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Computational Intelligence for Urban Infrastructure

Condition Assessment: Water Transmission and

Distribution Systems
Zheng Liu, Senior Member, IEEE, Yehuda Kleiner

Abstract—Water transmission and distribution systems are
critical urban infrastructure. The aging of water mains can lead
to increased breakage rate, decreased hydraulic capacity, and
deterioration of water quality. Condition assessment of water
mains encompasses building computational model of failures,
discerning distress indicators from inspection, rating health con-
dition, and forecasting future failures. In this process, computa-
tional intelligence helps to achieve high-level awareness of system
condition and facilitates the decision making in water main
renewal and rehabilitation by using the combined information
from field knowledge, historical records, inspection results, and
sensory data. This paper reviews computational approaches to
achieve condition assessment of water mains. Inspection and
sensor technologies involved in the assessment process are also
briefly discussed.

Index Terms—Computational intelligence, water pipe, infor-
mation fusion.

I. INTRODUCTION

A
GING of water mains, coupled with continuous stress

placed on these systems by operational and environ-

mental conditions, leads to their deterioration. The structural

deterioration is subject to both static and dynamic factors [1].

The static factors include pipe material, size, age, soil type,

etc., while climate, cathodic protection, pressure zone changes

etc. constitute dynamic factors. Condition assessment of water

mains is to address the problems with aging infrastructure.

The U.S. Environment Protection Agency (USEPA) defines

the pipe condition assessment as collection of data and infor-

mation through direct and/or indirect methods, followed by

analysis of the data and information and making a determina-

tion of the current and/or future structural, water quality, and

hydraulic status of the pipeline [2].

The maintenance of infrastructure is evolving with modern

technologies from run-to-failure maintenance, time-based pre-

ventive maintenance, to a more cost effective condition-based

maintenance (CBM). Structural health monitoring (SHM), or

a more general concept condition assessment, is a key step

to implement an infrastructure CBM program. The evidence

is collected and presented through SHM and condition as-

sessment. A general implementation of remote SHM system

is described in [3], which can be adapted to different appli-

cations, such as pipes and bridges. Deriving those evidence
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from raw sensing data needs computation approach, which has

been recognized as one of the statistical pattern recognition or

machine learning problems [4].

Computational methods for condition assessment include

converting inspection or sensory data to distress indicator

and translating these distress indicators into condition rat-

ings or states. The first task deals with the collection of

raw inspection/sensory data. Inspection data comprise non-

destructive testing results, sensor monitoring data, service

and failure records, and any other indirect measurements or

surveys. Quantitative or qualitative information, i.e. distress

indicator, is derived from inspection data to characterize the

anomalies of the pipe, for instance, pit size in metallic pipes,

number of broken wires in prestressed concrete pipes (PCCP),

delamination in pipe coating or lining, etc. Distress indicators

are the observable/measurable physical manifestations of the

pipe aging or deterioration process [5]. The second task

deals with a higher level description of the pipe’s status, i.e.

health condition rating. Condition states are estimated from

the predefined distress indicators. Raw inspection/sensory data

can also be used for condition assessment directly with other

information. The role of condition assessment in infrastructure

failure management is illustrated with Fig. 1. The condition

assessment starts from the collection of measurement data to

feed into a model for interpretation. Inspection is primarily

carried out to identify distress indicators, which are physically

observed and/or measured, and is a prelude to establishing con-

dition states. The inspection data will be transferred to distress

indicators, which are either quantitative or qualitative. The data

may also includes other relevant information, such as historical

records of breakages, soil property data, sensor monitoring

data, pipe geometric data, pipe material, etc. The condition

assessment will interpret these inputs and give a condition

rates. The deterioration model will determine behaviour of

water mains and predict the breakage [6], [7]. The likelihood

and consequence of failure is estimated from the prognostic

results. Risk analysis and decision making process initiate the

action for service and maintenance. Computational intelligence

plays a paramount role in achieving critical knowledge from

raw data.

The rest of the paper is organized as follows. Inspection

and sensing techniques are briefly summarized in section II.

Section III reviews computation approaches for condition

assessment of water mains. As leak detection and monitoring

is crucial, two subsections are dedicated to these topics,

respectively. Decision support systems for water main renewal
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Fig. 1. A diagram of managing failure of buried critical infrastructure.

and rehabilitation are presented in section IV. The concluding

remarks can be found in section V.

II. INSPECTION AND SENSOR TECHNOLOGIES FOR

CONDITION ASSESSMENT

The collection of relevant data and information is the

first step to achieve condition assessment for prevention of

catastrophic failures. Inspection technologies are employed to

acquire on-site measurement data and can be categorized into

conventional non-destructive inspection and advanced sensor

techniques. This section briefly describes the two categories.

