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Abstract. In this paper a novel method that automatically detects the lumen-
intima border on an intravascular ultrasound sequence (IVUS) is presented.  
First, a 3D co-occurrence matrix was used to efficiently extract the texture 
information of the IVUS images through the temporal sequence. By extracting 
several co-occurrence matrices a complete characterization feature space was 
determined. Secondly, using a k-means algorithm, all the pixels in the IVUS 
images were classified by determining if they belong to either the lumen or the 
other vessel tissues.  This enables automatic clustering and therefore no 
learning step was required. The classification of the pixels within the feature 
space was obtained using 3 clusters: two clusters for the vessel tissues, one 
cluster for the lumen, while the remaining pixels are labeled as unclassified. 
Experimental results show that the proposed method is robust to noisy images 
and yields segmented lumen-intima contours validated by an expert in more 
than 80% of a total of 300 IVUS images. 

Keywords: IVUS segmentation, 3D co-occurrence matrix, k-means 
classification, swap heuristics, texture analysis.  

1   Introduction 

Intravascular ultrasound (IVUS) is a catheter-based imaging technique that enables 
clinicians to see blood vessels cross-sections from inside out (see figure 1), including 
the blood flowing through the lumen of the vessel, and the three layers of the vessel 
wall (intima, media and adventitia). Coronary arteries are the most frequent imaging 
target for IVUS. This technology is used in coronary arteries to assess the spatial 
distribution of atheromatous plaque (also known as atherosclerosis) in the coronary 
tree.  Plaque buildup causes stenosis – a narrowing of the artery – and reduces blood 
flow. IVUS is more precise than angiography to determine the degree of stenosis 
because of image resolution, and because angiographic images are just 2D projections 
of a 3D shape which is not necessarily symmetrical. IVUS is often used as a research 
tool to improve atherosclerosis diagnosis, treatment planning and assessment of 
treatment efficiency, at the cost of lengthy manual segmentation of the lumen-intima 



and the media-adventitia borders. Fast and automatic IVUS image segmentation 
would improve the clinical usefulness of IVUS.  

 
Much research work has been done on IVUS segmentation, including the 

development of several methods to obtain the desired borders. In [1] combination of 
several techniques is used by minimizing a global cost function calculated using: (i) 
the intensity patterns learned from examples, (ii) statistical proprieties of ultrasound 
and (iii) area homogeneity. This technique requires the construction of patterns from 
manually segmented images. This stage is very difficult to accomplish properly due to 
the large variability of IVUS images from one patient to another and the intensity 
discontinuities between the lumen and the intima. An automatic segmentation 
approach using a level set (fast marching method) is presented in [2, 3]. To find the 
initial parameters of the level set, Rayleigh distributions are searched in the histogram 
of the sequence of images. However, this method was only tested on images obtained 
on femoral arteries, therefore containing less motion blur and being of better quality 
when compared to coronary IVUS images.  

Popular methods rely on both texture analysis and classification of the IVUS 
images in order to segment the various vessel borders. Local Binary Patterns [4, 5], 
2D co-occurrence matrices [5, 6], or both methods [7] have been used mainly for 
texture analysis. An analysis of cumulative moments was used in [5], and a fuzzy k-
means approach is used in [8] where several clusters are defined for the various layers 
of the vessel. All these methods are implemented in two dimensions and hence the 
results are calculated from a single static image only. Once texture characterization is 
finalized, a second phase is implemented that consists in the use of a classifier in 
order to find the desired vessel border. In [4, 5], an Adaboost or a k-nearest neighbors 
classification is used to classify the pixels of an IVUS image. These two methods 
require a training phase, which requires a large image database in order to be efficient 
and effective. In [6, 7], IVUS segmentation is accomplished using a deformable 

Fig. 1. (Left) A traditional IVUS image illustrating three layers around the lumen (iii): the 
intima (ii), the media (iv) and the adventitia (v).The IVUS catheter is in the middle (i) 
(Right) Plaque composition consists of fibro-lipid(ii) and calcium deposits (i). The lumen is 
the blood (iii). 



contour analysis, such as Snakes, in combination with a texture analysis procedure. 
This technique assumes that the extraction of characteristics behaves like a filter in 
order for the contours to evolve and converge correctly, which is not always the case 
with noisy images.  

