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ABSTRACT  

A considerable portion of total energy loss within the built environment originates from operational errors during the actual lifespan of a 

building. With the rise of fully automated commercial buildings, a large amount of sensory data is becoming available that can be leveraged 

to detect and predict such errors. However, processing these data on-site requires significant knowledge and effort by building operators. In 

this work, a combination of model-based and data-driven approaches are employed to facilitate the analysis of historical energy demand 

data. Using change-point models and symbolic quantisation techniques, a large dataset of heating and cooling demand profiles collected from 

several office buildings are transformed into a format that is easily interpreted by the building operator and is suitable for actionable 

anomaly detection. Further quantification of anomalies and calculation of potential savings are drawn from the results. 

INTRODUCTION 

Given the buildings’ considerable contribution to total energy use among different sectors, any effort in 

improving their operation and energy efficiency can scale to a large impact in sustainability and greenhouse gas 

emissions (Omer 2008). Studies show that many instances of energy inefficiencies in buildings are introduced by 

operational errors and faulty devices, although identification of such malfunctions appears to be a big challenge in 

modern office buildings with thousands of sensors and actuators (Gunay and Shen 2017). As a result, automated fault 

detection tools - that can replace in-person walk-arounds and reduce costs associated with human resources - may 

serve as a promising solution to this problem. 

One of the challenges in such tools is associated with anomaly detection: a process in which energy data is 

scanned to find abnormal behaviour that can potentially lead to a fault. As revealed by a recent review (Miller, Nagy, 

and Schlueter 2018), many researchers are targeting the topic of anomaly detection in buildings’ energy demand, using 
various model-based and data-driven methods. Data-driven methods, which require less in-depth knowledge of the 

thermophysical properties of building systems, proved to be efficient for anomaly detection based on the analysis of 

electricity demands (Seem 2007). However, the approach is not as effective for heating and cooling demands, mainly 

due to their additional correlation to weather parameters; hence requiring an underlying model to capture the 

behaviour explained by thermal parameters. To this end, model-based anomaly detection method create an inverse 

model of a subsystem in the building (for example a thermal zone) to learn its normal operational behaviour, such as 

heating and cooling demands (Gunay, Shen, and Yang 2017). A common type of such models is a change-point model 

that is employed in several studies to establish a relationship between average outdoor temperature and energy 



demand of the building (Kissock, Haberl, and Claridge 2003). 

In previous work (Ashouri et al. 2018), the present authors applied a data-driven method to historical electricity 

demand of several buildings to detect abnormal patterns, potentially due  to a fault in the building energy system. In 

this study, a similar methodology is employed for heating and cooling demand profiles in commercial  buildings; these 

demands are correlated to the number of occupants in the building, day-of- week, and time-of-day as demonstrated by 

standards such as ASHRAE (ASHRAE 2016) and the National Energy Code of Canada for Buildings (NRC Canada 

2011). In order to capture the weather dependencies, change-point models are developed for each building and each 

type of service. In the rest of the paper, first a brief introduction of the buildings and their hourly heating and cooling 

demand is provided. The employed method is explained in several sections while the input and output of each step is 

illustrated using data from the case study buildings. In the last step, potential energy savings identified by the 

proposed anomaly detection method are calculated and discussed. The paper concludes with discussion of the results 

and recommendations for future work. 

 Studied Buildings 

This study is conducted using archived hourly heating and cooling demand data collected from two federal office 

buildings located in Ottawa, Canada. Table 1 presents a summary of the buildings’ information. Hourly steam and 

chilled water demand (supplied by a central heating and cooling plant) of these buildings were monitored for three 

consecutive cooling and heating seasons as shown in Figure 1.  

The dataset includes data between April 23, 2013, and April 24, 2016, although some data may be missing during 

short periods. At a first glance, abnormal behavior is observed for building B1 in terms of simultaneous heating and 

cooling: heating during summer, and cooling during winter. However, these behaviours may be justifiable for a variety 

of reasons, such as multi-zone conditioning, that is when some thermal zones need heating while others require 

cooling. In addition, some buildings incorporate server rooms or laboratories that have to be maintained at a fixed 

temperature setpoint throughout the year, resulting in continuous heating/cooling demand.  