A. Conventional Inspection Techniques

Conventional inspection techniques consists of direct and

indirect methods [8], [9], [10], [11]. Direct methods usually

require access to the inside or outside of the pipe, which in-

clude automated/manual visual inspection and non-destructive

testing applied either to pipe samples of full length [9]. Indirect

methods include the analysis of failure history, water audit,

flow testing, and measurement of soil properties. Generally,

direct methods generate pipe distress indicators while the

inferential indicators are obtained by indirect methods [10],

[11]. Table I lists the direct methods and a list of indirect

method can be found in Table II.

B. Advanced Sensor Techniques

Monitoring sensors may provide a continuous stream of

data to support awareness of pipe performance and health

state [48]. Sensor data are typically available in two forms, i.e.

state awareness and usage. State awareness sensors provide

information about the current state of the material and the

structural health from initial indications of defects. Usage

sensors directly or indirectly measure external impacts that

lead to damage, such as local stresses and environmental

parameters [48]. Table III provides a list of sensors used for

pipe condition assessment.

III. COMPUTATIONAL APPROACHES

A. Computing for Leak Detection and Monitoring

Leak detection and location is to find (detect and locate)

and assess the level of leaks which already happened while

leak monitoring is to capture the occurrence of any new

leak event [63]. A summary of active technologies for leak

TABLE I
LIST OF DIRECT INSPECTION METHODS.

Direct Inspection Methods

Visual
inspection

Closed-circuit television (CCTV)
inspection

[12], [13]

Laser scan [14], [15]

Electromagnetic
methods

Magnetic flux leakage (MFL) [10], [16]
Remote field eddy current (RFEC) [17],

[18], [19]
Broadband electromagnetic (BEM) [20]
Pulsed eddy current (PEC) testing [21], [22]
Ground penetrating radar (GPR) [23],

[24], [25]
Ultra-wideband (UWB) pulsed
radar system

[26], [27]

Acoustic
methods

Sonar profiling system [28], [29]
Impact echo test [30], [31]
SmartBall system [32], [33]
Sahara system [23],

[34], [35]
Leak detection [36], [37]

Ultrasound
methods

Guided wave ultrasound [38], [39]
Discrete ultrasound [10]
Phased array technology [40], [41]
Combined UT inspection [42]

Radiographic methods [43]

Thermography methods [44], [17]

TABLE II
LIST OF INDIRECT INSPECTION METHODS.

Indirect Inspection Methods

Linear polarization resistance (LPR) of soil [10]
Soil characterization [10], [45], [46], [47]
Pipe to soil potential survey [10]

TABLE III
LIST OF SENSOR FOR PIPE CONDITION ASSESSMENT [10], [1], [48].

Sensor Usage

Corrosion rate sen-
sor

Measure electrical resistance,
which can be used to calculate
corrosion rate

[49]

Acoustic emission
sensor

Acoustic monitoring for acoustic
events such as wire break

[50]

Magnetostrictive
sensor

Any discontinuities such as
cracks

[51], [52],
[53]

Conformable and
flexible eddy
current array

Measure pitting corrosion [54], [55]

Flexible ultrasonic
transducer

Measure thickness loss [56], [57]

Guided wave sen-
sor

Detect corrosion and defects [58], [59]

Damage sensor Measure defects [60]

Microwave back-
scattering sensor

Detect nonhomogeneities, such
as holes caused by erosion and
humidity changes

[61]

Fiber optic sensor monitor corrosion [62], [50]
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detection and monitoring is given in Fig. 2, which comprises

both testing and computing technologies. Some techniques are

capable of both detection and location while some can only

do either one of them. The computational techniques, which

are the focus of this paper, are discussed in this subsection.

Fig. 2. Summary of active technologies for leak detection and monitor-
ing [63].

1) Computing for Leak Detection:

a) Cross-correlation: A correlator for leak detection is

based on the correlation of the signals from two transducers.

Cross-correlation of the two signals will produce a peak, which

can be used to calculate the distance of the leak from the

midpoint [36]. However, the acquired signals are prone to

distortion. A more robust method was proposed by the Central

Research Laboratories at Thames Water [64].

A complex discrete Fourier transform (DFT) is used to

transform the input time domain signal to the frequency

domain. The echo of the signal is removed/cancelled by ana-

lyzing the auto-correlation of each channel. Phase coherence

analysis is used to determine which parts of the frequency

spectrum contain useful information. The output of the analy-

sis resulted in a weighted frequency filter, which achieved an

optimal performance in the detection of leak signals [64].

b) Sensor data fusion: A framework for leak detection by

spatial-temporal data fusion was proposed by Jiao et al. [65].

