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Three-Dimensional Numerical Simulation of Segregation in
Dense Suspensions

Florin Ilinca and Jean-Frangois Hétu

National Research Council, Industrial Materials Institute
75 de Mortagne, Boucherville, Québec, Canada, J4B 6Y4

Abstract. The ability to predict segregation of the solid phase in processes such as powder injection molding and
injection molding of semi-solid materials is of special interest since such phenomenon affects the final properties and
characteristics of the molded parts. In powder injection molding, for example, defects appear very often in the debinding
and sintering stages but are caused by filling problems and determined by a non-uniform distribution of the solid
particles within the molded part. In this paper we propose a 3D numerical solution algorithm for the simulation of
particle migration in dense suspensions. The particle migration is modeled using the diffusion flux medel and integrated
into the NRC’s 3D injection molding software. The solution algorithm is validated by solving flow problems for which
experimental and numerical data are available: circular Couette flow, piston driven flow and sudden contraction-
expansion flow. Since it is observed that the piston movement in the sleeve can induce particle migration even before
the material enters the cavity, an ALE formulation is also developed to include the piston movement in molding
simulations. The ALE formulation is first compared with an Eulerian solution for the case of the piston driven flow
problem, Then the approach is applied to injection molding problems and the segregation inside the molded parts is

studied.
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INTRODUCTION

The ability to predict segregation of the solid phase
in processes such as powder injection molding (PIM)
is of special interest since such phenomenon affects
the final properties and characteristics of the molded
parts. PIM defects appear very often in the debinding
and sintering stages but are often caused by filling
problems and determined by a non-uniform
distribution of the solid particles within the solution.
Inhomogeneous particle  distribution affects the
apparent viscosity and thus the flow during filling.
This distribution may also affect the part deformation
during sintering and consequently the final part
geometry.

Various models have been proposed to describe the
separation of the solid and fluid constituents in dense
suspensions. In mixture models each constituent is
considered as distinct specie of a mixture. The
development of the mixture formulation is done by
writing the conservation equations for each phase
involved in the system. Two sets of momentum, mass
and energy conservation equations are therefore
written, one set for the liquid phase and one for the

solid phase. These coupled equations can be solved
directly [1,2]; however, for computational efficiency
reasons, it is usually further simplified using phase
mixture rules. By doing so, the two sets of
conservation equattons are reduced to one set of
conservation equations into which the unknowns are
the average mixture velocity, pressure and
temperature; the local concentration of the mixture is
computed using an additional phase concentration
equation [3,4].

PIM can also be modelled using dense suspension
models. Dense suspension models have been
developed to predict shear induced particle
segregation. Conceptually, such models assume that
particle-particle collision occurring in the suspension
is the main driving force for phase separation. High-
shear regions have a higher coilision probability than
low shear regions, thus based on probabilistic
arguments, particles tends to migrate from the high
shear flow regions to the low shear flow regions.
Phillips et al. [5] introduced the diffusive flux model
based on the concept of particle concentration
diffusion. Experimental validation of the model for
simple one- or two-dimensional problems is shown in



Refs. [6,7). The suspension balance model was first
introduced by Nott and Brady [8] who introduced the
concept of suspension ‘temnperature’. Morris and
Boulay [9] modified the model to take into account the
effect of the normal stress difference, whereas Fang et
al. [10] used a flow aligned tensor to model the normal
stress difference for both diffusive fiux model and
suspension balance model. Experimental validation of
both diffusive flux and suspension balance models is
shown in Refs. [11,12].

In this paper we propose a 3D numerical solution
algorithm for the simulation of particle migration in
dense suspensions. The particle migration is modeled
using the diffusion flux model propesed by Phillips et
al. [5]. The particle migration model is integrated into
the NRC’s 3D injection molding software [13]. The
solution algorithm is validated by solving flow
problems for which experimental and numerical data
are available: circular Couette flow, piston driven flow
and sudden contraction-expansion flow [6,10]. An
ALE formulation is also developed to treat the piston
movement in injection molding problems. The ALE
formulation is first compared with an Eulerian solution
for the case of the piston driven flow problem. Then
the approach is applied to injection molding problems
and the segregation inside the molded parts is studied.

