

NRC Publications Archive Archives des publications du CNRC

Real life experience on evacuation, specializing in fire & tunnels, fire safety from simulation to real life

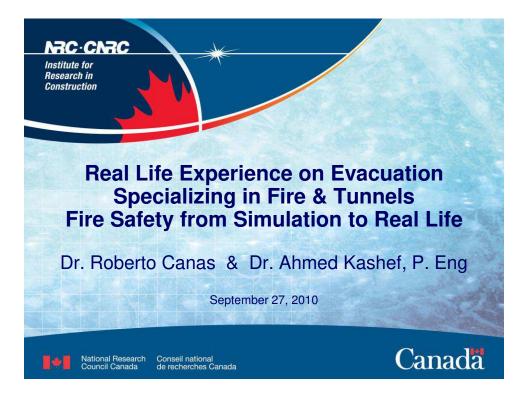
Canas, R.; Kashef, A.

For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20374790

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=5df65509-01ad-4ca8-8753-db30d780a363 https://publications-cnrc.canada.ca/fra/voir/objet/?id=5df65509-01ad-4ca8-8753-db30d780a363

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at <u>https://nrc-publications.canada.ca/eng/copyright</u> READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.


L'accès à ce site Web et l'utilisation de son contenu sont assujettis aux conditions présentées dans le site <u>https://publications-cnrc.canada.ca/fra/droits</u> LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D'UTILISER CE SITE WEB.

Questions? Contact the NRC Publications Archive team at PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

- National Research Council
- Building Information Modeling
 - Background
 - Fire Simulation and Evacuation in buildings
- Fire safety issues in tunnels
 - Integrated safety policy
 - Fire development & Egress time model
 - Human response
- Case studies

The Canadian Construction Sector

12% of GDP \$146.1 billion capital expenditures Over \$5.5 trillion built assets* Largest employer > 1M Low R & D expenditures

2010 NENA Ontario Conference and Trade Show, September 27th - 29th

NAC-CNAC

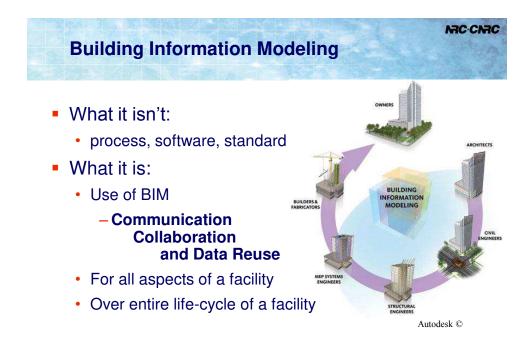
*Source: NRC-IRC Advanced Asset Management: Tools and Techniques

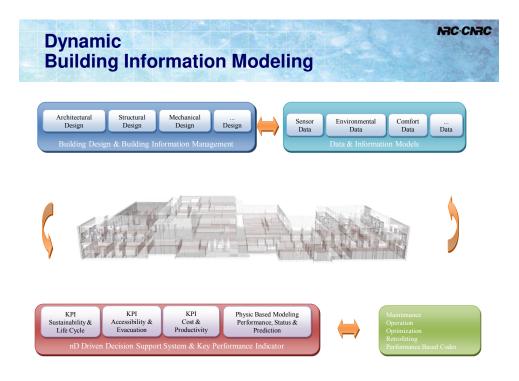
Facilities account for 35-40% of national energy consumption Generates 25% of Canada's solid waste Consumes >50% of primary natural resources Long product life means enduring impact Generates 30% of total GHGs

Institute for Research in Construction

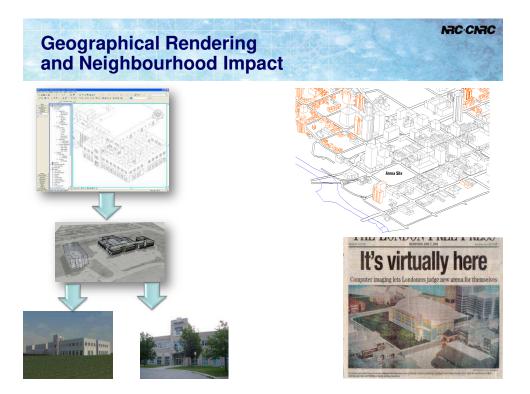
NAC-CNAC

nter foi


Established 1947 Guided by industry advisory board and 2 Commissions \$33 million budget, 238 employees, 40 visiting workers Ottawa, Regina and London



