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Abstract

The Ste20/PAK family is involved in many cellular processes, including the regulation of actin-based cytoskeletal dynamics
and the activation of MAPK signaling pathways. Despite its numerous roles, few of its substrates have been identified. To
better characterize the roles of the yeast Ste20p kinase, we developed an in vitro biochemical genomics screen to identify its
substrates. When applied to 539 purified yeast proteins, the screen reported 14 targets of Ste20p phosphorylation. We used
the data resulting from our screen to build an in silico predictor to identify Ste20p substrates on a proteome-wide basis.
Since kinase-substrate specificity is often mediated by additional binding events at sites distal to the phosphorylation site,
the predictor uses the presence/absence of multiple sequence motifs to evaluate potential substrates. Statistical validation
estimates a threefold improvement in substrate recovery over random predictions, despite the lack of a single dominant
motif that can characterize Ste20p phosphorylation. The set of predicted substrates significantly overrepresents elements of
the genetic and physical interaction networks surrounding Ste20p, suggesting that some of the predicted substrates are in
vivo targets. We validated this combined experimental and computational approach for identifying kinase substrates by
confirming the in vitro phosphorylation of polarisome components Bni1p and Bud6p, thus suggesting a mechanism by
which Ste20p effects polarized growth.
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Introduction

Protein phosphorylation is a central post-translational

modification in signal transduction; underscoring its impor-

tance is the observation that roughly 2% of eukaryotic genes

encode kinases, and roughly one-third of all intracellular

proteins may be phosphorylated on at least one residue [1–3].

However, given the large number of possible substrates for each

of the many protein kinases, it is not surprising that the

identification of kinase-substrate relationships remains a

daunting challenge.

Our knowledge of kinase-substrate relationships has expanded

using approaches that detect in vitro phosphorylation or in vivo

phosphoproteins. In vitro methods include the use of purified

kinases and substrates, kinases engineered to use ATP analogues,

or phage display libraries [4–7]; peptide microarrays have been

used to perform in vitro screens for kinase substrates in a high

throughput manner [8,9]. In vivo methods include the use of mass

spectrometry to generate large-scale profiles of cellular phospho-

proteins (reviewed in [10,11]). Recent studies have combined

these approaches with the examination of evolutionary conser-

vation and interaction networks to better understand kinase-

substrate relationships [12].While such approaches have ex-

panded our knowledge of kinase-substrate relationships, it is clear

that many remain unidentified or uncharacterized by current

methods.

Bioinformatics techniques are increasingly employed to help

identify kinase-substrate relationships, usually by characterizing

the phosphorylation motif (i.e. describing the sequence at the site

of phosphorylation) associated with a given kinase. For example,

the amino acid preferences at the phosphorylation sites of a given

kinase can be determined with a peptide library screen (e.g. [13])

and encoded in a position-specific scoring matrix (PSSM).

Alternatively, it may be possible to characterize the phosphory-

lation motif with a regular expression (e.g. [ST]P.[RK] for CDK).

Thus, any protein can be assessed for the likelihood that it can be

PLoS ONE | www.plosone.org 1 December 2009 | Volume 4 | Issue 12 | e8279



phosphorylated by a specific kinase, based on whether its sequence

possesses a likely phosphorylation site of the kinase. Since

phosphorylation motifs are often highly degenerate, approaches

based on these motifs rely on sophisticated machine learning

techniques to increase the accuracy of substrate prediction;

nevertheless, these approaches have proven most effective for the

few kinases with the least degenerate motifs [14–18]. Recent

approaches take into consideration repeat occurrences of a

phosphorylation motif within a protein sequence. Modeling the

propensity for such clusters of phosphorylation motifs results in

improved accuracy for the prediction of CDK substrates, for

instance [19,20]. These studies raise the question of whether

considering the co-occurrence of different motifs will also result in

more accurate prediction of substrates for kinases with degenerate

phosphorylation motifs.