 

Figure 1 Hourly data for chilled water (cooling) demand and steam (heating) demand for the studied buildings. 

Table 1. Summary of the characteristics of the studied buildings. 

Building 
identifier 

Number of 
floors 

Floor area 

m2 (ft2) 
Construction 

year 
Heating demand intensity 

kWh/m2-yr (kBTU/ft2-yr) 

Cooling demand intensity 

kWh/m2-yr (kBTU/ft2-yr) 

B1 4 39,000 (420,000) 1952 121 (38) 67 (21) 

B2 13 61,000 (657,000) 1979 33 (10) 56 (18) 



Therefore, the anomaly detection proposed in this study first identifies a typical demand profile for each building 

to capture its own unique characteristics, then the actual demand is compared to the typical profile and the deviations 

from this typical profile are quantified. 

PROPOSED METHOD 

The anomaly detection method used in this study consists of several modules that are shown in Figure 2. The 

input to the tool is the raw data sourcing from the installed sensors; i.e. energy meters measuring heating and cooling, 

via a database. The data is treated in two stages responsible for model-based and data-driven processing. In the 

model-based stage, a change-point model is trained to remove the trend introduced by weather parameters. In the 

data-driven stage, the demand data is quantised into symbols in order to identify a motif and a corresponding typical 

demand profile. Finally, the actual weekly demand profiles are compared with the typical profile to detect the 

anomalies and resulting deviations are used in calculation of potential savings. In the following sections, each module 

is described in more detail. 

 

Figure 2 Block diagram showing the main modules and their connections. 

Seasonal Filtering 

The proposed method is designed for application to large dataset of demand data, in this case 25320 data-points 

(1055 days × 24 hours = 25320) per studied building. In order to increase the accuracy of evaluation and improve 

computational efficiency, dimension-reduction techniques are used to extract the most representative and meaningful 

features from the data. A first step towards this end is to divide data based on temporal characteristics. This is 

performed based on categorizing the dataset into heating/cooling seasons, day/night sections, and high/low demand 

periods. 

Heating and cooling seasons. Air conditioning in commercial and office buildings typically takes place based on 

pre-defined schedules defined by building operators. Based on the historical weather data and occasionally depending 

on short-term forecasts, heating and cooling systems are turned ON and OFF. However, as seen in Figure 1, 

simultaneous heating and cooling can happen in non-residential buildings, as the two systems are operated 

independently. In order to detected anomalous behaviours, one may identify and distinguish the heating season from 

the cooling season within the same year, based on local weather data. In addition, for a building cluster located in the 



same campus, fed by the same central heating/cooling plant, the seasons can be detected from data collected at one of 

the buildings and applied to the rest of the cluster. This is indeed the situation for the buildings studied in this paper. 

Hence, as building B2 shows a clear separation of heating and cooling seasons (refer to Figure 1), it is used to define 

the seasons for both buildings. Once the seasons are defined, off-season air conditioning (i.e. heating in summer or 

cooling in winter) can be flagged as anomalous behavior. Such anomalies are observed in demand profiles of building 

B1 (for cooling during winter). 

Day and night sections. Another major factor in scheduling HVAC demand is hour of the day. In office buildings, 

specifically, a routine occupancy pattern is followed by the building users, mainly due to regulated working hours. 

However, the HVAC schedules may vary dramatically from one building to another. In the case of the office buildings 

studied in this project, the morning ramp-up of HVAC system varied between 4am and 6am, and the ramp-down 

after working hours took place between 5pm and 7pm. Because of such statistical observations, each day is divided 

into two sections, namely Day and Night, with the day section being between 6:00am to 5:59pm and the night section 

being between 6:00pm and 5:59am. For the purpose of anomaly detection, such separation helps compare the demand 

among the 7 day sections and 7 night sections within a week, to see whether sequential patterns exist and to identify 

anomalous behaviour such as a lack of night-time setback in HVAC operation. The day/night sections also contribute 

to high and low demand periods, as explained below.  

High- and low-demand periods. The final dividing of demand data is done based on day-of-week and type of the 

day. The idea is to identify periods that are expected to show high or low demands, which is mostly driven by building 

occupancy in non-residential buildings. As a result, weekends and night sections of weekdays (i.e. Monday to Friday) 

are considered as expected-low (demand) periods, while day sections during weekdays are categorised as expected-

high (demand) periods. In addition, national and regional holidays are treated the same as weekends. This separation is 

a crucial part of the method, as it affects both the weather detrending and statistical quantisation, as will be explain in 

the next sections. 

