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Abstract

This paper presents a method for using qual-
itative models to guide inductive learning.
Our objectives are to induce rules which
are not only accurate but also explainable
with respect to the qualitative model, and
to reduce learning time by exploiting domain
knowledge in the learning process. Such ex-
plainability is essential both for practical ap-
plication of inductive technology, and for in-
tegrating the results of learning back into
an existing knowledge-base. We apply this
method to two process control problems, a
water tank network and an ore grinding pro-
cess used in the mining industry. Surpris-
ingly, in addition to achieving explainability
the classi�cational accuracy of the induced
rules is also increased. We show how the
value of the qualitative models can be quan-
ti�ed in terms of their equivalence to addi-
tional training examples, and �nally discuss
possible extensions.

1 INTRODUCTION

1.1 OVERVIEW

This paper presents and evaluates a technique for
using qualitative models to guide inductive learning
from examples. Our objective is to induce rules
which are not only accurate but also explainable us-
ing this qualitative background knowledge, a require-
ment both for practical application of machine learn-
ing and for integrating the results of learning back
into a wider body of existing knowledge. The re-
search can be viewed as developing and evaluating
a special case of the general theory-guided learn-
ing paradigm (e.g. [Bergadano and Giordana, 1988,
Pazzani and Kibler, 1992]), in which the theory is a
qualitative model and the learning technique is rule
induction from data. Our method is based on de�n-
ing a notion of consistency of a rule with a qualitative
model, and then restricting the specialisation opera-
tor in an induction system (CN2) to only investigate
specialisations consistent with the QM during search.

We describe the application of this method to two
learning problems in process control. Our evaluation
shows that this method, in addition to achieving con-
sistency of learned knowledge with background knowl-
edge, can also improve overall classi�cational accuracy.
We show how a metric can be de�ned which quanti�es
the value of the qualitative model in terms of its equiv-
alence to extra training examples, and �nally speculate
how empirically learned knowledge might feed back to
modify the qualitative model itself.

1.2 MOTIVATION

It is now well recognised that applying standard in-
ductive learning tools such as ID3, C4.5 or CN2 is
somewhat of a skill. Their inability to exploit back-
ground knowledge leaves the knowledge engineer with
substantial work to perform in order to generate rules
which both perform well and which are su�ciently
`sensible' that they can enhance the knowledge of
domain experts, and be relied upon for real-world
performance tasks. Gillian Mowforth, a former em-
ployee of Intelligent Terminals Ltd. and with sub-
stantial experience of commercially applying rule in-
duction, estimates that in typical commercial appli-
cations of ExTran (an ID3 derivative) around 30%
of the �nal decision tree installed for the customer
would have been hand-engineered rather than induced
[Mowforth, 1992]. She reports typical applications
would involve data collection, rule induction, and then
analysis of the induced tree in collaboration with the
experts to see if it \made sense". This latter process
was time consuming, and would be followed by modify-
ing the induction procedure e.g. by removing/adding
training examples, by modifying the example descrip-
tion language, or by re-running the induction system
in interactive mode to force certain attribute tests to
be included/excluded in parts of the tree. Then a new
tree would be induced and the process iterated until
the tree was acceptable to the experts, the whole ap-
plication taking several months to complete. Similar
experiences have been reported by others involved in
machine learning applications.

The complete process is thus interactive, involving



substantial domain expertise in addition to use of an
inductive tool. In this process, statistically justi�ed
rules are being compared against domain knowledge,
and the results used to re�ne learning. Domain knowl-
edge can be viewed as a compiled version of many
training examples (i.e. all previous empirical evi-
dence), above and beyond the data set immediately
available. Ideally, this knowledge will prune out rules
which by chance perform well on the training data, but
in general have poor performance.

In this paper we model this process using a qualitative
model to represent background knowledge and restrict
the choices available to an inductive engine. At the
end of the paper we also speculate on extending our
method to perform the reverse process, which Mow-
forth also reports was common: namely where strong
statistical evidence may cause experts to revise their
domain knowledge.