The basic idea is illustrated in Fig. 3. Multiple acoustic

emission (AE) sensors were installed on each end of pipeline.

The acquired signal was analyzed with wavelet method, which

offers a time-frequency feature of the signal. The extracted

features were further processed by pre-trained neural network

to identify the possible leak represented by mass functions

or basic probability assignment (BPA). The mass functions

from multiple sensors were fused with Dempster-Shafer rule

to derive the detection result of pipe leakage.

The fusion was actually implemented in both spatial and

time domain with two steps [65]. The first step applied to

identify the possible target while the second step refined the

result through fusing data with different time stamps. An

improved detection rate was observed [65].

The fusion of hydraulic data for burst detection and location

in a treated water distribution system was reported by Mounce

Fig. 3. Sensor data fusion for leak detection.

et al. [66]. An artificial neural network was used to model the

time series data acquired by a flow sensor. A mixture density

network (MDN) was employed to predict the conditional

probability distribution of the target data. The actual observed

value was analyzed in the context of the predicted probability

distribution and a normal or abnormal state was observed. This

classification results from various zones were fused by a rule-

based expert system implemented with PROLOG.

c) Hydraulic transient-based methods: Besides the non-

destructive inspection methods, hydraulic transient-based tech-

niques are also available to detect and locate existing leaks.

The information about the presence of a leak is extracted from

a measured transient trace. Various computational approaches

have been proposed to analyze the hydraulic information for

both detection and monitoring purposes.

• Leak reflection method: This method is based on the

principle of time domain reflectometry [67]. A transient

wave is reflected at the leak and can be identified in

a measured pressure trace. The location of leak can be

calculated.

• Inverse transient analysis: Least square regression is

applied to the modelled and measured transient pressure

traces [68]. The minimization of the deviation between

the measured and calculated pressures gives the leak

location and size.

• Impulse response analysis: The impulse responses of the

same pipeline with and without a leak are compared.

The presence of a leak will introduce the change of the

impulse response [69].

• Transient damping method: A leak detection and location

method was developed based on the rate of leak-induced

damping [70]. This rate depends on leak characteristics,

pressure, location of the transient generation point, and

the shape of the transient.

• Frequency domain response analysis: The analysis of

transient response in the frequency domain compares the

dominant frequencies of no-leak and leaking pipelines.

The leak location can be obtained.

2) Computing for Leak Monitoring: Leak monitoring ap-

proaches basically consist of two categories, i.e. measurement-

based and model-based techniques. As illustrated in Fig. 2.

The measurement-based methods use the measured param-

eters to detect leaks while model-based methods rely on

flow/hydraulic models.

a) Measurement-based methods:

• Acoustic monitoring: Through analyzing the acoustic

signals with and without a leak, the situation is identified.
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A correlator is often used to locate the leaks.

• Volume balance method: The basic principle is that the

amount of fluid that goes into the pipe should be equal

to the amount that goes out of the pipe as defined in

following equation [71]:

V B = Vin − Vout −∆V (1)

V B: volume balance;

Vin: inlet volume;

Vout: outlet volume;

∆V : volume of fluid contained in the pipe (line

pack).

Any leak will give a positive value of V B. ∆V = 0
indicates a steady state of flow.

• Pressure-point analysis: This method is implemented by

monitoring leak-induced pressure drop [72]. Statistical

techniques are applied to identify the leak signature in

the measured pressure trace.

• Negative pressure wave method: This method is based

on monitoring the pressure for the leak-induced pressure

wave [73]. The location of leak can be determined from

the wave arrival times and wave speed.

• Sequential probability ratio test: The statistical method

uses flow rate, pressure, and temperature measurements to

carry out a sequential probability ratio test (SPRT) [74].

SPRT will find if an increase in flow imbalance happens

and pattern recognition needs to be applied to distinguish

a leak and operational change.

• Statistical data analysis-based methods: An autoregres-

sive model, which uses two consecutive time sequences

of pressure gradients at both ends of the pipeline, was

established to detect the leak [75]. The parameters and

residual variance of the fitted models are dependent on

the condition of the pipeline and reflect the presence of

a leak.

• District meter area method: This method conducts a

water audit in district meter areas. Flow and/or pressure

sensors are placed on district meter areas’ boundaries.

The collected data are analyzed for leakage trends, such

as analysis of minimum night flow [76].

b) Model-based methods:

• Real-time transient model-based methods: In this method,

two techniques are considered: one is the deviation anal-

ysis and the other is the model compensated volume bal-

ance method [77]. In the pressure-flow deviation method,

the flow rate and pressure at one boundary can be calcu-

lated from the flow rate and pressure values measured at

another boundary using the transient simulation model.