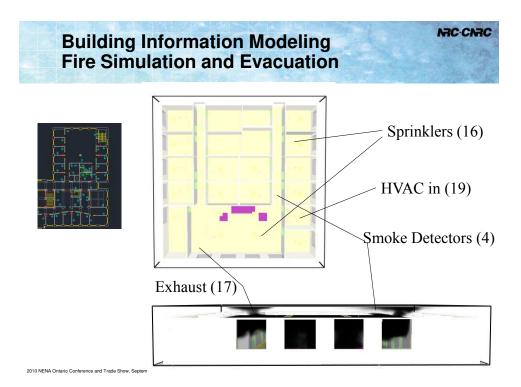
Building



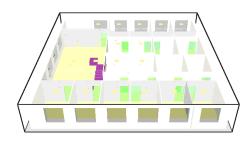
- Code & Standard
- Fire resistant rated construction
- Sprinklers, type strength angle
- Alarms
- Fire Extinguisher
- Evacuation
- Dangerous materials

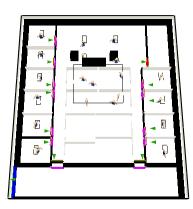
Building Information Modeling Walk through & Evacuation

<section-header>


- Large Data for Building Scans
 - As built, As Design Philosophy
 - Virtual sites
 - > Accurate Data capturing, Surface parameters computation
 - Sectional and Feature Contours
 - > Building layouts, Feature and Section Identification
 - > Partial model surface can be created where required
 - Handling Large Data
 - Data Simplification, Segmentation
 - Measurements

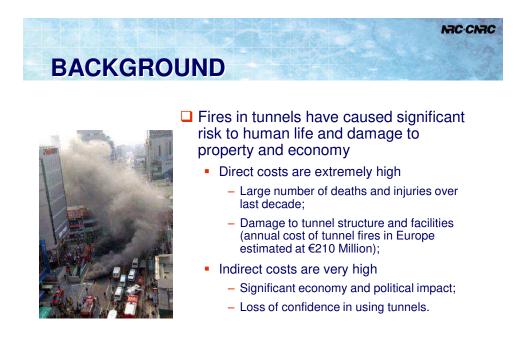
.


> Dimensions, Angles, Areas, Volumes etc



Building Information Modeling Evacuation

NAC-CNAC


2010 NENA Ontario Conference and Trade Show, September 27th - 29th

rame: 9 ime: 1.1

FIRE SAFETY ISSUES IN TUNNELS

BACKGROUND

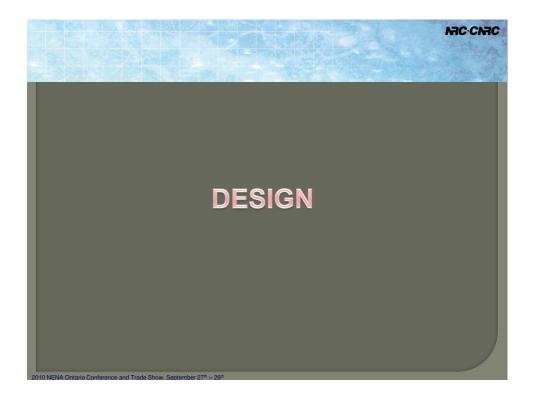
Fires within confines of underground systems are among the most difficult to extinguish because:

2010 NENA Ontario Conference and Trade Show, September 27th - 29

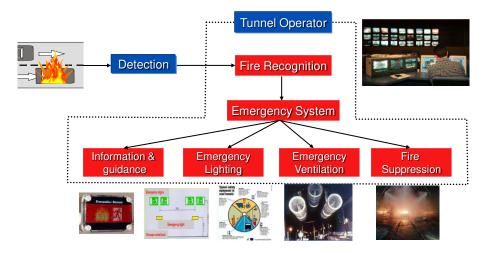
- fire fighters have limited room in which to operate
- limited access points for fire personnel