Even in cases where phosphorylation motifs can be readily

identified in putative substrates, the motifs do not generally

provide sufficient information to unambiguously identify the

physiologically relevant kinase. It has been recognized that

sequence features that are independent of the actual phosphory-

lation site are often crucial for the phosphorylation of a substrate,

including features that enable binding of the substrate to the

regulatory domain of the kinase, binding of kinase and substrate to

the same scaffold protein, or co-localization in the cell of kinase

and substrate due to independent interactions (reviewed in

[21–25]). Moreover, it has been recognized that kinases often

bind substrates at a second site, distal to the active site, and that

these docking interactions are largely responsible for kinase-

substrate specificity [26]. These findings suggest that a predictor

that takes into consideration such distal motifs, in addition to

putative phosphorylation motifs, could produce more accurate

predictions of kinase-substrate relationships.

The Saccharomyces cerevisiae Ste20p kinase (SGDID:S000000999)

is the founding member and prototype of the Ste20/PAK family, a

large family of kinases ubiquitous in the genomes of all eukaryotes

(for reviews see [27,28]). Ste20p was first described as an activator

of the yeast pheromone response MAPK cascade, and was

subsequently also shown to activate the MAPK cascades

responsible for pseudohyphal growth and the high-osmolarity

glycerol (HOG) response [29–33]. Ste20p also regulates other

physiological processes, such as actin cytoskeleton organization

and polarized morphogenesis [34–36], mitotic exit [37], and

hydrogen-peroxide induced apoptosis [38]. Furthermore, Ste20p

shares an undefined essential role with its homolog Cla4p

(SGDID:S000005242), as ste20D cla4D mutants are not viable

[39]. Despite the breadth of knowledge about the cellular roles of

Ste20p, only a few of its substrates have been identified. In

addition to its phosphorylation of Ste11p (SGDID:S000004354) in

the activation of MAPK pathways [33], Ste20p phosphorylates

type I myosins Myo3p (SGDID:S000001612) and Myo5p

(SGDID:S000004715) to promote actin polarization [40,41],

Cdc10p (SGDID:S000000595), albeit less efficiently than Cla4p

[42], and the histone H2B (SGDID: S000000098) [38]. Given the

still-unidentified essential function it shares with Cla4p and the

number of cellular processes in which it participates, it is likely that

physiologically relevant substrates of Ste20p remain to be

identified.

Our goal was to develop a method to facilitate the discovery of

kinase-substrate relationships. Taken together, existing studies

suggest that an in silico approach based on sequence motifs,

characterizing phosphorylation sites and distal sites, may be useful

for predicting the substrates of kinases that have not been well-

characterized by existing methods. We used such an approach to

identify substrates of the yeast Ste20p kinase.

Results

A Biochemical Genomics Screen Identifies In Vitro

Substrates of the Ste20p Kinase
To develop an in silico tool for identifying substrates of the yeast

Ste20p kinase, our first step was to generate a learning set of

positive and negative examples of substrates. We designed a

biochemical genomics screen to identify the in vitro substrates of

kinases. This approach was applied to 539 yeast proteins coded by

essential genes to identify substrates of Ste20p (see Materials and

Methods). Essential genes were chosen to identify potential

substrates responsible for the shared essential function of STE20

and its homologue CLA4 [39]. Individual clones expressing GST-

fusion constructs under the control of the inducible GAL1

promoter [9] of each of the designated proteins were grown

under non-inducing conditions until mid-log phase. These were

then combined in pools of eight, induced for three hours by the

addition of galactose, and immobilized on glutathione-Sepharose

beads. The combined pools of purified proteins bound to beads

were incubated in each of two solutions: a solution containing the

kinase domain of Ste20p, expressed and purified from E. coli, with

necessary cofactors and c-[P32]-ATP, and a control solution

lacking Ste20p kinase. After thirty minutes, the samples were

boiled in sample loading buffer and separated by SDS-PAGE, with

subsequent visualization of phosphorylation by autoradiography.