MODEL EQUATIONS

The flow of incompressible fluids is described by
the Navier-Stokes equations

p[%+u-Vu]=—Vp+V-(21}Dﬁ), (1)

~V.u=0, (2)

where 77 is the apparent viscosity of the suspension and
Dy =(Vu+ (Vu)r)/2 is the strain rate tensor.

Heat transfer is modeled by the energy equation:
T VT |=V-(kVT)+2nD.D 3
Pc, —5;~+u- =V-( )+2nD;Dy. (3)

In the above equations, t, v, p, T, p, 17, ¢ » and k

denote time, velocity, pressure, temperature, density,
viscosity, specific heat and thermal conductivity
respectively.

For instance the viscosity is considered as a
function of the solid fraction as given by

n=nm. 0, =(1-8) . (4)

where 7, 1s the viscosity of the suspension (liquid
phase), 7, is the relative viscosity of the mixture with

respect to that of the suspension, and ¢ denotes the

normalized solid fraction, @ = ¢/ ¢, . Here ¢ denotes

the solid fraction and ¢, its maximum value

( ¢,, =0.68 for the present work).

The segregation of solid particles is modeled by the
diffusive flux model of Phillips et al. {5}. The sohd
fraction is therefore obtained by solving the transient
advective-diffusive equation

9 uVg=-V-N (5)

ot

where the diffusive flux N is given by

N=N_+N,, (6)
N, =-a’¢K.V(79), @)
N, =-a’¢’yK,V(Ing). (8)

In the above equations a represents the radius of solid
particles in the suspension, y = |/2D,.J.Dij is the shear

rate, and K., K, are model constants (K=041,
K,=0.62).

For mold filling applications, the position of the
flow front is determined using a pseudo-concentration
method [14]. A smooth function Fx.t) such that the
critical value, F, represents the position of the
interface. A value larger than F, indicates a filled
region. The pseudo-concentration function s
transported using the velocity field provided by the
solution of the momentum-continuity equations:

o u-vF=0 ©)
o

For wvelocity, no-slip boundary conditions are
imposed on the cavity walls filled by the polymer,
while on the unfilled part, a free boundary condition
allows for the formation of the typical fountain flow.
The heat transfer between the cavity and the mold is
given by

q,=h(T-T.) on [, (10)

where h, is a surface heat transfer coefficient and 7,
is the mold temperature.



FINITE ELEMENT SOLUTION

Model equations are discretized in time using a
first order implicit Euler scheme. Linear continuous
interpolation functions are used for all variables. At
each time step, the global system of equations is
solved in a partly segregated manner: momentum-
continuity (u,p), energy (7), solid phase concentration,
and then the front tracking equation. The
incompressible Navier-Stokes equations (1), (2) are
solved using a Galerkin Least-Squares method [15],
the energy equation is solved by a combined
SUPG/GGLS (Streamline Upwind Petrov-Galerkin /
Galerkin Gradient Least-Squares) method [15], and the
front tracking equation is discretized by a SUPG
method. A SUPG/GGLS method is also used for the
solution of the solid phase concentration. The finite
element formulation for the solid fraction equation is
as follows:

J‘[i—fnl .V¢deﬂ——!(~( e N.,)-deﬂ+
Q 0

¢
;n‘[[gﬂl 'Vé}ﬂl-deQK +
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(1

The integrals in the first row together with the right
hand side term represent the standard Galerkin
formulation with the diffusive flux integrated by parts.
Integrals over the element interiors represent the
stabilization terms. The term in the second row are
from the SUPG formulation and stabilizes for the
convection. The integrals in the third row are the
GGLS stabilization and help avoid unphysical
oscillations.

VALIDATION

In this section the solution algorithm is validated
on cases for which both experimental and numerical
data are available: circular Couette flow, piston driven
flow and sudden contraction-expansion flow [6,10].