This paper presents a novel approach to automatically find the lumen-intima border 
using a 3D co-occurrence matrix feature extraction, and a k-means classifier on IVUS 
coronary images. A major advantage of the proposed method is that it does not 
involve any supervised training and it exploits the temporal information contained in 
the IVUS sequence.   

2   Methodology 

The proposed method is mainly based on a 3D texture analysis performed on a 
specified number of IVUS images. Those images are recorded at 30 fps with an 
ultrasound catheter pulled back at a controlled speed of 0.5 mm/s, over a few minutes.  
In coronary arteries, the heart produces significant motion and deformation of the 
artery cross-section between each heart beat.  Hence, the temporal information of the 
IVUS sequence is taken into account. First, the three dimensional co-occurrence 
matrices were computed to extract 3D characteristics. Secondly, the classification was 
performed using a k-means algorithm with a slight modification. A hybrid method 
between Lloyd and a heuristic swap was used [10, 11], to avoid local minima during 
the optimization process. Finally, a three cluster k-means was used: one cluster 
represents the lumen and the two others represent the artery itself. The unclassified 
pixels were identified and then the border was detected consequently. 

2.1   Preprocessing 

An IVUS film lasting several minutes is usually composed of a few thousand images. 
The segmentation process can be speeded up by segmenting a subsample of the 
images, and interpolating between the found contours. By extracting images 
synchronized with the electrocardiogram (ECG), one image for each cardiac cycle, 
the motion blur due to the cycle-to-cycle variation of blood pressure was partly 
eliminated, while reducing the number of total images to segment in a sequence. To 
make the extraction of characteristics optimal, the images were transformed into polar 
coordinates by using a bi-cubic interpolation (See Figure 2).  When the 
transformation is made, the image artifacts such as the calibration markers visible on 
every image were eliminated by a thresholding fallow by an interpolation procedure. 
The catheter, which appears as a black band between two white bands on the polar 
images, was also removed by a histogram analysis followed by a thresholding 
procedure.  



 

2.2 3D Co-occurrence matrices 

Co-occurrence matrices [12] are a statistical tool which allows the extraction of 
second-order texture information from an image. The frequency between pairs of 
pixels i and j of various gray scales, to a certain shift, is calculated and placed in a 
matrix C. The matrix of co-occurrence C (i,j,d,θ),  for a radius r and an angle θ is 
defined by:  
 

{ }jdcdrIandicrIcrdjiC =++== ))sin(),cos((),(|),(),,,( θθθ  (1) 

 
Matrix C indicates the number of times the value of pixel i is in relation to the 

value of pixel j in a space relation. This space relation is described by r and θ which 
define respectively the distance and the orientation between the two pixels. For one 
2D image, matrix C is a square matrix representing the number of gray scales in the 
image.  

In this paper, 3D co-occurrences matrices for volumetric data [9] were used. These 
3D matrices are able to identify the space dependence of the gray scales through the 
IVUS sequence. They are similar to the 2D matrices but the calculation of the C 
matrix is made from a cubic window rather than a square window. Therefore, the 
space shift between two pixels will be in three dimensions. Equation (1) becomes:  
 

{ }jdcdrIandicrIcrdjiC =++== ))sin()sin(),sin()cos((),(|),(),,,,( φθφθφθ (2) 

 
Once matrix C is found, the analysis is similar to the 2D case. The co-occurrence 

matrix can be normalized with respect to the characteristics to be extracted. These 
characteristics are presented in table 1:  
 

Fig. 2. (Left) Original IVUS image. (Right) IVUS image transformed in polar coordinates 
using bi-cubic interpolation. 



 
 

To extract the characteristics from an image, the above 8 characteristics are 
calculated on cubes centered on each pixel of the image. The size of the cube must be 
chosen as well as the angles of the C matrix. There are 13 possible pairs of angles, 
represented by the following directions: d(1,0,0); d(0,1,0); d(0,0,1); d(1,1,1); d(-
1,1,1); d(1,-1,1); d(1,1,-1); d(0,1,1); d(1,0,1); d(1,1,0); d(1,0,-1); d(0,1,-1);  d(-
1,1,0)[9] (see Figure 3) . 
 