The calculated values should match the measured values

if no leak is present. Discrepancy between measured and

calculated values indicates a leak.

The model compensated volume balance approach im-

plements a real-time comparison of the measurement

generated flow balances and model generated line packing

rates, which are computed from measured pressures and

temperatures at the end points of pipeline segment with

the model. In case of leakage, the measured flow balance

and the model generated line packing will diverge.

• Inverse analysis methods: The inverse analysis methods

include:

– Steady-state inverse analysis: A leak is detected

and located by solving an inverse problem using

measurements of pressure and/or flow rate [78].

– Inverse transient analysis: This method can be ap-

plied to unsteady flow situation. Responses of tran-

sient events are measured and interpreted by cal-

culating the model parameters using the inverse

method [68].

• State estimation approaches: The flow in pipelines can

be represented by a distributed parameter system, which

is implemented with a state estimator or a filter. An ex-

tended Kalman filter can be used to estimated leaks [79].

B. Fuzzy Theory based Techniques

1) Fuzzy synthetic evaluation: The fuzzy synthetic eval-

uation is a fuzzy multi-criteria decision-making technique

based on fuzzy set theory [5]. The proposed fuzzy synthetic

evaluation has three major steps, namely, fuzzification of raw

data (measurements of the distress indicators), aggregation

of distress indicators towards their respective categories, and

defuzzification that expresses the condition rating as a practical

crisp measure. The distress indicators can be translated into

condition rating with this fuzzy synthetic evaluation technique.

The condition rating is expressed as a fuzzy set or possibility

function.
2) Fuzzy Markov process: A fuzzy Markov based deteri-

oration model was described in [80]. The condition state is

expressed as a fuzzy set (or possibility mass function). For

example, the condition of the pipe can be rated in terms of

membership values to a seven grade scale: Excellent, Good,

Adequate, Fair, Poor, Bad, Failed as illustrated in Fig. 4.

The condition rating (0, 0, 0.2, 0.7, 0.1, 0, 0) means 0.2, 0.7
and 0.1 memberships to condition states Adequate, Fair and

Poor, respectively [80]. An example of applying this fuzzy

synthetic evaluation to a 96” (2400 mm) prestressed concrete

cylinder pipe (PCCP) is given in Table IV. This PCCP was

installed in 1978 and assumed to be in excellent condition.

The inspections were conducted in 1997, 1999, and 2002,

respectively. In 1997, a visual inspection together with an

impulse echo test was carried out. In 1999 and 2002, remote

field eddy current/transformer coupling (RFEC/TC) test was

done. Through the fuzzification, aggregation, and defuzzifica-

tion processes described in [5], the condition rating of this

pipe segment was obtained as shown in Table IV.

TABLE IV
CONDITION RATINGS OF 96” PCCP (MODIFIED FROM [81]).

Year Excellent Good Adequate Fair Poor Bad Failed

1978 0.9 0.1 0 0 0 0 0
1997 0.09 0.85 0.06 0 0 0 0
1999 0.06 0.85 0.09 0 0 0 0
2002 0.06 0.85 0.09 0 0 0 0

The risk of failure is determined jointly by the likelihood

(possibility) and the consequences of a failure. The mass
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Fig. 4. An example of fuzzy condition rating (cf. [81]).

function describing the risk of failure has nine grade, Ex-

tremely low, Very low, Quite low, Moderately low, Medium,

Moderately high, Quite high, Very high, and Extremely high.

The risk mass function is calculated to obtain the fuzzy risk

of failure throughout the life of the pipe.

This approach benefits from the robustness of the Markov

process and the flexibility of the rule-based fuzzy techniques to

handle imprecise and vague data [82]. In this model, the life of

the pipe is discretized into time steps and the Markov process

is applied at each time step in two stages [82]. First, the

deterioration rate at the specific time step is inferred from the

pipe age and condition rate using a fuzzy rule-based algorithm.

Second, the condition state of the pipe in the next time step is

calculated from present condition state and deterioration rate.

Essentially, the deterioration process models the pipes as it

gradually undergoes change from better to worse condition

states.

3) Fuzzy method for estimation of soil corrosivity: A fuzzy-

based method is proposed to estimate soil corrosivity from

soil properties [83]. Soil corrosivity is an important factor

contributing to the deterioration of water mains. Three level of

soil corrosivity are considered, i.e. noncorrosive, moderately

corrosive, and corrosive. Fuzzy membership function for each

soil property is used to quantify its affinity to the level of

soil corrosivity. These membership values form an evaluation

matrix and a weighted vector is developed using pair-wise soil

property comparisons. The final classification is determined

from the cross product of the weighted vector and the evalu-

ation matrix.