Circular Couette Flow

This application was the object of an experimental
study by Abbott et al. [16] and reinvestigated both
numerically and experimentally by Tetlow et al. [7].
The experimental apparatus has the inner rod (R;) of
0.64 c¢cm and the inner radius of the outer tube (R,) of
2.38 cm. The particle radius a is 675 um.

The initial particle concentration ¢ is taken
constant, As can be seen from equations (5)-(8) the
steady state solution does not depend on the particle
size but only on the initial value of the particle
concentration. The numerical results given by the
diffusive flux model are compared with experimental
data in Figure 1 for initial particle concentrations of
0.45, 0.5 and 0.55. The 3D numerical results are in
good agreement with the experimental data of Abbott
et al. [16] and with the numerical results reported by
Fang et al. [10].
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FIGURE 1. Comparison of model prediction with

experimental particle concentration profiles of Abbott et al.
[16].

Piston driven flow

This test case consists of displacing a fixed volume
of suspension down a pipe by means of a piston. The
material exhibits a similar behavior in injection
molding where the suspension pushed by a piston
forms a free surface. The uniformity of the suspension
downstream of the piston will then affect the
distribution of particles inside the molded part. An
experimental study of this problem was performed by
Subia et al. [6]. The piston radius is 2.54 ¢m and the
pipe was filled with material on a length of 30 cm. The
suspension contained 50% of spherical particles
having 3178 um in diameter. The piston moves from
left to right at a speed of 0.0625 cm/s, while the pipe
was held stationary. To avoid computation on a
moving mesh a first computation was carried out on a
fixed mesh by considering that the pipe moved from
right to the left and the pistons were maintained fixed.
The flow pattern after the piston was displaced with 15
piston diameters is shown in Figure 2. Segregation of
solid particles for different positions of the piston is
shown in Figure 3. As can be seen the solid fraction
decreases in front of the piston that pushes the



suspension and is higher in the second half of the
domain along the pipe axis. This is in agreement with
experimental observation [6].

FIGURE 2. Velocity distribution for piston driven flow
after 15 piston diameters (15D) for Eulerian approach.
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FIGURE 3. Distribution of solid fraction for various piston
displacements (Eulerian approach).

The mean solid fraction on sections normal to the
pipe axis was computed and plotted along the pipe axis
in Figure 4. The results are compared with
experimental data collected after the piston was
displaced with 5 piston diameters. The numerical
solution recovers correctly the segregation behavior,
but slightly underestimates the change in the solid
fraction. Simulation indicates that the segregation in
front of a moving piston is produced quite rapidly and
that a somehow steady distribution is attained after a
10D piston displacement.

As mentioned before, this problem describes well
the behavior of the material during injection molding.
However, simulation of the piston movement in
material processing would not be possible in an
Eulerian frame of reference, since the model includes
both the moving piston and stationary parts as the
mold cavity. Therefore a more general Arbitrary
Lagrangian Eulerian (ALE) formulation needs to be
considered. Here we have considered that the moving
piston determines a deformation of the computational

domain and hence of the mesh. The mesh is simply
deformed (no remeshing) and the speed of the grid
nodes is included into the advective velocity for the
Navier-Stokes and scalar transport equations. Results
using the ALE formulation for the piston driven flow
with a free surface are shown in Figure 5. As can be
seen the results are very close to those given by the
Eulerian approach (Figure 4). Small differences are
observed at the right end of the computational domain,
where a non-planar free surface is present in the ALE
solution and a flat no-slip surface is present in the
Eulerian case. This test case indicates that the ALE
approach performs well and can be used for injection
molding applications.
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FIGURE 4. Mean solid fraction along the tube axis using
an Eulerian approach.
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FIGURE 5. Mean solid fraction along the tube axis using
an ALE approach.