 

Fig.3. The 13 directions given by the possible angles of the co-occurrence matrices. 
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TABLE I 
CO-OCCURRENCE MATRICES CHARACTERISTICS 
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N(i,j) - Normalized co-occurrence matrix. 
M, L - Number of columns and lines of the matrix N. 
μi - Vector representing the mean of each column. 
μj - Vector representing the mean of each line. 
μ - Mean of the matrix N. 
σ - Standard deviation of the matrix N. 



2.3 Features Space 

A features space (see figure 4a) was created using the 3D co-occurrence matrices. 
Several parameters values must be selected: cube size, direction (angle) of the 
calculation of the co-occurrence matrices, and number of characteristics to be 
extracted from the matrices.  

Since the algorithm needs images before and after the image being analyzed, the 
first and the last images were analyzed by extrapolating the border (see figure 4b). For 
the same reason, a part of the top of the image and a part of bottom of the image 
cannot be analyzed. Selecting the size of the cube to be smaller than the lumen 
enables the contour between the lumen and the intima to be inside the part to be 
analyzed. With respect to the angle, a circular padding is used to fill the missing 
region. Laslty, a principal components analysis (PCA) [13] is performed to reduce the 
space dimension by eliminating the correlation between the characteristics. 

2.4   k-means classifier 

The goal of the classifier is to associate each given data from a distribution to a 
cluster. The k-means classifier has the advantage of being completely automatic; 
therefore it does not need any learning phase. Once the number of clusters is 
specified, the classifier finds the centers of each one. The distribution can be of any 
dimension. The hybrid k-means, used in this paper, is a combination method between 
Lloyd method and a heuristic swap [10, 11].  

This method starts by generating an initial solution and then tries to improve it by 
using the Lloyd algorithm followed by a heuristic swap algorithm. This approach 
allows the optimization process to avoid local minima. The Lloyd algorithm, also 
known as k-means algorithm, takes initial centers and calculates the neighborhood for 
each center. Each initial center then moves towards the centroid of the neighborhood 
until satisfaction of a convergence criterion. This algorithm converges towards an 
optimal solution, which could be a local minimum.  

Fig. 4. (a left)  For each pixel we create a feature space. (b right) The 
characteristics of the images in stipple and gray can’t be extracted. 



At this point, the swap heuristic algorithm selects a set of k initial centers S from 
the potential centers, R. The algorithm then tries to constantly improve the solution by 
removing a center Ss∈  and by replacing it with another SRs −∈′ . Let 

}{}{ ssSS ′∪−=′  be the new set of centers. If the modified solution has a smaller 

distortion than the existing solution then S is replaced by S ′ , otherwise S doesn’t 
change. This swap is done until there aren’t any more changes in the distortion after 
several swaps. The decision to apply several steps of the Lloyd algorithm is based on 
the amount of update from one step to another. This quantity is defined by 
determining an empiric threshold value. The new solution is accepted if it is better 
than the old one [10, 11].  

By using the algorithm we are able to find the centers of the clusters from a given 
distribution. In our case, the distribution is composed of pixels characteristics 
obtained from the 3D co-occurrence matrices. Once the centers of the clusters are 
found, the pixels are classified according to the three clusters. As mentioned 
previously, one cluster represents the lumen and the two others represent the 
remaining vessel structures. The vessel has several textures representing the different 
tissues which are regrouped in the two classes. During the classification, the pixels 
which are at a similar distance from the lumen center to one of the vessel centers are 
identified as unclassified.  

2.5   Postprocessing 

After classification, the pixels are assigned to four classes: those who belong to the 
lumen, those who belong to the two vessel clusters, and the uncertain ones. A 
segmented image of this is produced by assigning for each class a number n such that 
n = [0, 3]. This image is filtered with a “closing” morphological filter to eliminate 
isolated pixels [14]. The two classes of the vessel are merged so that the final 
segmented image has only three classes, representing the lumen, the vessel, and an 
uncertain region between them. Then, the lumen-vessel border is found in the center 
of the uncertain area. The border is then transformed from polar coordinates back into 
the format of the initial IVUS image. In order to correct errors that might occur during 
this postprocessing step, an active contour methods can be used, such as Snakes [15] 
with an external energy taken from the gradient of the original image filtered with a 
Gaussian filter. 