2 CONTEXT & RELATED WORK

While it is widely accepted that background knowledge
is necessary for all but the simplest learning tasks, we
note that there are two principle ways in which back-
ground knowledge can be used:
1. To expand the hypothesis language by introduc-

ing extra terms (e.g. in Foil [Quinlan, 1990] and
Golem [Muggleton and Feng, 1990]).

2. To constrain search (our objective in this paper).

These two methods have signi�cantly di�erent out-
comes: in the �rst case background knowledge actually
aggravates the search problem as the search space is
expanded, whereas in the second the hypothesis space
is restricted, reducing search. We highlight this to
clearly distinguish this work from other systems which
use background knowledge in the former sense.

The general paradigm of using domain knowledge
to guide learning has been advocated by numer-
ous authors (e.g. [Bergadano and Giordana, 1988,
Pazzani and Kibler, 1992, Clark and Matwin, 1993,
Flann and Dietterich, 1990]). Our work here can be
viewed as developing and evaluating a special case of
this theory-guided learning paradigm, in which the
theory is a qualitative model (QM) and the learn-
ing is rule induction from data. Within the gen-
eral paradigm, abstract background knowledge spec-
i�es constraints on which hypotheses should be ex-
plored during inductive search. We apply this to
a qualitative model by de�ning a notion of consis-
tency of a rule with the model, and then constraining
search to examine only consistent rules. The qualita-
tive model can thus be viewed as indirectly specify-
ing a domain-speci�c grammar for induced knowledge
[Cohen, 1992, DeJong, 1989], or as encoding a set of
`rule models' for the inductive component to search
[Kietz and Wrobel, 1992].

We �nally note that this work of course di�ers from
machine learning research in compiling qualitative
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Figure 1: The I� relation, a syntactic shorthand for a
self-stabilising feedback loop.

models into rules (in this paradigm, there is no in-
dependent training data and the QM does not di-
rectly constrain induction e.g. [Bratko et al., 1989]),
and in learning QMs themselves from examples (e.g.
[Bratko et al., 1991, Mozetic, 1987]).

3 LEARNING METHOD

3.1 KNOWLEDGE REPRESENTATION

Our learning method takes as input a set of training
examples and a qualitative model, and as output pro-
duces classi�cation rules explainable by that model.

A QM comprises nodes, representing parameters of the
application domain, and arcs, representing their rela-
tionships (arrows indicating temporal precedence). As
in Qualitative Process theory (QPT) [Forbus, 1984],
we label arcs as either I+, I�, Q+ or Q�. The link

X
Q+

�!Y denotes that Y varies monotonically with X (e.g.

if X increases then so does Y), while the link X
I+

�!Y
denotes that Y's rate of change dY=dt varies monoton-

ically with X. Similarly, the
Q-

�!and
I-

�!links denote
inverse monotonic relationships.

As a syntactic shorthand, we introduce a third label
I�, shown in Figure 1, to denote a self-stabilising feed-

back loop. X
I*+

�!Y also denotes that if X is increased
then initially Y will rise; however, as Y subsequently
increases, it's rate of increase dY=dt will eventually
fall until Y reaches a new constant value. For exam-
ple, the gas pedal position P in a car is related to the

car's speed S by P
I*+

�!S. Initially depressing the pedal
causes dS=dt to rise; however, the car will not increase
speed inde�nitely but eventually reach a new, higher
constant speed. Thus at short time-scales the I� rela-

tionship behaves as P
I+

�!S, while for long time-scales it

behaves as P
Q+

�!S (every gas pedal position eventually
produces a corresponding speed for the car).

While similar to QPT models, it should be noted that
our QMs di�er in that they are incompletely speci�ed.
We have not stated (i) the distinguished or `landmark'
values for each parameter, nor (ii) how to resolve con-
icting inuences during simulation. As a result, our
models on their own cannot be used for simulation or
prediction. Instead, their role is to constrain induction
of quantitative rules from examples, and to provide ex-
planations of those rules. The QM concisely represents
the space of relationships which are considered credible
in the domain by the model's constructor.