Where phosphorylation was observed, stepwise deconvolution

confirmed the phosphorylation and identified the phosphorylated

proteins.

Among the 539 proteins screened, 14 (2.6%) were reproducible

in vitro substrates of Ste20p (Table 1). These were subsequently

screened in vitro with Cla4p; as shown in Table 1, 10 of the 14

Ste20p substrates were also phosphorylated by Cla4p. Since

Ste20p and Cla4p are known to share an uncharacterized essential

function in yeast, suggesting that they share common targets, it is

not surprising that several substrates are phosphorylated by both

kinases. Nonetheless, Ste20p also exhibits specificity, as four of the

14 Ste20p substrates were not phosphorylated by Cla4p.

An In Silico Approach to the Identification of Ste20p
Substrates
Our goal was to build a Ste20p substrate predictor that

considers sequence features of phosphorylation site and distal sites.

In a naı̈ve Bayes classifier, we thus integrated previously-defined

PSSMs characterizing the phosphorylation sites of human Ste20p-

related kinases [13] with motifs that characterize the substrates of

Ste20p identified in our biochemical screen. For the latter

component, we identified short sequence motifs, characterized

with regular expressions, that are enriched in the set of Ste20p in
vitro substrates (i.e. the positive learning set) relative to the screened

set of proteins that were found not to be substrates (i.e. the

negative learning set). Five substrates from the literature that had

not been included in our initial screen (Htb2p, Myo5p, Myo3p,

Ste11p, and Cdc10p [33,38,40,42]) were added to the positive

learning set. We enumerated the motifs that occur in multiple

members of the positive learning set (via the pattern identification

algorithm Teiresias [43]), specifically within regions of the protein

sequences that were predicted to be exposed (according to

ACCpro 4.0 [44]), and these motifs were evaluated for inclusion

in a Ste20p substrate predictor.

Functionally important motifs are expected to be evolutionarily

conserved. To bias our approach towards motifs that appear

functionally important, we assigned each motif occurrence a

weight ranging from 0 to 1 reflecting the degree of conservation

across Saccharomyces species (wt,m,i in Figure 1; see Materials and

Identifying Ste20p-Substrates
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Methods). The total weight of a motif for a given protein

(wt,m=Siwt,m,i in Figure 1) is thus an estimate of the number of

functionally important motif occurrences in the protein sequence.

For each motif, we used its corresponding weights across the

positive and negative learning sets to calculate a selectivity ratio

that measures how frequently the motif occurs in the positive

learning set as compared to how frequently it occurs the negative

learning set (see Materials and Methods). As such, a motif with a

selectivity ratio greater than one indicates that the motif is more

prevalent in the positive set than in the negative set.

Table 1. Hits from the in vitro screen for Ste20p substrates.

Gene Ste20p* Cla4p* Function/Process PredictorScore

ALY2 Y Y interacts with CDK Pcl7p, unknown function 1.00

BMS1 Y N GTPase involved in ribosome biogenesis 1.00

CDC3 Y Y Septin 1.00

COG4 Y Y member of the Golgi complex involved in transport 0.99

PEM1 Y N phosphoacetyl-glucosamine mutase 0.99

RAD53 Y Y DNA damage checkpoint kinase 1.00

RPT5 Y Y 26S proteasome regulatory subunit 1.00

RSC6 Y N component of the RSC chromatin remodeling complex 0.28

RSC8 Y Y component of the RSC chromatin remodeling complex 0.03

SGV1 Y Y nuclear cyclin-dependent kinase 1.00

SPB1 Y Y methyltransferase involved in ribosome biogenesis 1.00

SPT16 Y Y component of FACT complex involved in transcription elongation 0.03

UTP5 Y Y member of the SSU processome involved in ribosome biogenesis 0.03

UTP7 Y N member of the SSU processome involved in ribosome biogenesis 1.00

*Indicates whether the gene product is phosphorylated by the kinase of the column.
doi:10.1371/journal.pone.0008279.t001