Normalisation and Aggregation 

Characteristics of heating and cooling demands such as mean, minimum, and maximum values fluctuate by 

various temporal factors such as time of day, day of week, and season of year. As a result, a holistic anomaly detection 

method that takes a long historical data period as an input must work on normalised data. Various normalisation 

schemes are employed by data analysts and statisticians, the most popular ones being the standard score and zero-to-

one normalizations. For this study, the incorporated approach is the zero-to-one normalisation that is more 

appropriate for visualization since negative demand values cannot exist. The normalised demand is calculated as 

follows: �୬୭୰୫ୟ୪ [t] = �[�]−�ౣi౤�ౣax−�ౣi౤          (1) 

where � is original demand, � is time, and �௠�௡ and �௠�� represent the minimum and maximum values of original 

demand, respectively. Following the normalization, the demand data are aggregated within each day/night section, 

achieved by replacing the demand at each section with its averaged value; as shown below: �ୟgg  [t] = ∑ ሺ�୬୭୰୫ୟ୪  [t]ሻଵଶ⋅��=ଵଶ⋅�−ଵଵ         (2) 

As a result, a week of demand data (comprising of 168 hours) is compressed into 14 averaged day/night sectional 

demands, drastically reducing the dimension of data. 

Weather Detrending 

Heating and cooling demands in office buildings can be described by two major components. The first is a 

sequential pattern as a function of time-of- day and day-of-week and is mainly affected by occupants’ behaviour.  



 

Figure 3 Normalized heating and cooling demand versus outdoor temperature and the corresponding change-
point models, for building B2. The R-squared values and base temperatures are shown for each linear fit. 

The second is a non-sequential trend that is a correlated to weather conditions, especially to outdoor air 

temperature. Therefore, prior to processing the demands with the symbolic quantisation method, the part of demand 

explained by the outdoor temperature has to be removed. This is done by a process known as Weather Detrending. 

The process involves building change-point models between the heating/cooling demand and the outdoor air 

temperature. The models are created for each studied building during the heating/cooling season and high/low 

demand periods.  

Figure 3 shows the aggregated hourly heating and cooling demands for building B2 as a function of average 

outdoor temperature. It can be seen that for the data-points where demand is non-zero, a linear correlation between 

the demand and the temperature can be drawn. In case of cooling demand, it is even possible to fit separate lines for 

low and high periods. However, as we intend to explain the behaviour of cooling system with a single model, a single 

line is used instead. 

This correlation, known as a trend, is presented with a change-point model by fitting a line to the data using a 

minimization of least square errors. The resulting model is described as �̂ୟgg = { ߙ  ⋅ ሺ ୠܶୟୱୣ − ܶ̅୭୳୲ሻ     ܶ̅୭୳୲ ≤ ୠܶୟୱୣ ߚ ⋅ ሺܶ̅୭୳୲ − ୠܶୟୱୣ ሻ      ܶ̅୭୳୲ > ୠܶୟୱୣ             (3) 

where �̂ୟgg is the expected estimation of aggregated power, ܶ̅୭୳୲ is the average outdoor temperature within a 

day/night section, ୠܶୟୱୣ  is the base temperature at which point the heating or cooling is triggered, and ሺߙ,  ሻ are theߚ

heating/cooling rate represented as the slope of the line in the linear fit. It is trivial that ߙ = Ͳ for cooling and ߚ = Ͳ 

for heating. In the case of building B2, the change-point models describe the trend with a confidence of ܴଶ = Ͳ.ͻ͸ for 

heating demand and ܴଶ = Ͳ.ͺ͵ for cooling demand. In addition, the base temperature is ͳ͸ ∘� (͸ͳ ∘�) for heating and ͷ ∘� (Ͷͳ ∘�) for cooling. The same approach of change-point modelling is used to identify the trend in buildings B1 

and B2. Once the trends are found, detrending is achieved by extracting the power estimation of the change-point 

model from the actual power: �ୢୣ୲୰ୣ୬ୢ = �ୟgg − �̂ୟgg 
      (4) 

An example of how such weather detrending can affect the demand is shown in Figure 4. During this week of 

June, the aggregate cooling demand demonstrates an upward trend that rises from Monday to Friday, which, in raw 

form, may be viewed by the building operator as an anomaly. However, once detrended, it shows a consistent 

normalized demand for all weekdays, revealing that the increasing demand is in fact due to a rise in outdoor 

temperature instead of a fault in the building. Therefore, one concludes that the weather-detrended demand is a better 

representation of the seasonal (i.e. periodic) behaviour of the building that is mostly correlated to building occupancy.  