3.2 USING THE QUALITATIVE MODEL
TO CONSTRAIN INDUCTION

The application of the QM to rule induction is sim-
ple; rather than the inductive tool searching the space
of all possible rules, it searches only those which are
consistent with the QM. The inductive tool is thus con-
strained to search only a subset of its original search
space. To e�ect this, we �rst de�ne when a rule is `con-
sistent with the QM'. Second, we modify the search op-
erator in the inductive tool to only search rules which
satisfy this de�nition.

Our implementation is as follows. First, we de�ne a
rule extraction algorithm which exhaustively enumer-
ates (schemata for) all rules (up to some maximum
length) consistent with the QM. This enumeration is
stored in a lookup table. Second, an induction tool is
used to induce classi�cation rules using a set of train-
ing examples, while prevented from searching rules not
represented in this lookup table. To do this, we mod-
ify the learner so that each time it generates a new
hypothesis rule to test, it additionally checks that it is
in this table. If it is not, the hypothesis is discarded
without further work.

The inductive tool we used was CN2, which induces (in
unordered mode) a set of \if...then..." rules given a set
of training examples. CN2 executes a greedy set cov-
ering algorithm, performing a general-to-speci�c beam
search for a rule at each step [Clark and Niblett, 1989,
Clark and Boswell, 1991]. It was modi�ed so that as
it specialises hypothesis rules in its beam, it addition-
ally performs this check on specialisations generated.
A similar approach can be envisaged for ID3; rather
than evaluating all possible attribute tests when ex-
panding a node in the tree, evaluate only those such
that the resulting decision tree branch was contained
in the table of consistent rules.

3.3 EXTRACTING RULES FROM THE QM

Before de�ning a decision procedure to identify which
rules are consistent with a QM, we �rst note that this
notion of `consistency' is not as easy to formalise as
might be expected. Informally, the decision procedure
should identify all and only those rules which an expert
will consider `sensible', given the QM. This requires an
interpretation of what should be considered acceptable
evidence for a prediction, given the QM. Below we
describe our de�nition of which rules are `consistent'
with a QM, while noting that alternatives might also
be acceptable.

We de�ne a rule as a structure:
if T1 and ... and Tn then C

where each Ti is a test on some observable parameter
Pi (testing either Pi > k or Pi < k, where k is some
constant), and the conclusion C asserts either \Pconc
will increase" or \Pconc will decrease" for some observ-
able parameter Pconc. The interpretation of the rule
is that if the conditions hold at some time T , then
Pconc will have increased/decreased by time T + �T

(where �T is a constant, representing how far ahead
the user wishes to predict). A rule schema is a rule
with the constants ki replaced by universally quanti-
�ed variables, representing a set of rules.

We wish to know which conjuncts of tests Ti `sensibly'
predict a change in C, given the QM. For example,

given the two-node QM for a car: \gas
I*+

�!speed",
we consider rules or the form

\if gas > k1 then speed will increase"

consistent with this QM, while rules of the form

\if gas < k1 then speed will increase"

would not be (where k1 is some constant).

In general, considering the three di�erent qualitative
relations I, I* and Q in isolation, the corresponding
structures of consistent rules are:

Reln Corresponding rule schema

A
I+

�!B if A > kA then B will increase.

A
I*+

�!B if A > kA and B < kB then B will increase.

A
Q+

�!B (no rule).

The rule schema for I* above expresses a condition
of disequilibrium, resulting (by de�nition, Section 3.1)
in a rise in B to re-establish equilibrium. For the Q
relation, knowing the value of A alone does not tell us
how B might change in future.

We now generalise these schemata to apply to QMs
which contain more than just two nodes and one arc.
To �nd a plausible explanation of why our target Pconc
will change, we simply �nd a path in the QM from
some node (which we call the source of the change)
to Pconc which traverses at least one I or I* arc. One
of these I/I* arcs is then nominated as responsible for
Pconc's future change; nodes upstream of this arc are
considered causes of this future change, in that they
are either the source or correlated with the source.
These nodes together correspond to the A node in the
three schemata mentioned earlier. Nodes downstream
of the I/I* arc are called the e�ects, and together
correspond to the B node in the earlier mentioned
schemata. Rules which are consistent with this path
are thus those which:
1. test that some subset of observable parameters

upstream of the nominated I/I* arc are greater
than some constant,

2. (for I* only) test that some subset of observable
parameters downstream of the arc are less than
some constant,

3. conclude that Pconc will increase.