Figure 1. Examples for computing the total weight of a motif m for a given protein sequence t (wt,m). The sequence for Htb2p has
occurrences of two different motifs used by the predictor: A…P[AG] and A[KR]H. There are three occurrences of the first motif in the sequence, and
these occurrences overlap. The weight incorporates the conservation of the motif occurrences in other Saccharomyces species. Htb2p has an
identified ortholog in only one other species in this genus: S. mikatae. Abbreviations: S. cer= S. cerevisiae; S. mik= S. mikatae.
doi:10.1371/journal.pone.0008279.g001

Identifying Ste20p-Substrates
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The 23 motifs with a selectivity ratio of at least 10 (Table 2)

were integrated into the predictor such that occurrences of any of

the motifs within a given amino acid sequence contribute to the

belief that the sequence encodes a Ste20p substrate. Essentially,

the predictor takes any peptide/protein sequence and returns the

posterior probability that it represents a Ste20p substrate. We

experimented with different parameter values to balance the trade-

off between the sensitivity and specificity of the predictor (see

Materials and Methods).

The accuracy of the predictor was tested in silico via a modified

version of leave-one-out cross-validation (see Materials and

Methods). The predictor is approximately as accurate as a variant

of the predictor that only uses the 23 motifs identified in this study

(see Figure S1 and Text S1). We thus used the variant as our

definitive Ste20 substrate predictor in subsequent analyses for

simplicity. The predictor has an estimated false positive rate of 11%

and false negative rate of 74% if a protein is predicted as a substrate

with a posterior probability of at least 0.9 (Figure S1). Moreover, the

frequency with which we expect to identify true substrates within a

set of predictions is 8% (i.e. the positive predictive value). This is

roughly a three-fold enrichment over the frequency of experimen-

tally verified Ste20p substrates among the initial selection of proteins

in this study, and a five-fold enrichment over the frequency

observed for an in vitro screen from a previous study [9].

Application of the Predictor to the Yeast Proteome
We applied the predictor to the yeast proteome (6,696 proteins

considered) and each yeast protein was ascribed a posterior

probability that it is an in vitro substrate of Ste20p (Table S1). In

total, 753 proteins (11.3%) were assigned a probability greater

than 0.9, and 5050 proteins (75.4%) below 0.05. Amongst the 14

substrates identified in the initial biochemical genomics screen, ten

scored with probabilities above 0.9 and three scored below 0.05

(Table 1). Previously described Ste20p substrates Ste11p, Myo3p,

and Myo5p were all assigned a probability of 1.0, Cdc10 was

assigned a probability of 0.86, and the histone Htb2p was assigned

a probability of 0.035.

We performed pathway analysis on the predicted Ste20p

substrates using the Gene Ontology (GO) [45]. The significantly

overrepresented categories (adjusted P #0.05) amongst the

predicted substrates (score $0.9) are shown in Figure 2, Table

S2, Table S3 and Table S4. Encouragingly, the cellular

components and biological processes that are overrepresented

overlap with the established role of Ste20p in budding and

morphogenesis at sites of polarized growth, including the bud tip.

Furthermore, the role of Ste20p as a component of several

signaling cascades is reflected in the overrepresentation of proteins

related to protein kinase activity amongst the predicted substrates.

Thus, the biological relevance of our predictor is supported by the

presence of a significantly high number of predicted substrates in

process/pathways related to established roles of Ste20p.

Genetic and Physical Networks Suggest In Vivo Relevance
of Predicted Substrates
We reasoned that, since a kinase and a given substrate act in the

same pathway, genes that genetically interact with STE20 may

Table 2. Motifs used in the construction of the Ste20p substrate predictor.