2.6   Evaluation 

IVUS images obtained with a rotating catheter, at 20 MHz of ultrasound frequency, 
are used to evaluate the proposed method. The images have an original size of 480 x 
480 pixels and are converted in polar coordinates (r, θ), having a size of 360 pixels 
along θ and 240 pixels along r. Eight characteristics were extracted for several sizes 
of cubes with various angle directions. A 17x17x17 cube was selected with 
characteristics calculated in the following directions: d(1,1,1); d(1,0,0); d(0,1,0); 
d(0,0,1); d(1,1,0); d(0,1,1); d(1,0,1); and a 9x9x9 cube, with the characteristics 
calculated in the directions:  d(1,1,1); d(1,0,0); d(0,1,0); d(0,0,1); d(1,1,0); d(0,1,1); 



d(1,0,1); d(3,3,3); d(3,0,0); d(0,3,0); d(0,0,3); d(3,3,0); d(0,3,3); d(3,0,3). By doing so 
the total volume of pixels needed for the calculation is 18x18x18 (i.e. cube size plus 
one of the above directions). The final number of characteristics is 168 (8 
characteristics x 7 angle directions x 1 cube size + 14 angle directions x 1 cube size). 
By applying a PCA, the total number is reduced to 3. This final result is selected for 
the number of clusters to be assigned for the k-means analysis. The border is 
afterward found on the segmented polar image and transformed back into the original 
image format. The method was tested on three patient databases that included 4 IVUS 
sequences, each one having approximately 3000 images, of which 75 images were 
analyzed. 

3   Results & Discussion 

Initially, before the IVUS images are transformed to polar coordinates, secondary 
artifacts like calibration markers should be removed. Unfortunately the transformation 
to polar coordinates reduces the quality of the images.  Hence to alleviate this 
problem as much as possible, the polar images were sized to 240 X 360 pixels.  

The second phase consists of extracting the characteristics of the images using the 
3D co-occurrence matrices. This process takes several minutes per image on a P4 2.6 
Ghz computer, implemented in C++. Since this first preprocessing step is very time-
consuming, it is necessary to choose strategically the total number of characteristics 
for the 3D co-occurrence matrix and k-means analysis. The chosen cube size is of 
primary importance as it is not possible to extract all the characteristics on all the 
IVUS sequence as seen in Figure 3b. Based on a priori testing with different cube 
sizes, the 9x9x9 and 17x17x17 sizes were selected as they contain enough image 
texture information without being hindered by possible artifacts such as noise or 
motion. The methodology was modified to reduce computing time. First, the 
characteristics are extracted only at 4º intervals and an inter-frame interpolation was 
carried out to complete the missing data. Secondly, a maximum limit for the value of 
the radius r can be given as the lumen does not span the entire image. With respect to 
the direction, it is necessary to choose orientations which cover the entire space 
uniformly. In this case, we deemed that the main 7 directions (major axes and corner 
diagonals) are sufficient for the analysis. The dimension of the direction is also 
important since we need to consider the edge (see figure 4b). A dimension equal to 1 
was chosen for the 17x17x17 cube and a dimension equal to 1 and 3 was assigned for 
the 9x9x9 cube. Because of that, 9 pixels are lost on the top and bottom of the image 
analyzed and the first 9 images at the beginning and end of the sequence are not used 
for the analysis. 

The third step consists in the reduction of the features space. The PCA algorithm 
reduced the features space to three so as to remove the correlation between the 
characteristics and to reduce the redundancy of information (see figure 5). The 
algorithm keeps approximately 85% of the information given by the 168 
characteristics. Hence, each pixel of the image has 3 characteristics.  