Thus there would be 9 rules1 consistent with the fol-
lowing path from a QM of a car:

fp (foot position)
Q+

�!gas
I*+

�!revs
Q+

�!speed

1i.e. rule schemata; we will just use the word `rule' from
now on to simplify the presentation.



namely: f
if fp > kfp and revs < kr then speed ",
if gas > kg and revs < kr then speed ",
if fp > kfp and gas > kg and revs < kr then speed ",

: : : : : : : : : : : :
if fp > kfp and speed < ks then speed ",

: : : : : : : : : : : :
if fp > kfp and gas > kg and revs < kr and speed < ks
then speed " g.

This example uses just positive arcs (e.g. Q+). Neg-
ative arcs are handled in the obvious way, namely by
inverting the greater-than and less-than tests as each
negative arc is traversed. Rules predicting a decrease
in the target parameter are generated by inverting the
greater-than and less-than tests in rules predicting an
increase.

This method of extracting consistent rules is still in-
complete:
1. It ignores parameters not in the path used, but

nevertheless correlated with parameters on the
path (e.g. via Q relations). These o�-path pa-
rameters might provide useful evidence of values
of on-path parameters, particularly if none of the
on-path parameters are directly observable.

2. It assumes just one source.

To overcome the �rst point, the full rule extraction
algorithm also allows o�-path parameters, a�ected by
on-path parameters via a chain of Q or I* relations,
to be included in a rule's condition. The net result is
to extract a tree from the QM, whose root node is the
source and with Pconc as one of its leafs. To allow mul-
tiple sources, we combine rules together (by conjoining
their conditions) to produce new rules, checking that
we do not treat any parameter in the new rule as both
a cause and an e�ect simultaneously.

4 EXPERIMENTAL EVALUATION

4.1 APPLICATION DOMAINS

We evaluated our method by applying it to two pro-
cess control problems: a water tank system containing
feedback, and a real-world process of ore grinding, in
which rock is crushed into small particles for mineral
extraction. For each of these systems, there is a par-
ticular parameter of interest whose movement we
wish to predict (the water level in the lowest tank, and
the e�ciency of the grinding process respectively). To
generate training data, numeric simulators of the real
physical processes were constructed.

4.2 THE WATER TANK SYSTEM

The water tank system is shown in Figure 2. Water
enters the circuit through the upper pipe, and �lls the
�rst tank (with level L1). The ow of water out of
a tank is proportional to the tank's water level (the
higher the level, the greater the pressure at the base
of the tank and the faster the out-ow; there is no re-
ux). In addition, there is feedback from some tanks to

IN
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L5 L6

L7

OUT

L1

L2 L3 L4

L5
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L7

I+

I+

I+

I+

I+

I+

I+I+

I+
I+I+

I-

I-

I-

I-

I+

Figure 2: The water tank system (left), and its QM
(right). (See text for description).

control valves earlier in the circuit as illustrated. As
a valve-controlling tank becomes full, the controlled
valve closes thus reducing water ow earlier in the
pipe network. There are seven observable parameters,
namely the levels in each of the seven tanks. The learn-
ing task is to predict whether the level L7 in the last
tank will have increased or decreased by some time
T + �T in the future given observations at time T .
There is one operator-controllable parameter to this
system, namely the ow rate of water into the sys-
tem. A simple numeric simulator was used to model
the behaviour of the system with time. The qualitative
model of the system which we constructed, intended to
reasonably describe the (simulated) physical system, is
also shown in Figure 2.