Motif Frequency in Positive Set* Frequency in Negative Set* Selectivity Ratio

K.H.V 0.2421 0.0141 17.18

KG..R 0.3596 0.0217 16.56

H[AG]..R 0.2158 0.0136 15.92

[ST]V.H 0.2982 0.0192 15.55

A...PG 0.3842 0.0282 13.64

AQR 0.4211 0.0310 13.58

[KR]...HR 0.2711 0.0208 13.04

K..HS 0.3298 0.0261 12.65

N.[KR]..H 0.3956 0.0322 12.29

P.G.Q 0.2149 0.0181 11.86

Q.DP 0.3289 0.0277 11.86

A..PP 0.2939 0.0248 11.85

E.C..[KR] 0.2237 0.0199 11.22

PG...S 0.3667 0.0332 11.05

G.NF 0.2404 0.0218 11.02

PT..Y 0.2982 0.0275 10.86

I..T.H 0.1711 0.0158 10.84

R.S..H 0.2807 0.0261 10.76

A[KR]H 0.2263 0.0212 10.67

G.K.P 0.2035 0.0197 10.32

A...P[AG] 0.5860 0.0569 10.29

K[AG]..R 0.5877 0.0572 10.27

RDA 0.2895 0.0283 10.23

*The frequency of motif occurrences in the positive/negative learning set, where each occurrence is weighted by its conservation across Saccharomyces species.
doi:10.1371/journal.pone.0008279.t002
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also interact with the genes encoding in vivo substrates of Ste20p.

Analogously, we also reasoned that proteins which form physical

interactions with Ste20p binding partners (i.e. proteins in the

neighborhoods of Ste20p physical interactors) are more likely to be

accessible as substrates for Ste20p given that kinases and their

cognate substrates often assemble in macromolecular complexes.

To this end, we investigated whether any overlap exists between

the network neighborhoods of STE20 genetic and physical

interactors and the set of predicted substrates (Figure 3A).

First, the predicted substrates were examined in the context of

genetic interactions. A genetic interaction reflects a functional

relationship between two genes determined by the level of some

phenotype observed in the double mutant compared to the levels

observed in the single mutants. We defined a network wherein

each yeast gene is represented by a node and an edge is created

between two genes if they are known to genetically interact (see

Materials and Methods). For any node, the Genetic Interaction

Neighborhood (GIN) is the set of nodes connected to it by an edge.

The GIN of every gene in the network was tested for significant

overlap with the set of predicted Ste20p substrates (Figure 3A).

Indeed, the GINs of genes that genetically interact with STE20

tend to overlap more significantly with the predicted substrates

compared to the GINs of all other genes in the network (Figure 3B;

P <5.4561024, Mann-Whitney test, see Materials and Methods).

Of the 42 published STE20 genetic interactors, five of the

corresponding GINs significantly overlap the set of predicted

substrates (adjusted P #0.05, hypergeometric test; Table S5).

Given the expectation that in vivo substrates of Ste20p should share

Ste20p’s genetic interactions, the observed overlap between the

predicted substrate set and the GINs of Ste20p’s genetic

interactors suggests that the in silico predictor exhibits in vivo

relevance.

We next performed an analogous analysis based on physical

interactions. Here we say a physical interaction exists between two

proteins if they have been shown to physically interact directly or

indirectly as part of the same complex. We thus defined a network

where an edge was placed between two proteins if they are known

to physically interact (see Materials and Methods). For any node,

the Physical Interaction Neighborhood (PIN) is the set of nodes

connected to it by an edge. The Saccharomyces Genome Database

[46] contains 96 published physical interactors for Ste20p,

although substrates identified in previous high-throughput studies

(such as [8]) were excluded to avoid bias or redundancy. The

physical interactors examined include, for example, the scaffold

proteins for Ste20p-related signaling complexes such as Bem1p

(SGDID:S000000404) and Cdc24p (SGDID:S000000039).