4) Fuzzy expert system: A fuzzy expert system was pro-

posed to estimate the soil corrosivity potential (CoP) from

soil properties [84]. The framework of the expert system is

illustrated in Fig. 5, which fuses the results of a subjective

model and an objective model. The subjective model was

based on expert knowledge, which was derived from published

work on the condition assessment of water mains and revised

based on the results of a survey collected from corrosion

specialists [84]. The subjective model used selected variables

of pertinent soil properties such as soil resistivity, pH, etc. The

output was defined as corrosivity potential within the range of

[0, 1]. The objective model can be established from field data

obtained by inspection.

A set of linguistic rules (IF-THEN) were derived to repre-

sent the relationships between system variables. The relation-

Fig. 5. Fuzzy expert system framewrok [84].

ship between backfill soil properties and pipe deterioration rate

was established with the model. An sample application pre-

sented in [84] calculated the CoP with 3 and 5 input variables,

respectively. The five variables include soil resistivity (Ω cm),

pH, redox potential (mV ), sulfides, and moisture. The CoP’s

relationship with pipe deterioration was inspected with a linear

regression function:

DR = m× CoP + d (2)

where DR is the deterioration rate. m and d are the slope

and intercept, respectively. However, due to the lack of field

inspection data, only a weak relationship is observed with five

input variables.

5) Fuzzy PROMETHEE: Fuzzy PROMETHEE (preference

ranking organization method for enrichment evaluation) is

a multi-criteria method, which deals with the appraisal and

selection of alternatives based on multiple criteria. Pipe con-

dition assessment was regarded as a multi-criteria decision-

making problem and a model was developed by using fuzzy

PROMETHEE II [85]. This model consists of four and seven

condition indicators at first- and second-level, respectively. It

can generate a pipe condition index as illustrated in Fig. 6.

Fig. 6. Architecture of fuzzy PROMETHEE model [85].

In the model, load and physical indicators are aggregated

indicators, which can be generated from 2nd level indicators.

The 2nd level indicators as well as the historical breakage can

be obtained from water utility. The external corrosion indicator

determined by soil corrosivity and corrosion resistance of pipe

material. The weight associated with each indicator is deter-

mined by an analytic hierarchy process (AHP). This subjective

weight method is based on experts opinion. A preference

function is defined for each indicator to compute the degree

of preference associated to the high breakage risk from two
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pipes. With the preference function, pipe condition index can

be obtained [85]. A preference function is defined for each

indicator, which computes the degree of preference associated

to the high breakage risk in pari-wise comparison [85]. A

continuous linear function was adopted in PROMETHEE

model. Eventually, net flow φnet(a) of pipe a is calculated

to reflect the breakage risks. A lager φnet indicates a higher

risk.

TABLE V
RANK OF PIPE BREAKAGE RISK WITH PROMETHEE (CF. [85]).

Rank 1 2 3 4

Pipe ID 6 8 5 2
Net flow (φnet) -0.907 -0.825 -0.504 -0.053

Rank 5 6 7 8

Pipe ID 7 1 4 3
Net flow (φnet) 0.091 0.538 0.819 0.841

A example of PROMETHEE model calculation is given

in Table V. However, the parameters in the PROMETHEE

model are empirically determined and highly reply on experts’

opinions. An more objective procedure is preferred when build

the model.

6) Fuzzy composite programming: Fuzzy composite pro-

gramming (FCP) is a mathematical programming tech-

nique that employs a single level normalized/non-normalized

distance-based technology to rank a discrete set of solutions

based on their distances from an ideal solution. Pipe condition

assessment needs to combine completely different variables

into an overall condition indicator. This is actually a multiple-

criteria decision making (MCDM) problem. The following

steps are involved [86]:

• Identify pipe condition indicators;

• Prepare the hierarchical structure of the pipe condition

indicators;

• Obtain weightings for each indicator and decide a balance

factor;

• Normalize all the indicators into scale [0, 1] ;

• Obtain a fuzzy member by using the FCP-based hierar-

chical aggregation process for each pipe;

• Rank the fuzzy numbers.

It should be noted that the FCP method may be sensitive to

the weights and balance factors.

7) A spatial decision support system for pipe-break suscep-

tibility analysis: A spatial decision support system (SDSS) for

pipe-break susceptibility analysis was proposed by Sinske et

al. [87]. The pipe-break susceptibility analysis model is based

on existing pipe-break theory and fuzzy logic modeling of

complex and interrelated factors. Three pipe-break causes, i.e.

pipe age, air-pocket formation, and tree roots, were considered

in the model. Fuzzy logic-based analysis is conducted to

determine pipe-break susceptibility.