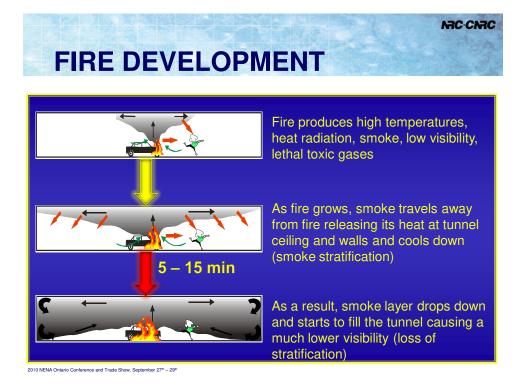
NAC-CNAC

NAC-CNAC

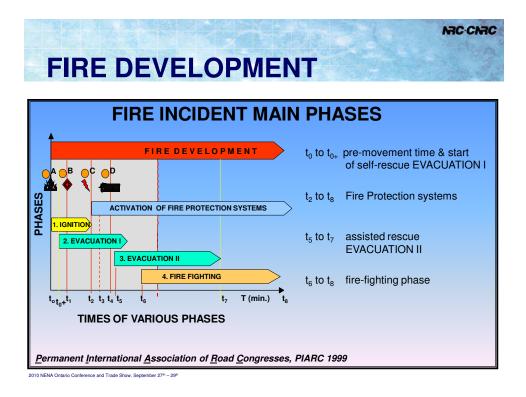

- emergency exits locations
- availability of water supply
- ventilation capabilities

TUNNEL INCIDENT





FIRE PROTECTION MATRIX


- Air Temperatures Criteria
- Air Carbon Monoxide (CO) Criteria
- Smoke Obscuration Criteria Visibility
- Radiation Heat Flux Criteria

DESIGN CRITERIA

- Air Temperatures Criteria
- Air Carbon Monoxide (CO) Criteria
- ***** Smoke Obscuration Criteria Visibility

NAC-CNAC

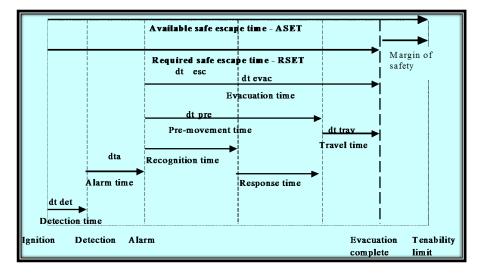
Radiation Heat Flux Criteria

TERMINOLOGY

RSET (Required Safe Escape Time)

Time necessary between ignition of a fire and time at which all occupants can reach an area of safety.

ASET (Available Safe Escape Time)


Time available between ignition of a fire and time at which tenability criteria are exceeded in means of egress.

<u>RSET</u> should be shorter than <u>**ASET**</u> by an acceptable Margin of Safety.

2010 NENA Ontario Conference and Trade Show, September 27th - 29th

EGRESS TIME MODEL

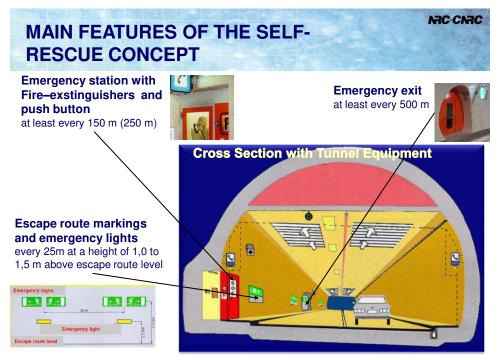
Model divides up time available for evacuation into several stages:

NAC-CNAC

MAIN FACTORS THAT ACCELERATE OR DELAY OCCURRENCE OF EGRESS BEHAVIOURS

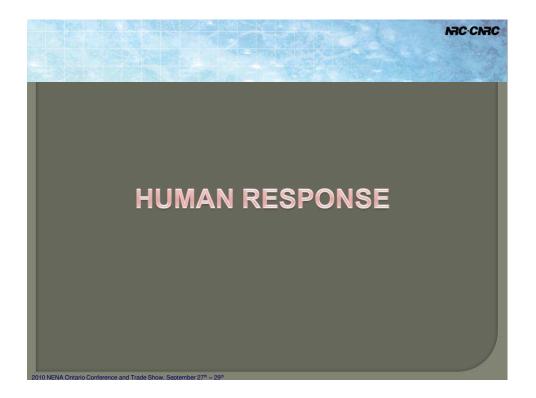
(SOCIETY OF FIRE PROTECTION ENGINEERS, SFPE)

	Main factors that can accelerate the occurrence of egress behavior	
Phase 0: onset of the event	Proximity of hazard source.Familiarity with environment.Experience/training.	
Phase 1: Perception and recognition of the alert signals.	 Proximity of hazard source. Intensity of alert. Clear messages on risk level. Credibility of information given/perceived. Collective move towards emergency exits. 	


NAC-CNAC

NAC-CNAC

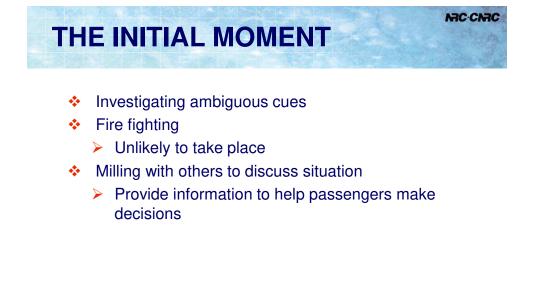
2010 NENA Ontario Conference and Trade Show, September 27th - 29th


MAIN FACTORS THAT ACCELERATE OR DELAY OCCURRENCE OF EGRESS BEHAVIOURS (SOCIETY OF FIRE PROTECTION ENGINEERS, SFPE)


	Main factors that can accelerate the occurrence of egress behavior
Phase 2: To make a decision about hazards reality and to evacuation preparation	 Clear messages on risk level. Information on emergency exits & what to do. Credibility of information given/received. Emergence of leader organizing evacuation. Collective move towards evacuation. Good visibility.
Phase 3: Move towards getting safe	 Smoke well controlled. Lighting and good visibility. Information on emergency exits & what to do.

2010 NENA Ontario Conference and Trade Show, September $27^{\rm th}-29^{\rm th}$

EU	leaflet		NRC·CI
	What to do when you are entering a tunnel	What to do in the event of breakdown or accident	<u>æ</u>
Radio ABC	Listen to the radio station indicated by the sign	Switch on your warning lights	
	Switch on your headlights. Take off your sunglasses	Try to move your vehicle to an emergency lane or lay-by or at least to the hard shoulder	D
000	Obey traffic lights and signs	Switch off the engine	8
Q	Keep a safe distance from the vehicle in front	Leave your vehicle	🖚 x
0	Do not overtake if there is only one lane in each direction	If necessary and possible, give first aid to injured people	+
8	Do not turn or reverse. Do not stop, except in an emergency	Call for help from an emergency station	٢
Δ	What to do in traffic congestion	What to do if your or another vehicle is on fire	#
	Switch on your warning lights	If your vehicle is on fire, if possible drive out of the tunnel	*
\bigcirc	Keep your distance, even if you are moving slowly or have stopped	If that is not possible, pull over to the side, switch off the engine and	i C
	Switch off your engine, if the traffic has come to a halt	leave the vehicle immediately	a
Radio ABC	Listen to messages on the radio	Call for help from an emergency station	C
60 /1	Follow the instructions given by tunnel officials or obey variable message signs	If you can, put out the fire using an extinguisher available in the tunnel	1
		If you can, give first aid to injured people	+
		Go, as soon as possible, to an emergency exit	1. The
Romember: Ch	eck fuel and turn on radio before entering a tunnel!	Remember: Fire and smoke can kill - save your life, not your car!	