 

Figure 4 The effect of weather detrending on a week of aggregate cooling demand. 

Symbolic Quantisation 

Despite all the processing, the energy demands at this stage of the algorithm contain continuous values, which is 

not optimal for the pattern recognition and anomaly detection tasks. Therefore, value quantisation and symbolic 

conversion are applied to the data. The idea is to transform the detrended weekly demand (that is a time series with 14 

values) into “words” comprised of 14 symbols or “letters”. The method, called symbolic quantisation, has been 
commonly deployed in research studies for anomaly detection (Miller, Nagy, and Schlueter 2015).  

In order to select the thresholds at which the demand is quantised, statistical methods are used. More details on 

the statistical selection of thresholds and the corresponding quantised symbols can be found in (Ashouri et al. 2018).  

As shown on the left side of Figure 5, for the studied buildings, the six letters used for quantisation are “L” for very 
low, “l” for low, “m” for medium, “h” for high, “H” for very high, and “X” for extremely high demand. As a result, a 
14-letter word comprised of these six letters represents a weekly demand profile. 

Motif Selection 

In order to detect anomalous behavior in building energy demand, all weekly demand profiles have to be 

compared with a “typical profile” which corresponds to the most frequent weekly word, called a motif. The motif is 
found using a motif-selection task that identifies the most frequent weekly word. A typical profile is unique to the 

building and the type of service. Figure 5 also shows a sorted histogram (i.e. frequency) of weekly words for the 

cooling demand of building B1 (for this visualization, h and H are shown as H, and l and L are shown as L).  

  

Figure 5 Symbolic quantisation for two weeks of detrended demand (left) and the word frequency for the cooling 
demand of building B1 (right). 



There are 27 distinguished words and the word HLHLHLHLHLLLLM has the highest frequency of 22, which 

is selected as the motif. This word corresponds to a high demand (H) during the weekday day sections and a low 

demand (L) during weekday night sections as well as the whole weekend, except for the night section on Sundays 

(indicative of cooling beginning early in preparation for Monday morning occupancy). The second most frequent 

word is HLHLHLHLHLLLLL with the only difference being the last letter. It is important to mention that the latter 

word does not get flagged as abnormal, since it represents a lower demand (L<M). Therefore, it indicates that the 

anomaly detection is robust with respect to slight changes in quantisation thresholds that may change the ranking of 

the two words. In addition, the two words represent almost 55% of the weeks. Once the motif is selected for each 

building during a calendar year, the corresponding typical profile is calculated by averaging all the weekly demands 

whose weekly words are the same as the motif.  

Anomaly Detection 

In the final step of the algorithm, the actual weekly demands of each building are compared to the corresponding 

typical demand and anomalies are quantified by calculating the divergence.  

This is done by evaluating the energy performance of a building using the total energy-cost saving, calculated as: ܵ୲୭୲ୟ୪ = ∑ ∑ (��,� −��,� ) � � ∑ ∑ ��,� � �  ,   � ∈ {ͳ, … , W},   � ∈ {ͳ, … ,ͳͶ} ∩ {�� > ��}   (5) 

where S is the energy saving, P is the typical demand, and � is the actual weekly demand. Index w iterates over the 

weeks with complete data availability. Index � enumerates the 12-hour daily sections, and iterates only over the letters 

in the actual demand that are higher than the typical demand. For example, if the motif is HLHLHLHLHLLLLM 

and the actual weekly word is HMHMHLHLMLLLLL, then index � takes the values {ʹ,Ͷ} because only the second 

and the forth letters are different to, and higher than, the corresponding letter in the motif (since M>L).  