C. Data Fusion and Machine Learning

The purpose of data fusion is to combine the capabilities

of each sensor modality with historic data to provide more

accurate and complete information [88], [60]. Three factors

should be considered:

• Redundancy of information presented in the sensor

modalities;

• Diversity in the sensor modalities;

• Complimentary sensor modalities.

A definition of data fusion as recommended by the U.S.

Department of Defense Joint Directors of Laboratories Data

Fusion Sub-panel is [89]: “Data fusion is a multilevel, mul-

tifaceted process dealing with the automatic detection, asso-

ciation, correlation, estimation, and combination of data and

information from multiple sources”. Data fusion is not limited

to sensory data, rather any analysis benefiting from multi-

source information to reduce uncertainties and inaccuracies

of the data.

The sources of information can be roughly categorized into

three categories: sensor-based approaches, data-driven models,

and physics-based models [90]. As illustrated in Fig. 7, the

potentials of data fusion numbered from one to seven include:

• ➀ Fuse multi-sensor signal/data, feature, and informa-

tion;

• ➁ Fuse multiple physics-based models;

• ➂ Fuse multiple data-driven models;

• ➃ Fuse sensor information with physics-based models;

• ➄ Fuse sensor information with data-driven models;

• ➅ Fuse physics-based and data-driven models;

• ➆ Fuse sensor information with physics-based and data-

driven models.

Fig. 7. The potentials of data fusion.

Machine learning used is to identify useful patterns or

trends from data and associate the patterns with damage state.

When pipe condition assessment is concerned, data mining

techniques are applied to predict the residual life, burst rate,

and/or leakage based historical records, other attributes (pipe

age, diameter, soil type, etc.) [91].

1) Data mining for pipe deterioration prediction: An ex-

ample of soil property analysis with machine learning ap-

proaches is presented in [92]. The relationship between soil

properties and pipe deterioration, which is defined as the ration

of maximum pit depth to pipe age, was established with

predictive data mining approaches. Both single- and multi-

predictor based approaches were investigated. The detailed

studies are illustrated in Fig. 8. Regression tree achieved the

best result among the single predictors while rotation forest

obtained the overall best. Table VI and Fig. 9 demonstrate the

results in details. The better result has a larger adjusted R-

square value and smaller mean absolute error (MAE), mean

square error (MSE), and normalized MSE (NMSE).
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Fig. 8. Prediction of pipe deterioration with data mining approaches.

TABLE VI
COMPARISON OF RESULTS OF REGRESSION TREE AND ROTATION FOREST.

Approaches Adjust R-square MAE MSE NMSE

Regression tree 0.33610 0.01049 0.00017 0.58847
Rotation forest 0.87310 0.00470 0.00003 0.11250
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Fig. 9. Prediction of pipe deterioration with (a) single and (b) multiple
predictors [92].

2) Hierarchical evidential reasoning: A hierarchical ev-

idential reasoning (HER) model was proposed to combine

different distress indicators at different hierarchical levels

using the Dempster-Shafer’s (DS) rule of combination [93].

The framework of the HER model is illustrated in Fig. 10. The

elements of basic evidence are defined as factors, which will

be further aggregated into attributes for more general evidence.

Thus, the HER model consists of distress indicators (factor)

and evaluation categories (attribute) [5]. The overall condition

rating is then obtained by the aggregation of those categories

through recursive DS algorithm.

More specifically, an attribute Ek associated with factors

ei
k
(i = 1, 2, · · · , Lk) is given by:

Ek = e1
k
⊕ e2

k
⊕ · · · ⊕ eLk

k
(3)

where Lk is the number of factors associated with kth

attribute. Symbol ⊕ denotes the DS rule of combination.

Each factor ei
k

is obtained by mapping inspection results to

a predefined condition scale [93]. The overall evaluation is

achieved by recursively applying the DS rule to the attributes.

The HER model was applied to a cast iron pipe, where

internal surface condition, external pipe barrel, external coat-

ing, and joint conditions were employed as attributes for the

overall condition rating. A corresponding tree map of Fig. 10

is shown in Fig 11, where the factors and attributes for cast

Fig. 10. The framework of hierarchical evidential reasoning ([93]).

iron pipe can be found. The overall rating value is 0.86 for

Fair given (Good, Fair,Bad) = (0.06, 0.85, 0.08).

Fig. 11. Hierarchical framework for condition assessment of case iron pipe
([93]).