4.3 THE ORE GRINDING CIRCUIT

The grinding circuit (Figure 3) is substantially more
complex, and is a simpli�ed version of a similar circuit
used in the mining industry [JKTech Ltd., 1991]. Ore
enters along a feed conveyor belt, and accumulates in
ball mill one. A ball mill is a large, rotating drum
which breaks up the rock into smaller components. A
fraction of the contents of the ball mill leaves during
each time step, and arrives at the screen. The screen
is a metal mesh with holes in, allowing smaller rock
to pass through while larger rock is fed back into ball
mill one. Ore which passes through the screen reaches
and accumulates in a large centrifuge called a cyclone.
The smaller contents of the centrifuge are �ltered out
and leave the system. Larger ore in the centrifuge is
also removed (the underow) and enters a second ball
mill, where it is further crushed and then returns to
the cyclone. Water can be added to both ball mills, in-
creasing the out-ow from the mills but also reducing
the mills' e�ciency as energy is then spent `grinding'
water. There are four operator-controllable parame-
ters, namely: the feed rate and size distribution of ore
into the system, and the rate of water addition into
the two ball mills.
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Figure 3: The ore grinding circuit (left), and its QM (right). (See text for description).

The grinding circuit simulator was a simpli�ed ver-
sion of a more complex, commercial simulator used
in the mining industry [JKTech Ltd., 1991]. The QM
we constructed of this process is shown in Figure 3.
As in the water circuit, the QM is to a large extent
our `guess' at a reasonable qualitative description of
the (simulated) physical circuit. The ten observable
parameters of the physical system, also contained in
the QM (shown in boxes), are: the coarseness and
feed rate of ore into the system (Cin and Vin), the
rate of water addition to each ball mill (Water1 and
Water2), the power drawn by each ball mill (PowerBM1
and PowerBM2), the coarseness of ore at the screen
(Cscreen ), the coarseness and output rate of ore leav-
ing the system (Cout and Vout) and the overall vol-
ume/power e�ciency of the circuit (Efficiency). The
learning task is to predict if the overall e�ciency will
increase or decrease by time T + �T given values of
the observables at time T .

4.4 GENERATING DATA SETS

For both applications, data sets were generated us-
ing the numeric simulators (NB. not the QMs). Each
example in a data set is a snapshot of the system's
state at some time T , described by values of the ob-
servable parameters, plus an extra qualitative value
(`increase' or `decrease') stating whether the pa-
rameter of interest was observed to have increased or
decreased by time T + �T . �T was taken as 10 and
100 time steps for the water and ore systems respec-
tively, corresponding to approximately 1 second and 1
minute real-time.

To generate an example of each process in a random
but still physically plausible state, the simulator was
run for 500 time steps with the controllable param-
eter(s) being randomly perturbed at intervals. After
500 time steps, the perturbations were stopped, values
of observable parameters recorded, and the simulation

continued for another �T steps to see if the parameter
of interest increased or decreased. These observations
formed one example. This process was repeated ap-
proximately 500 times for each application to generate
two data sets.

4.5 RULE INDUCTION

For each of the two applications, the data set was split
randomly into a training and testing set of controlled
sizes. Rules were induced by CN2 using the training
data, and then tested on the testing data. In nor-
mal (no qualitative model) mode, CN2 heuristically
searches the rule space for good rules. In constrained
(qualitative model) mode, only rules consistent with
the qualitative model were explored as described in
Section 3.2.

CN2 has two parameters which control the extent of
search conducted, namely the beam width and the
depth limit of search. CN2 was run with beam widths
of 1, 3, 5 and 7, and with depth limits of 2 and 3 (wa-
ter tanks) or 2, 3 and 4 (ore circuit)2, and the results
averaged. Experiments with �ve di�erent training set
sizes were conducted, the algorithm run in both no-
QM and QM modes, and the experiments repeated
30 times (for the water tanks) and 10 times (for the
ore circuit). This represents a total of 2400 runs for
the water tanks and 1200 runs for the ore circuit. We
recorded the CPU time and improvement in classi�-
cational accuracy compared with the default accuracy
(61.8%water, 61.5% ore) for each run of the algorithm.

4.6 RESULTS

The results (Tables 1 and 2) show averages and their
standard errors (denoted by �). The column `ex-

2corresponding to the maximum lengths of 3 (wa-
ter) and 4 (ore) we imposed when pre-enumerating rule
schemata consistent with the QMs (Section 3.2).