 
The fourth phase consists in the classification of the pixels. Pixels classification in 

the characteristic space was fed into the k-means classifier with 3 centers. A 
significant problem with this algorithm is that the representative distribution obtained 
is usually large. To remedy this, image subsections or patches which do not contain 
relevant texture information must be removed. In order to do this, a binary mask 
representing the chosen pixels was created (see figure 6a).  If the region of the mask 
is black, then the associated pixels are not used as input for the classifier. The mask is 
formed by creating 5 horizontal white bands (~20% of the image) on a black 
background. The characteristic energy of the co-occurrence matrices is subtracted 
from the mask. This signifies that the uniform texture regions contained in every 
IVUS image is not included during the classification stage. This is not a problem for 
the analysis as the uniform region is usually located at the bottom of the polar image, 
whereas the borders of interest are located at the top of the polar image. Some of the 
lumen and vessel tissue pixels were still fed into the classifier so that the classification 
was more accurate (see figure 6b). Although the choice of the initial centers for the k-
means classifier is important, they can be chosen randomly because the k-means 
algorithm does not remain trapped in local minima as explained in the previous 
section. Once the three cluster centers were found, the pixels were associated to the 
nearest center. The two vessel clusters were merged to obtain only two classes 
because the clusters belonging to the vessel structure have a larger standard deviation 
than the lumen. The lumen cluster is smaller than the intima, media and adventitia 
clusters, because its pixels represent only one tissue. Sometimes the adventitia has a 
similar texture as the lumen. This is not a problem since we want to find the border 
between the lumen and the intima and so the adventitia has no influence on this final 
border. The unclassified pixels are determined by applying a threshold of 20% of the 
minimal distance between the lumen cluster and the vessel clusters. After the 
classification, a segmentation image was created. This image has two classes, the 

Fig.5. The three characteristics images obtained after the PCA space reduction (ordered  
           from left to right).  
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lumen and the vessels. The image includes also some uncertain pixels which are 
between the classes (see figure 6d). 

 

 
The last phase consists in finding the separation border between the classes by also 

considering the unclassified pixels. The border has to pass through the center of the 
uncertain area. Once the border was identified, it was processed using a Gaussian 
smoothing filter. The border was then scaled back onto the original IVUS image by 
using a cubic interpolation. It is necessary to consider the angle sampling and the 
radius trim. All of the transformations presented in the methodology introduce several 
approximation errors in the order of a few pixels. The lumen-intima border found on 
the IVUS images by our method (see figure 7 right) is close to the border identified 
by an expert (see figure 7 left). 

 

Fig. 6. (a top-left) The feature space image mask; in white the pixels that are given to the 
classifier. (b top-right) the distribution that is given to the k-means classifier. (c bottom-

left) The 3 cluster given by the classifier. The front distribution is representing the lumen, 
the far distribution is representing the vessel and the uncertain is located between them. (g 

bottom-right) the segmentation image that incorporates the lumen class in black, the 
vessel tissue class in white and the unclassified pixels in gray. 

 



 
Results show that 80% of the 300 total IVUS images used in the analysis are 

partially or correctly segmented. This means that 70% of the lumen contour border is 
segmented properly with a few minor gaps. The remaining 20% of the images aren’t 
correctly segmented, because the texture in the lumen and the vessel are very similar 
and the algorithm can’t find any separation between them. The identification of the 
two vessel clusters can produce some errors by associating the lumen cluster to the 
vessel and by identifying one of the vessel clusters as the lumen. 

As most IVUS images are difficult to segment manually by an expert, we believe 
the results obtained from our proposed method will speed up the segmentation 
process. Furthermore, the gaps seen in some of the borders are created by the 
guidewire echo or because the catheter touches the intima. Imperfections also arise 
when there are vessel bifurcations in the IVUS images or when the lumen-intima 
border is too convex.  

Future work should focus on the removal of the echo created by the guidewire. Co-
occurrence matrices are a powerful texture operator but the parameters must be found 
experimentally. Tests could be carried on by choosing other cube sizes, other 
orientations or even other characteristics. The k-means classifier could be used with 
more than 3 classes to possibly identify the border between the media and the 
adventitia. 

4   Conclusion 

The method suggested in this paper is a new approach for IVUS image segmentation, 
specifically targeting poor quality images. Automatic identification of the lumen-
intima border is effective on the majority of the IVUS images, in spite of significant 

Fig. 7. ( left) The lumen-intima border identified manually and (right) determined by the 
proposed method.  



noise present in most of them. The 3D co-occurrence matrices take into account the 
spatiotemporal texture information in the IVUS sequence. By using a k-means 
classifier we can segment the images without any training phase or prior knowledge. 
The full characterization of the morphology of the vessel is the future prospect for this 
method.  
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