
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the

first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version

acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Change Sets Revisited Configuration Management of Complex

Documents
MacKay, Stephen

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=56aa969f-d9dd-4c91-8dfd-0e8744b97406

https://publications-cnrc.canada.ca/fra/voir/objet/?id=56aa969f-d9dd-4c91-8dfd-0e8744b97406

National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l’information

Change Sets Revisited and
Configuration Management of
Complex Documents
(Position Paper)

Stephen A. MacKay

Software Engineering

March 1996

NRC No. 40194

ii

This paper also appears in the Proceedings of the 6th International Workshop on Software

Configuration Management (SCM-6), Berlin, Mar. 25-26, 1996. Published as Lecture Notes in

Computer Science (LNCS) 1167, Software Configuration Management. I. Sommerville (Editor).

Springer-Verlag, Berlin. 1996. pp 277-281.

ISSN 0302-9743

ISBN 3-540-61964-X

Copyright 1996 by

National Research Council of Canada

Permission is granted to quote short excerpts and to

reproduce figures and tables from this report,

provided that the source of such material is fully

acknowledged.

Additional copies are available free of charge from:

Communications Office

Institute for Information Technology

National Research Council of Canada

Ottawa, Ontario, Canada

K1A 0R6

Copyright 1996 par

Conseil national de recherches du Canada

Il est permis de citer de courts extraits et de

reproduire des figures ou tableaux du présent rapport,

à condition d’en identifier clairement la source.

Des exemplaires supplémentaires peuvent être

obtenus gratuitement à l’addresse suivante:

Bureau des communications

Institut de technologie de l’information

Conseil national de recherches du Canada

Ottawa (Ontario) Canada

K1A 0R6

1

Change Sets Revisited and Configuration Management of Complex

Documents

Stephen A. MacKay

Institute for Information Technology—Software Engineering
National Research Council of Canada

Ottawa, Ontario, Canada K1A 0R6
MacKay@iit.nrc.ca http://wwwsel.iit.nrc.ca/

1 Introduction

The SCM-5 workshop in Seattle provided a forum for software configuration management (SCM) researchers,

tool developers and users to come together and discuss relevant problems in the field. The workshop concluded with

a number of unsolved problem areas. This document summarizes those areas and—drawing from our research

experiences—discusses a few of the challenges in greater detail.

2 What are the Problems?

2.1 SCM models

Feiler’s models of configuration management (check-out/check-in, composition, long transaction and change set)

[Feil91] no longer adequately represent the current generation of commercial configuration management tools or the

emerging tools and research systems. Are there better or expanded models to represent workspace concepts? Do we

need new models for concurrent development in a widely distributed environment, or can we adapt the existing

ones? Are there graphic representations and visualization methods better than the overworked version graphs? Is

modelling just an irrelevant academic exercise?

2.2 SCM architecture

Software projects involving multiple companies benefit from common configuration management tools. However,

each group is reluctant to change its own culture. Similarly, customers obtaining updates and patches from

development tool vendors are not likely to use the same CM tools as the vendors. There is a clear need to separate

the architecture of CM tools from the implementations. Can we define a common architecture for commercial CM

tools that would allow software teams to interact even if they are using CM tools from different vendors? Are there

existing relevant standards?

2.3 SCM and process

The popularity of ISO 9000 and CMM certification has made companies more aware of software development

processes. What is the relationship between SCM and the overall software process? Is CM merely one part of the

software process or is CM itself the process? How do the various standards on software processes view CM?

2.4 Distributed, concurrent development

Commercial CM tool vendors are beginning to provide support for widely distributed, concurrent software

development, but there is little agreement on the mechanisms. Are there models or appropriate graphic

representations of distributed, concurrent development that would aid in user understanding and acceptance of this

powerful paradigm? What are the significant problem areas (scale, merging, group dynamics, etc.)?

2.5 CM of complex documents

Most current CM systems store non-textual configuration items in the repository as frozen “binary” entities

(possibly compressed). This is unsatisfactory in 1996. How can we do proper CM of word processor produced

documentation; multimedia documents; databases; project files for advanced graphical user interface generators; and

2

“source code” for non-textual languages? How can we determine what has changed in a non-textual configuration

item? Can we represent or determine the differences between products composed of more complex components?