Table 1: E�ect of qualitative knowledge on learning (water tank application).
No. training Accuracy increase (%) CPU time (sec) `Explainability'
examples no QM QM no QM QM no QM QM

20 13.4 �0:5 13.6 �0:5 5.3 �0:2 2.2 �0:1 39% 100%
40 18.9 �0:4 21.0 �0:3 12.8 �0:3 5.9 �0:1 35% 100%
81 23.9 �0:2 26.3 �0:2 34.3 �0:8 16.0 �0:3 37% 100%
121 25.8 �0:1 27.7 �0:2 61.4 �1:5 29.3 �0:6 39% 100%
162 26.9 �0:2 28.8 �0:1 93.5 �2:1 44.4 �1:0 41% 100%

Table 2: E�ect of qualitative knowledge on learning (grinding circuit application).

No. training Accuracy increase (%) CPU time (sec) `Explainability'
examples no QM QM no QM QM no QM QM

26 5.7 �0:6 6.0 �0:6 8.2 �0:4 8.9 �0:4 48% 100%
53 12.0 �0:3 12.2 �0:4 22.6 �0:8 26.3 �1:1 53% 100%
107 14.8 �0:3 16.3 �0:2 68.1 �2:2 79.2 �3:1 57% 100%
161 16.0 �0:3 17.0 �0:3 128.6 �4:1 154.3 �6:5 58% 100%
215 17.7 �0:2 18.3 �0:2 205.5 �6:0 240.4 �10:0 54% 100%
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Figure 4: Water Tank System: Variation of classi�cational accuracy and CPU time with number of training
examples, comparing learning without and with the QM (plot of data from Table 1).
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plainability' shows the (average) percentage of induced
rules which were consistent with, and hence deemed
explainable by, the QM (by de�nition, this �gure will
be 100% for QM-constrained learning). The same re-
sults are plotted in Figures 4 and 5.

4.7 ANALYSIS AND DISCUSSION

We consider one of the most signi�cant bene�ts of this
method is the explainability of induced rules. All rules
induced with the QM `make sense' (compared with
only about 50% without the QM), in that an expert
(or indeed the computer itself, using the QM) can con-
struct a causal explanation describing how the state of
the system (as revealed by observable parameter val-
ues) might cause the parameter of interest to change
in the way the rule describes. Such explainability is
an essential aspect of learning, as discussed earlier.

Having said this, several other surprising and positive
results were observed. First, in both applications clas-
si�cational accuracy is increased by use of the qualita-
tive models, even though the QM restricts rather than
expands the space of rules available to the learner. It
thus appears that, without the QMs, the learning algo-
rithm sometimes selects rules which by chance perform
well on the training data, but which do not predict
well and which are not consistent with the QMs. This
result thus illustrates that the QM is injecting extra
knowledge into the �nal rule sets produced, improving
performance.

In the water tank application, CPU time is also re-
duced using the QM, as the induction algorithm has
fewer possibilities to explore. In the ore grinding ap-
plication, however, CPU time is slightly increased by
using the QM. This is also surprising, as the QM re-
duces the size of the total search space. However, two
factors may contribute to the increased CPU. First,
CN2's specialisation operator has to perform an extra
lookup operation to verify a specialisation is in the set
of specialisations consistent with the QM. Second, the
high connectivity of the ore grinding QM results in a
large number of rules being considered consistent, thus
only imposing moderate constraint on search. Third,
constraining the total search space size does not nec-
essarily constrain the size of the space heuristically
searched. CN2's beam search follows the Nbeamwidth

best hypotheses in parallel. So long as there are at
least Nbeamwidth possible options, the CPU time will
be una�ected by constraining the space. In addition,
the QMmay guide the algorithm into richer portions of
the space where many possibilities merit exploration,
whereas without the QM several `dead ends' may be
explored where search is abandoned earlier.

4.8 QUANTIFYING THE QM'S VALUE

From the plots in Figures 4 and 5, we can de�ne a use-
ful metric of the qualitative models' value, based on its
equivalence to an increased number of training exam-
ples. This allows us to compare the value of di�erent
qualitative models against a common scale.
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Figure 6: Equivalence of the two QMs to extra training
examples.