The most important part of applying DS fusion rule is the

definition of basic probability assignment (BPA). The BPA for

each factor is derived based on a degree of confidence assigned

to these condition states as well as the associated importance

and reliability of the data. The HER model has the advantages

on dealing with incomplete and conflicting evidence without

any assumptions about missing data [93].

3) Incremental learning: LEARN++ is a supervised learn-

ing algorithm that make it possible for a classifier to learn

incrementally from new data without forgetting what has

been learnt in the earlier training sessions [94]. The current

LEARN++ algorithm is implemented for the classification

with multilayer perceptron (MLP) neural networks. The idea

is to ensemble weak classifiers to achieve an improved per-

formance in classification. This makes LEARN++ very useful

for the interpretation of pipe inspection data. Inspection data

may not be sufficient or good enough when a classifier is

being trained. However, the classifier can be further improved

when new data is available. Fusion of magnetic flux leak-

age, thermography, and ultrasonic data for gas transmission

pipeline was described in a technical report [95]. Improved

performance for defect identification and characterization was

reported.

4) Genetic algorithm: Genetic algorithm (GA) is a search

technique that can be applied in a large, complex, and multi-

modal search spaces. It emulates biological principals, such

as inheritance, mutation, selection, and crossover, to solve
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complex optimization problems. The GA has the ability to

locate regions that potentially contain optimal solution for a

given problem by searching the solution space [96].

GA was used to search the best scoring model to determine

the risks of pipe bursts [97]. The scoring model that is a

function of associated characteristics of bursting pipe can be

established by analysis of the database of already occurred

bursts events. GA was also employed as a search method in

the inverse transient technique for leak detection [98]. GA has

also been applied to identify the schedule of pipe replacement

in a deteriorating water distribution system [99].

D. Artificial Neural Networks

Supervised artificial neural network (ANN) was used to

develop a condition rating model for water mains [100]. The

condition rating scale is determined by consulting municipal

experts and consultants. A numeric scale is assigned to six

linguistic descriptions: excellent (9 − 10), very good (8 − 9),

good (6 − 8), moderate (4 − 6), poor (3 − 4), and critical

(< 3). A number of factors contributing to the condition of

water mains are considered [100]:

• Soil type;

• Type of road surface;

• Pipe cover;

• Pipe diameter;

• Pipe material;

• Pipe age;

• Number of breaks;

• C-factor (Hazen-William coefficient).

These variables were fed to a NN as illustrated in Fig. 12.

With the training data sets, the ANN model was trained to

predict the condition of water mains.

Fig. 12. ANN model for condition rating.

A NN model with two 9-node hidden layers was proposed

by Achim et al. [101]. Six variables were considered, i.e.

pipe diameter, year of construction, age, length, and two

geographic coordinates for pipe location. Pipe failure rate

(km/year) was estimated. An improved model using 10 input

variables was suggested by Moselhi et al. [102]. These are pipe

size, age, length, burial depth, temperature, age square (age2),

temperature square (temperature2), ln(length), and ln(depth).
However, pipe size does not have a significant influence on

the prediction accuracy according to the report of this study.

The results of the ANN model were compared with vali-

dation data. Table VII demonstrates a good performance of

ANN, i.e. 100% are within 12.65% difference. However, a

TABLE VII
VALIDATION RESULTS OF ANN MODEL.

Percentage of difference 5% 10% 12.65%

percentage of outputs 71.7% 91.7% 100%

successful neural network model needs sufficient historical

data for the training purpose. The availability of the data must

be ascertained. It is not possible to automatically update the

model once it is built, when new data are available.

E. Image Processing for Anomaly Detection

Visual inspection, such as CCTV, presents the results with

two-dimensional images, which needs to be analyzed and

interpreted. In order to detect the anomalies automatically, the

following algorithms were suggested [103]:

• Contrast enhancement: highlight image features;

• Mathematical morphology: recognize crack features;

• Curvature evaluation: segment curvatures.

As the shape of pipes is cylindrical, the acquired images or

video sequences need to be unwrapped and stitched so that

the processing algorithms can be applied.

In [104], a comprehensive study on defects classification

with ensemble methods was reported. Seven classification

approaches in combination with five feature extraction and

three feature representation methods were investigated for

processing CCTV data. Figure 13 illustrates the detailed

experiments. The ensemble approach, RotBoost, demonstrated

a better performance in terms of classification rate [104].

Fig. 13. Feature extraction, representation, and classification for CCTV
inspection images [104].

IV. DECISION SUPPORT SYSTEMS FOR WATER MAIN

RENEWAL

Decision makers can produce short- and long-term renewal

plan, which maximizes the effectiveness of the available funds.

The decision relies on the information from existing records

and site investigation/inspection/test.