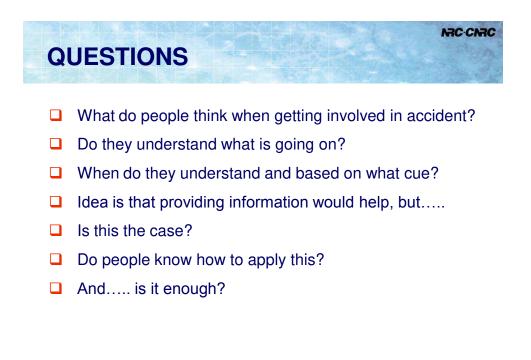

MOST COMMON BEHAVIOUR

NAC-CNAC

Panic

- Absence of response
- Commitment

How long will this inertia last?


WARNING USERS (CUES)

NAC-CNAC

Auditory alarms

- Location
- Intensity (background noise)
- Signal type
- Other cues
 - Smoke
 - Heat

2010 NENA Ontario Conference and Trade Show, September 27th – 29th

DRIVING SIMULATOR STUDY

DRIVING SIMULATOR STUDY

NAC-CNAC

SCENARIO – Altogether 60 drivers, 20 per group (no prior information, leaflet, Leaflet and operator voice):

Busy traffic

2010 NENA Ontario Conference and Trade Show, September 27th - 29th

- Traffic slows down due to accident 1 km upstream
- Entering the tunnel it gets to a stop
- ✤ 3.5 min after accident, smoke enters the tunnel
- Gets thicker and thicker
- After 10 min without action, experiment stopped
- If people indicate to get out and Stopped.

NAC-CNAC

CONCLUSIONS

- Did not reach 100% stated evacuation !!
- EU leaflet helps but is not enough
- Even with operator voice still doubt (smoke)
- Radio is not often used as information channel
- People still indicate they don't know how to handle
- People also want to know what is going on
- Enough information from a designer's point of view is not always enough for the tunnel user.

2010 NENA Ontario Conference and Trade Show, September 27th - 29th

REAL LIFE EVACUATION STUDIES

REAL LIFE EVACUATION STUDIES

- No instruction about possible accident
- Smoking truck stops in tunnel and blocks lanes
- 193 cars in 7 tests, 1 person per car
- 5 minutes: operator voice
- 7 minutes another.

2010 NENA Ontario Conference and Trade Show, September 27th - 2

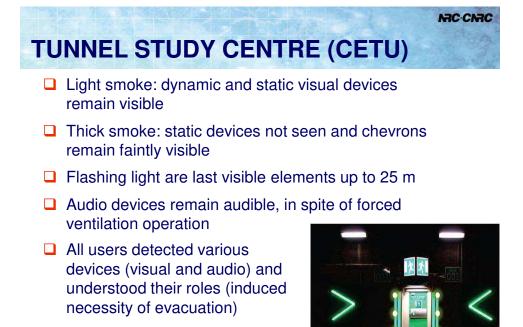
NAC-CNAC

NAC-CNAC

CONCLUSIONS

- People need between 5 to 15 minutes to decide whether they should do anything at all and finally what to do.
- New information vital to inform people they are no longer in normal situation.
- During anxiety a person's focus becomes very narrow only allowing processing of most obvious elements of environment.
- In case of emergencies all communications should be simple, brief, and obvious.
- To avoid panic and stampede, people must think escape routes open or accessible and escaping time is adequate.
- Moderate level of stress required to motivate appropriate human response.

EVACUATION STUDY TUNNEL STUDY CENTRE (CETU)


2010 NENA Ontario Conference and Trade Show, September $27^{\rm th}-29^{\rm f}$

2010 NENA Ontario Conference and Trade Show, September 27th - 29

Evaluation experiment were performed with ten users faced with a situation of coming to stop in the tunnel and the triggering of all the devices foreseen to favor their self evacuation

2010 NENA Ontario Conference and Trade Show, September 27th – 29th

2010 NENA Ontario Conference and Trade Show, September 27th - 29

TUNNEL STUDY CENTRE (CETU)

- Alarm function of siren was well understood (danger signal)
- Audio beacons give indication of action and place
- Dynamic visual device (chevrons) show and guide to the place where it is necessary to go
- All users self-evacuated in less than two minutes. It is the whole of the device, the combination of audio and visual, which triggered the self-evacuation by the users

NAC-CNAC