RESULTS AND DISCUSSIONS 

The results of anomaly detection for the two studied buildings are shown in Table 2. For the energy cost savings, 

unit cost of heating and cooling in Canadian dollars is extracted from actual billing reports, amounting to ͳͳ͵ C$/MWh (͵͵ C$/MBTU) for heating and ͳͳͲ C$/MWh (͵ʹ C$/MBTU) for cooling. The different identified motifs and 

corresponding number of abnormal weeks for each building and service type are translated to potential savings in the 

range of ͳ.͵% to ͺ.ͺ%. Further analysis of Table 2 reveals several noteworthy points.  

First, from the four identified motifs, three can be considered as regular and one as irregular. A regular motif 

contains a certain amount of setback when shifting from day to night and from weekdays to weekends and holidays. 

In other words, it is expected that low- and high-demands are well separated. For building B1 and for cooling demand 

of building B2, the motifs have regular formats: H (High) demand for day sections during weekdays and L (low) or M 

(medium) during the night sections and weekends. Looking at the potential savings, these three categories show a 

higher promise compared to the last category (i.e. heating of building B2). This is logical in the sense that the motif 

HHHHHHHHHHHHHH does not correspond to a consumption pattern triggered by time-of--day and day-of-

week, hence it is not representing the behaviour of building occupants or any other sequential factor. In such cases, 

the presented anomaly detection tool provides limited information for the operators regarding fault detection. 

 Second, the results indicate that the initial assumption about the severity of anomaly in demand of building B1 

versus B2 may not have been accurate. If the overall savings (for both heating and cooling) are calculated for the two 

buildings, one finds out that building B1 has an overall potential cost saving of ͷ.Ͷ% while it is ͹.ʹ% for B2. This 

indeed points to the importance of data analytic tools, such as the one presented in this paper, as their ability in 

processing large data is likely superior to the visual inspection of time-pressed building operators. In fact, finding a 

typical pattern in large dataset by solely monitoring a visualisation of energy demand is cumbersome, if not 



impossible, for a human operator.  

Finally, the importance of quantifying the divergence is highlighted by comparing the potential savings between 

cooling and heating demands in building B1. Although the typical profiles have very similar motifs and the number of 

abnormal weeks is also similar, the heating demand shows a much bigger potential in terms of percentage (͸.͸% 

versus ʹ.ͷ%). In fact, monetising the divergence from the typical profile is critical in understanding the severity of the 

anomalies, which can help building operators or maintenance personnel prioritize their work.  

 

Regarding the potential applications for the proposed approach, the authors believe that the tool can be widely 

applied to large centralized or distributed commercial and office building clusters where a limited number of facility 

operators are in charge of multiple buildings. Examples include schools and universities, military bases, hospitals, bank 

branches, postal outlets, airports, etc. The method will then aid the operators in efficiently allocating their limited 

resources. The main requirement for the deployment of the tool is reliable demand measurements at a reasonable 

resolution (finer than or equal to 1 hour). This is indeed a realistic assumption since the ASHRAE 90.1 standard now 

mandates archival of usage data for natural gas and electricity at 15-minute intervals for at least 36 months in large 

non-residential buildings (ASHRAE 2016). 

CONCLUSION 

Anomaly detection in heating and cooling demands requires a level of information about the building 

characteristics that cannot be captured by a pure data-driven method. In this work, the authors combined a change-

point model and a symbolic quantisation to analyse a large dataset of hourly heating and cooling demand collected 

from office buildings in Ottawa, Canada. In summary, the case study results show a potential saving of ͳ% − ͻ% for 

the two studied buildings. The ability of the proposed anomaly detection method in detrending the heating/cooling 

demands and identifying the typical demand patterns makes it a capable multi-purpose energy-monitoring tool for 

both operators and stakeholders. The tool can compress large time series of demand data into low-dimension weekly 

words that increases computational efficiency. In order to make the algorithm more robust and the results more 

reproducible, a combination of normalisation and statistical techniques are employed, making a comparison of results 

among several buildings more meaningful.  

For the future extension of this work, the authors intend to investigate the sensitivity of the results with respect 

to several parameters such as quantisation thresholds and number of symbols. Furthermore, an intelligent extension 

of the algorithm to enable automatic association of faults to certain anomalies will be developed. 
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