Although only one of the Ste20p PINs (i.e. the neighborhood of

Cdc28p (SGDID:S000000364)) significantly overlaps the set of

predicted substrates (adjusted P#0.05, Fisher’s exact test; Table S6),

the 29 PINs tend to have lower overlap P values than the PINs of the

other proteins in the network (Figure 3C; P <8.2961024, Mann-

Whitney test, see Materials and Methods). In fact, as is the case with

genetic interactions, the neighborhoods of the majority of proteins

have no overlap with the set of predicted substrates, whereas 27 out

of the 29 Ste20p PINs have some overlap (i.e. a significant number

with P<1.0361024, hypergeometric test). By combining the in silico

predictor with GIN and PIN analyses, it becomes possible to focus on

physiologically relevant potential substrates based on their additional

biological connections to Ste20p.

In order to better characterize the physiological relevance of the

neighborhood approach, we clustered the genetic and physical

interactors of STE20 with respect to the predicted substrates in

their neighborhoods (Figures 4 and 5, see Figures S2 and S3 for

the statistical significances of the clusters). In other words, STE20

interactors with many common predicted substrates in their

respective neighborhoods are likely to co-cluster. The clustering of

the genetic interactors of STE20 depicted in Figure 4 identifies one

large cluster that includes genes coding for proteins involved in

cell-cycle progression and polarized growth such as CDC28, SWE1

(SGDID:S000003723), CLA4, CDC42 (SGDID:S000004219), and

RAS2 (SGDID:S000005042) [Approximately Unbiased (AU)

score = 94 as shown in Figure S2A, see Materials and Methods].

Moreover, most of the genes in this cluster interact with a set of

predicted substrates that also include polarity- and cell-cycle-

associated genes such as CDC5 (SGDID:S000004603), LTE1

(SGDID:S000000022), AXL2 (SGDID:S000001402), and MSB1

(SGDID:S000005714) (highlighted in Figure 4). Also included in

this list are three of the four known components of the polarisome

(BNI1 (SGDID:S000005215), SPA2 (SGDID:S000003944), and

BUD6 (SGDID:S000004311)), whose activation has been linked

genetically to STE20 [47].

This analysis of the Ste20p physical interactors also highlights a

tight clustering of proteins related to polarized growth (Figure 5,

Figure S3). Cdc42p, its guanine nucleotide exchange factor (GEF)

Cdc24p, and the scaffold Bem1p are Ste20 interactors that co-cluster.

These overlap with a significant cluster of predicted substrates (AU

score=94 as shown in Figure S3B) including the polarity proteins

Figure 2. Significantly over-represented (adjusted P#0.05) GO
slim annotations among the predicted Ste20p substrates. (A)
Cellular components. (B) Biological processes. (C) Molecular functions.
doi:10.1371/journal.pone.0008279.g002

Identifying Ste20p-Substrates
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Figure 3. Inferring the biological relevance of Ste20p predicted substrates via neighborhood analysis. (A) Depiction of the test for the
statistical significance of the overlap between the set of predicted substrates and the interaction neighborhood (blue portion) of a given gene/
protein. Here the given gene is known to interact with STE20. (B) Neighborhood analysis in the context of the genetic network. Comparing the
distributions of adjusted P values shows that the predicted substrates tend to overlap more significantly with the neighborhoods of STE20 interactors
versus those of all genes in the network. (C) Neighborhood analysis in the context of the physical network. A similar trend is apparent here but the P
values are less extreme for Ste20p physical interactors. Insets for (B) and (C) depict the distributions at higher resolution where P #0.1.
doi:10.1371/journal.pone.0008279.g003

Identifying Ste20p-Substrates
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Boi1p (SGDID:S00000018) and Boi2p (SGDID:S000000916),

suggesting that these may serve as physiologically relevant substrates

of Ste20p. Polarisome components Bud6p and Spa2p cluster together

with the kinase Ptk2p (SGDID:S000003820), although Bni1p is

clustered with another set of actin-associated proteins including

Bbc1p (SGDID:S000003557) and Las17p (SGDID:S000005707).

Thus, by combining the predicted biochemical relationships between

Ste20p kinase and potential substrates with the known relationships of

genetic and physical interactors of STE20, it becomes possible to

identify novel roles for Ste20p phosphorylation in vivo.