If a classi�cational accuracy A can be achieved using
N training examples with the QM, or with N + �N
examples without the QM, then we de�ne �N as
the example-equivalence of the QM (for classi�ca-
tional accuracy, for N training examples). We simi-
larly de�ne the CPU example-equivalence of the
QM as the number of extra examples which the QM-
constrained algorithm can process in the same time.

Using the plots in Figures 4 and 5, we can plot the
example-equivalence of the two QMs as shown in Fig-
ure 6. Approximating these curves as straight lines,
we can take their slopes as an overall value metric for
each QM:

Approximate example-equivalence
(0 � Ntrain exs � � 200)

Water QM +0.5 examples per training example
Ore QM +0.2 examples per training example

(Similarly, the CPU example-equivalences are +0.6
and �0.1 examples per training example respectively).
While this provides an appealing metric for a QM, it
should be interpreted carefully:
1. As is well known, training set size and accu-

racy improvement are not linearly related. Thus
the monotonically increasing example-equivalence
with training size does not imply a monotonically
increasing accuracy improvement. In fact, accu-
racy improvement rises, reaches a maximum and
then falls again as training set size increases (Ta-
bles 1 and 2). This is because the value (in terms
of improved accuracy) of an extra example be-
comes less and less as the training set size grows.

2. The QM on its own (i.e. with zero training exam-
ples) does not contribute to an accuracy improve-
ment. This is because our method does not use
the QM directly for prediction, but solely as a �l-
ter for inductive hypotheses. (In fact it cannot, as
our QMs do not specify parameters' distinguished
or `landmark' values. It is precisely the inductive
learner's task to identify these values).

3. It is not clear how far the curves in Figure 6 can
be meaningfully extrapolated. For larger training



set sizes, the no-QM curves in Figures 4 and 5
may eventually touch the QM curves (resulting in
an example-equivalence of zero for the QM), or
even cross them (resulting in a negative-example
equivalence). Thus we qualify our `examples per
training example' values as only being valid within
a certain range of training set sizes.

5 DISCUSSION AND CONCLUSION

We have presented and evaluated a technique for us-
ing qualitativemodels to guide inductive learning. The
learning algorithm produces rules which not only have
improved performance but which are explainable by
this background knowledge, reecting the normally
manual knowledge engineering which accompanies ap-
plication of machine learning algorithms. This is sig-
ni�cant as qualitative knowledge is a ubiquitous com-
ponent of common-sense knowledge; being able to har-
ness it to positive e�ect o�ers a means for both im-
proved learning performance and for better integration
of learning and reasoning systems in the future.

We have also de�ned the notion of an example-
equivalence metric for qualitative models, by which
a model's value for learning can be quanti�ed and
hence di�erent models compared. In both the applica-
tions investigated, the models had a positive example-
equivalence, i.e. produced an overall improvement in
learning behaviour.

Our method assumes the existence of a reasonable
qualitative model of the domain under investigation,
and thus imposes a cost as well as saving in knowledge
engineering. It can perhaps best be viewed as provid-
ing a solid framework for incorporating domain knowl-
edge in induction, which otherwise has to be incorpo-
rated by rather ad hoc means (Section 1.2). In addi-
tion to explainability, it o�ers a practical way in which
domain knowledge can reduce required search, help-
ing to solve the ubiquitous tractability problems faced
by knowledge-poor learning systems in non-trivial do-
mains.

We note also that the bene�ts of our method de-
pend on the quality of the QM used; a QM poorly
approximating the physical system may harm rather
than improve accuracy (i.e. have a negative example-
equivalence). This fact, combined with the ability to
quantify the QM's value, suggests the exciting pos-
sibility of including the reverse process reported by
knowledge engineers, in which the QM itself could be
revised based on strong correlations in the data. The
example-equivalence suggests one way in which this
could be done, based on heuristically searching the
space of perturbations to the original qualitativemodel
using example-equivalence as a search heuristic.
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