Sudden contraction-expansion flow

This test case was the subject of an experimental
study by Altobelli et al. [17]. The suspension is pushed
by a piston from a reservoir pipe into a smaller
diameter pipe and then into another larger catch pipe.
The reservoir pipe and the catch pipe have a diameter
of 5.08 cm, while the smaller pipe has an inner
diameter of 1.27 cm. The smaller diameter pipe is 38
cm long. Initially 30 cm of the reservoir pipe, the
entire smaller diameter pipe and 4 cm of the catch pipe
were filled. The plunger was displaced at a constant
velocity of 0.0625 cm/s, resulting in a mean velocity
of 1 em/s in the smaller pipe. The solid particles in the
suspension were 50% by volume with a mean particle
diameter of 675 um.

The numerical solution was obtained using the
ALE formulation. Figure 6 shows the mean solid
fraction along the pipe axis after the piston has moved
2, 4 and 6 larger section diameters. Several
observations can be drawn from these results. First we
remark that the solid fraction decreases at the surface
of the moving piston, observation made also in the
case of the piston driven flow. Second we observe a
sharp increase in the solid fraction just prior to the 4:1
contraction (x=-19cm). The solid fraction decreases
then rapidly and reaches smaller values along the
smaller diameter pipe. Third, we remark that at the 1:4
expansion, Xx=19cm, the solid fraction decreases before
the section change and increases on a very small
region after the expansion. In the catch pipe, x>19em,
the solid fraction is initially smaller than the mean
value of 0.5, but increases towards the end of the pipe.
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FIGURE 6. Sudden contraction-expansion flow: Mean

solid fraction along the pipe axis using an ALE approach.

Figure 7 shows the solid fraction distribution in
radial direction at various locations along the smaller
diameter pipe. Results are plotted for x/L=0.1, 0.5 and

0.95, where L denotes the length of the smaller
diameter pipe and x is the coordinate along the pipe
measured in the sense of the flow (from the
contraction towards the expansion). The results
indicate that the solid fraction is larger near the axis of
the pipe and decreases close to the pipe wall. We
remark also that the segregation is more pronounced at
x/L=0.5 and 0.95 than at the entry of the smaller
diameter pipe. These observations agree well with the
experimental findings of Altobelli et al. [17].
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FIGURE 7. Solid fraction in radial direction at various
locations along the smaller diameter pipe.

MOLD FILLING APPLICATION

In this application the ALE formulation is used to
solve the injection molding of a rectangular plate. The
plate is 8 em by 6 cm and has 4 mm in thickness. The
filling piston has a radius of 1 cm and his displacement
is 13.2 cm. Filling of the plate is made through a
circular gate with a radius of 2 mm. The suspension
contains particles of 100 pum in radius and the initial
solid fraction is uniform at 50%. Complete filling of
the plate takes 10 s. The filling pattern and the solid
fraction distribution is shown in Figure 8 after 1.7 s, 4
s, 7 s and respectively 10 s. The figure shows a cut
along the symmetry plane parallel to the longest side
of the plate in order to see the solid fraction
distribution inside the part. The images on the left
show the complete domain and the displacement of the
piston during the filling is clearly seen. Images on the
right are details of the flow inside the plate.
Segregation of solid particles 1s apparent inside the
pipe as previously observed for the piston driven flow
case. This causes the material to enter the gate with a
non-uniform solid fraction. Additional segregation is
observed inside the gate where shear rates are highest.
Finally, the molded part has higher solid fraction in the
mid-plane and on the outside boundaries of the plate




and lower solid fraction on the upper and lower
surfaces.

@t=10s

FIGURE 8. Distribution of solid fraction for the injection
of a plate.

CONCLUSION

In this paper a three-dimensional finite element
algorithm is shown for the solution of the flow of
dense suspensions. The segregation of solid particles is
described by a diffusive flux model. Validations cases
show a good agreement with experimental data and
previously published numerical solutions. The
application to injection molding problems is done by
using an ALE formulation. For the piston driven flow
the ALE formulation is shown to provide similar
results as an Eulerian approach on a fixed mesh, thus
indicating that the procedure performs well.
Application to the mold filling of a rectangular plate
shows the ability to use this method to the solution of
powder injection molding.
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