The major information comes from existing record and field

inspection. As shown in Fig. 14, properly interpreted pipe

inspection results provide new information about the condition
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Fig. 14. Information sources for decision making.

of the pipe, where the computational techniques described in

previous sections can contribute. According to [105], there

are four basic steps in the decision making process for pipe

renewal (see Fig.15), the first two rely on the results from

pipe condition assessment. With the renewal prioritization,

appropriate technology is selected and applied accordingly.

The decision support system should be able to support long-

term planning and budget settings in relation to pipeline

management and maintenance [106].

Fig. 15. Procedure of pipe renewal in a decision support system.

A. Expert system and agent technology for decision making

A tool to support the decision making for water mains

rehabilitation was prototyped with an agent-based technol-

ogy [107]. The agent is open to extension and interpretation as

an information processing system. The schematic of a tightly

coupled agent-based decision support tool is shown in Fig. 16.

Seven agents were introduced to the decision making tool. The

functionalities of each agent are [107]:

• Interface agent: coordinate the interactions of the user

with the decision support tool.

• Constraints agent: reason about the viability of any ten-

tative rehabilitation decision on the basis of policy type

factors.

• Data mining agent: add further data reclamation facilities.

• Strategy agent: perform specific ranking processes on

information about water supply zones.

• Heuristic agent: reason over current task information

using knowledge that represents statistical models or

other form of expert advice.

• Information agent: exchange information with all the

other agents, request further information from or deposit

new information with the database agent.

• Database agent: store the information.

This framework was partially implemented for water main

rehabilitation strategy. The information, including statistical

survey of pipe samples from condition assessment, was fed

into a “Predictor” agent and “Strategy” agent to predict the

life expectancy of a water main [107].

Fig. 16. Agent-based decision support tool.

The prototype system is capable of modeling the infor-

mation handling expertise of water company engineers and

consultants. It has been used to serve a U.K. water company

for water main rehabilitation decision making.

B. Risk-based decision support system for the rehabilitation

management of water pipelines

In the WATERPIPE project, a risk-based decision support

system was developed [108]. Inspection results from leak and

damage detection are used as input to the decision support

system. This decision support system (DSS) considers the

overall risk as well as financial and social criteria. Four

modules were developed as show in Table VIII.

TABLE VIII
MODULES IN THE DECISION SUPPORT SYSTEM.

Module Module outputs (as a function of time)

Structural reliability module Probability of horizontal fractures;
Crushing failure;
Vertical fractures
Joint failure
Ring buckling of plastic pipes

Leakage module Leakage per hour (average value and
standard deviation)

Water contamination module Probability of hygienic
Aesthetic water quality failure

Risk-based rehabilitation mod-
ule

Rehabilitation decision

The first three modules provide a stochastic assessment

of structural reliability of damaged water pipelines, leakage

of water pipelines, and time-dependent water quality, respec-

tively. The three modules provide the required inputs to the

risk-based rehabilitation module. Rehabilitation decisions are
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based on the performance of the system. Two measures of

system performance are considered: asset performance indi-

cators and service performance indicators, which are given in

Table IX.

TABLE IX
SYSTEM PERFORMANCE INDICATORS CONSIDERED IN WATERPIPE

PROJECT.

Asset performance indicators Service performance indicators

- Bursts - Interruption of supply
- Ring buckling of a plastic pipe - Water quality
- Leakage

An expert system coordinates the various modules of

the DSS and maintains the domain knowledge and relevant

databases. The DSS provides results to the end user through

an user interface. The end user can estimate the status of the

water pipe network. The DSS answers questions like which

pipeline should be rehabilitated and when to schedule the next

inspection for specific pipelines.

V. CONCLUDING REMARKS

Management of modern urban infrastructures needs both

advanced sensing technologies and computational intelligence

to reach optimal decision making from collected information.

Computational intelligence facilitates the flow of information

from raw inspection and sensory data to the condition rating

of water mains. The rating can be subsequently used in

data-driven or physics-based failure models for risk analysis.

Through the model fusion and knowledge based reasoning,

a renewal and rehabilitation decision can be made according

to the derived prediction of future condition. Thus, the tran-

sition from time-based maintenance to a more cost-effective

condition-based maintenance becomes possible. This paper

summarizes the major computational approaches for pipe leak

detection and monitoring, distress indicator generating, and

condition rating. Although pipes with low cost of failure do

not justify expensive data acquisition campaigns and acquisi-

tion of high-cost data is justified only to major transmission

water mains, the amount of aggregate data is still increasing.

Therefore, the computational techniques should make full use

of all information and raw data to achieve a highly reliable

condition assessment of water mains.
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