The remainder of this document begins by looking at CM models for widely distributed, concurrent, software

development projects. It then continues the discussion of change sets begun in Seattle. It concludes with a brief

discussion of some of our preliminary thoughts on configuration management of non-textual components.

3 Models for Concurrent, Distributed Development

Today’s new culture of software development relies on teams of developers equipped with desktop workstations

or personal computers. The teams are frequently distributed worldwide and may not be reliably networked. This

environment brings special problems, particularly in areas such as: distribution across time zones; access to the

repository by intermittently connected developers; and sharing the repository across company boundaries.

3.1 Version-oriented CM

Version-oriented configuration management focuses on defining and managing product versions through the

handling of revisions and variants at the individual component level. The component and product versions are the

first-class entities, managed by the developer. One of the common features among version-oriented models is the

use of the directed acyclic version graph. Each node in the graph represents a version of the component or product

and each edge between nodes represents the transition between versions (an is-version-of relationship or the “delta”

between the versions) [vand95].

At the component level, version graphs quickly prove inadequate. While they can easily represent the migration

path for a short time, they do not scale for longer projects nor do they handle components that are undergoing

significant concurrent modification [MacK95]. Trying to study relationships between components using their

individual or combined version graphs is difficult. The pictures provide a clear history of each individual

component, but are of little help in determining which version of one is related to which version of the other.

Product-level version graphs usually result in a simpler picture, but they do not convey enough information. For

example, when analyzing product migration, it is difficult to determine what constitutes a change between versions

or how two arbitrary versions are related because the deltas (edges) are not first-class entities. For highly portable

products with many active versions, it is difficult to express the application of a single change to a variety of

versions.

For concurrent development, version graphs introduce artificial branches that have little to do with the structure of

the product, making the model more difficult to understand and maintain. Commercial CM systems implementing

version-oriented models, usually discourage branching for full concurrency, even though it is the only mechanism

they provide for development to proceed simultaneously on a single configuration item [MacK95].

3.2 Change-oriented CM

Change-oriented configuration management focuses on managing logical changes to a baselined product. Here,

the description of the change—known as a change set—is a first-class entity, managed by the developer. The

versions are derived by applying relevant change sets to the baseline. Developers therefore work with product-level

deltas, collecting all those individual components that are relevant to the particular change, excluding other

groupings that made sense in other situations (like initial product design). This structure reduces considerably the

difficulty of managing the revision and release process [Wein95].

Feiler notes that concurrency control is outside the change set model, but he goes on to state:

Change sets can also be used to support distributed concurrent change without centralized coordination.

Each site generates change sets independently. Once the changes sets are exchanged between sites, each

site can, at its leisure, combine change sets. The result is that the system evolves at both sites. If

assignment of changes to sites is planned carefully, conflicts in change sets can be kept to a minimum.

[Feil91, pg. 43]

Managed carefully and supported with appropriate CM tools, change sets provide exactly the concurrency

management required in the widely distributed development environment. Importantly, the mechanism scales down

to smaller teams as well.

The workspace mechanism [Dart90, Dart92]—where developers can get and modify components from the

repository independently of other developers—is a natural way of implementing change sets. Augmented with

3

Dart’s transparent view and transaction mechanisms, the change set model becomes a powerful and complete

method for describing configuration management in widely distributed environments.

Change sets have often been viewed unfavourably, characterized as a Chinese menu approach in which individual

revisions are tracked and then collected into logical groups to define a version. Often a check-out/check-in

methodology is used to manage the revisions. This approach represents a limited view of change sets, trying to

superimpose a version graph on the change set model. The research community needs to find representations and

visualizations that free us from version graphs.

Two visualization techniques, described at SCM-5, provide a starting point. The Database and Selectors Cel

(DaSC) approach, developed in our laboratories at the National Research Council of Canada, characterizes change

sets as groups of layers stacked on top of a known baseline [Gent89, MacK95]. Tandem Computers’ Fully

Populated Paths mechanism uses Railroad Diagrams (resembling DaSC laid on its side) to show the relationships

among change sets [Schw95]. Railroad diagrams look familiar to people comfortable with version graphs, but they

convey significantly more information. One of the useful outputs from SCM-6 would be progress towards a uniform

graphical notation for change-oriented configuration management.

