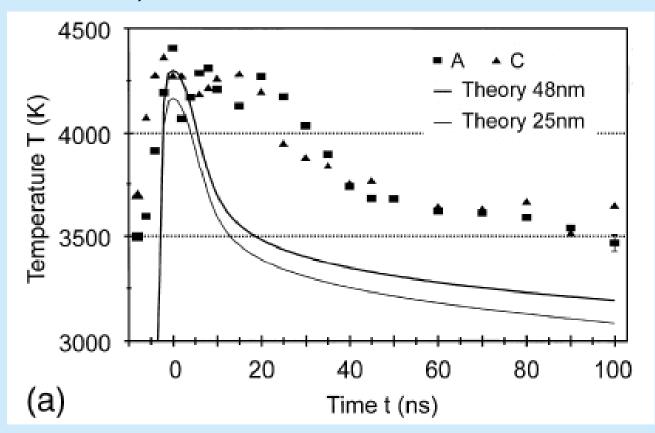
- Capabilities of LII: soot volume fraction, primary particle size, primary particle number density, the latter is unique to LII and is critical to understanding soot formation
- LII provides very high temporal resolution and very wide dynamic range
- LII can be combined with LIF and Laser Scattering to obtain further information on soot formation processes, such as relative spatial locations of PAHs and soot and soot aggregation
- These capabilities make LII a powerful tool to advance fundamental understanding of soot formation and to investigate soot in turbulent flames and in engine combustion


Outline

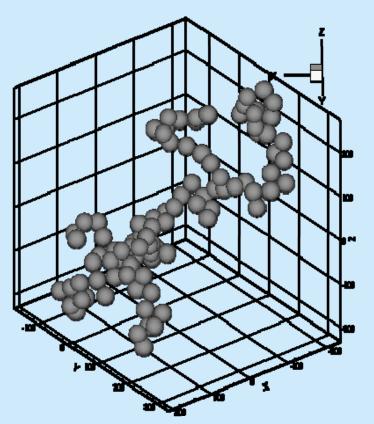

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

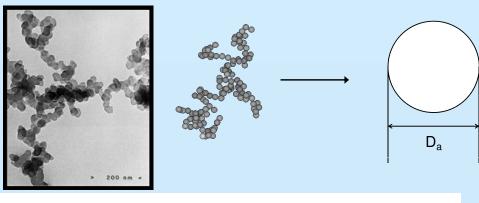
How different LII models compare?

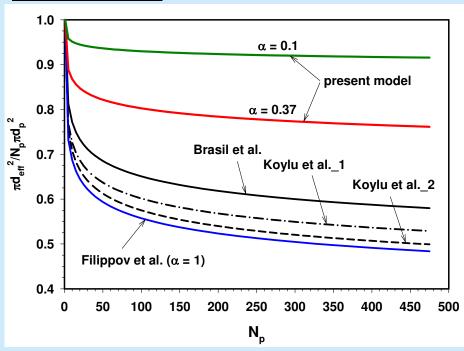
Comparison of different LII models (Michelsen et al., Appl. Phys. B, 2007)



How does LII model perform in high-fluence?

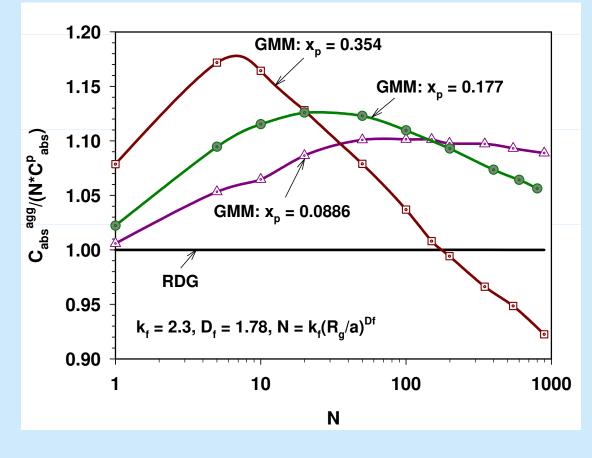

Schraml et al., Combustion and Flame 2000




NRC-CNRC Institute for Chemical Process and Environmental Technology

Need to consider the fractal structure of soot

 Three-dimensional display of a soot aggregate (129)


DSMC is also capable of calculating the sublimation

Need to consider the fractal structure of soot

Is Rayleigh-Debye—Gans approximation acceptable for LII application?

Remaining Challenges

- How important is C₂ and other non-carbon emissions to LII signal detection when 532 nm laser is used?
- Improvement over 2D two-color time-resolved LII for volume fraction and particle size measurements
- Shot noise
- Selection of laser fluence, detection wavelength(s)
- Is LII signal truly proportional to soot volume fraction? $S_{LII} \propto d_p^{3+154nm/\lambda}$
- Well controlled LII experiments for model validation

Remaining Challenges

- Uncertainty in soot refractive index and thermal properties at ~ 4000 K
- How important are other physical and chemical processes? (annealing, photodesorption, soot oxidation)
- How accurate is the soot sublimation model for a single particle?
- How to account for the effect of particle aggregation on soot sublimation?

Outline

- Background
- A brief history of LII
- Introduction of LII: principle, setup, issues
- LII Theory
- LII applications in combustion: capabilities and opportunities
- Remaining challenges
- Conclusions

Institute for Chemical Process and Environmental Technology

Conclusions

- LII offers many advantages over conventional techniques and has evolved into a powerful diagnostic tool for soot measurement in combustion applications
- Its ability to infer primary soot particle size could potentially make significant contributions to advance our fundamental understanding of soot formation
- The current single particle based LII model is reasonable for inferring primary particle size in the low-fluence regime and under flame conditions
- Soot sublimation is still a poorly understood process and hinders our quantitative understanding of LII in high-laser fluence regime

Conclusions

- Particle aggregation should be accounted for in LII theory
- LII alone cannot provide sufficient information to determine soot morphology; Combined LII/LS is a promising technique to obtain more complete information about morphology
- Many unanswered questions remain in the LII theory and practice to make LII more accurate and more reliable, which offer a great research opportunity

NRC CNRC

Institute for **Chemical Process** and Environmental Technology

Science at work for Canada