4 CM of Complex Documents

The future of software development will not remain focused on managing changes to files containing only ASCII

text. Already developers—even in traditional environments—are faced with revisions of: documentation produced

by word processors or page layout programs; test case data stored in databases; soft-copies of design drawings; and

binary resource descriptions. We are now beginning to add to the mix: multimedia and hypertext documentation

(e.g., HTML, HyperCard, etc., with embedded sound and video); data maintained in personal or shared productivity

tools (e.g., Lotus Notes); project files for advanced graphical user interface generators (e.g., XVT) and compilation

environments; and even full visual programming languages (e.g., Prograph CPX). Full configuration management of

these components is difficult, so little commercial CM tool support is available. Most tools only permit storage of a

complete, compressed copy of the component in the repository. A few, like Voodoo, store a compact delta of the

binary files.

We believe change-oriented methodologies, particularly DaSC, will support a number of these new application

areas. We have recently begun exploring some of them, but it is too early to publish results. Two clear issues have

emerged. Managing revisions while editing documents stored in proprietary formats is extremely difficult. The

vendors of the tools that create these documents must provide: a powerful document editor with appropriate calls to

manage a change set methodology; a document editor with sufficient hooks to allow the addition of extra

functionality; or enough information about the document formats to allow companion tools to be written. If they fail

to meet this challenge, customers will migrate to competing vendors. There is a great challenge for the CM research

community to investigate ways to bring the variety of documents under common configuration management.

Another challenge is in representing the differences between products composed of more complex components.

Whether we are looking for tools to automatically generate differences between two known versions, or for

representations of the differences that the software developer can visualize and manipulate, the problem is equally

challenging. There are many opportunities for discussion and further research on this topic alone.

5 Acknowledgments

I would like to thank my colleagues, past and present, in the Software Engineering Group for their many

contributions to our DaSC project and for reviewing this position statement. I would like to thank especially Charles

Gauthier, Morven Gentleman, Anatol Kark, Darlene Stewart and Marceli Wein for their efforts and support.

6 References

[Dart90] Susan Dart. Spectrum of functionality in configuration management systems. Carnegie Mellon
University, Software Engineering Institute Technical Report: CMU/SEI-90-TR-11, Dec. 1990. 38 pages.

[Dart92] Susan Dart. The past, present, and future of configuration management. Carnegie Mellon University,
Software Engineering Institute Technical Report: CMU/SEI-92-TR-8, Jul. 1992. 28 pages.

[Feil91] Peter Feiler. Configuration management models in commercial environments. Carnegie Mellon
University, Software Engineering Institute Technical Report: CMU/SEI-91-TR-7, Mar. 1991. 54 pages.

[Gent89] W.M. Gentleman, S.A. MacKay, D.A. Stewart, and M. Wein. Commercial realtime software needs
different configuration management. Proceedings of 2nd International Workshop on Software

4

Configuration Management (SCM), Princeton, NJ. Oct. 24–27, 1989. Published as Software Eng. Notes,

17(7): 152–161; 1989. NRC 30695.

[MacK95] Stephen A. MacKay. The State of the Art in Concurrent, Distributed Configuration Management.
Proceedings of 5th International Workshop on Software Configuration Management (SCM-5), Seattle,

WA. Apr. 24–25, 1995.

[Schw95] Bill Schweitzer. Fully Populated Paths: A Conservative, Simple Model for Parallel Development.
Proceedings of 5th International Workshop on Software Configuration Management (SCM-5), Seattle,

WA. Apr. 24–25, 1995.

[vand95] André van der Hoek, Dennis Heimbigner, and Alexander Wolf. Does Configuration Management
Research Have a Future? Proceedings of 5th International Workshop on Software Configuration

Management (SCM-5), Seattle, WA. Apr. 24–25, 1995.

[Wein95] M. Wein, S. A. MacKay, D. A. Stewart, C.-A. Gauthier and W. M. Gentleman. Evolution Is Essential for
Software Tool Development. Proceedings of the 1995 International Workshop on Computer-Aided

Software Engineering (CASE-95), Toronto, Ontario, Jul. 9–14, 1995.