Polarisome Components Bud6p and Bni1p Are In Vitro

Substrates of Ste20p
We sought to validate our approach to Ste20p substrate prediction

by assaying several high-scoring proteins that are also present in

STE20 interactor neighborhoods. The neighborhood cluster analysis

Figure 4. Clustering profiles of overlap between the predicted substrates and the GINs of STE20 genetic interactors. A solid black cell
indicates the presence of a predicted substrate (row) in a GIN (column). A cluster of predicted substrate profiles is shown at higher resolution. SPA2
and BNI1 form a significant subcluster (AU score = 97, Figure S2B) and they are involved with polarized growth.
doi:10.1371/journal.pone.0008279.g004

Identifying Ste20p-Substrates

PLoS ONE | www.plosone.org 7 December 2009 | Volume 4 | Issue 12 | e8279



described above identified a number of putative substrates involved in

polarized growth. Ste20p participates with Cdc42p in the establish-

ment of polarized growth at directed sites in response to intrinsic

budding cues and extrinsic signals such as mating pheromones or

altered nutrient conditions [48]. In these processes, Ste20p has been

genetically linked to the polarisome, a 12S macromolecular complex

that controls polarized growth and morphogenesis [47,49].

Examination of the set of predicted Ste20p substrates revealed

that three of the four polarisome components (Bni1p, Bud6p, and

Spa2p) were predicted with high probability (.0.98) to be Ste20p

substrates (Table S1). Furthermore, these three were also identified

numerous times when cross-referenced against STE20 interactor

GINs and PINs; BNI1 is a member of 16 neighborhoods, SPA2 is a

member of 15, and BUD6 is a member of 10. We verified the

predictions by performing in vitro kinase assays with the polarisome

proteins to determine whether they could serve as substrates of

Ste20p. The candidate substrates were exogenously expressed as

GST-fusions, and assays were performed essentially as in the

Figure 5. Clustering profiles of overlap between the predicted substrates and the PINs of Ste20p physical interactors. A solid black
cell indicates the presence of a predicted substrate (row) in a PIN (column). Several predicted substrates implicated in polarized growth are clustered
together (AU score = 94, Figure S3B). Highlighted in red is a subcluster of predicted substrates that are present in the PINs of Ste20p physical
interactors that are also involved with polarity (Cdc42p, Cdc24p, Bem1p).
doi:10.1371/journal.pone.0008279.g005
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biochemical screen (see Materials and Methods). As shown in

Figure 6, Bni1p and Bud6p are both phosphorylated by Ste20p in

vitro. Spa2 was not phosphorylated by Ste20p (data not shown).

Thus, both Bni1p and Bud6p were predicted and experimentally

confirmed to be Ste20p substrates.

To gain greater insight into the consequences of Ste20p

phosphorylation, we identified phosphorylation sites in Bni1p

and Bud6p. Bni1p is a large protein (1,953 residues) which was

previously shown to be a phosphoprotein in vivo whose phosphor-

ylation is reduced in a ste20D mutant [47]. It comprises a N-

terminal Cdc42p binding domain and three C-terminal regions

characteristic of the formin-family of proteins, which together

constitute the actin-assembly machinery. These C-terminal regions

include the Formin-homology 1 and 2 (FH1 and FH2) domains,

and a C-terminal tail region (COOH) that includes two domains:

the Bud6-binding domain (BBD) and a cis-inhibitory Dia-

autoregulatory domain (DAD) (Figure 6A). Given the functional

importance of the C-terminal domains, we expressed subclones

composed of the FH1, FH2, and COOH domains as GST-fusion

proteins and repeated the in vitro Ste20p kinase assays. As seen in

Figure 6B, phosphorylation was observed in the constructs

containing the COOH region, but was not observed in constructs

in which it is absent. Thus, Ste20p phosphorylation in vitro occurs

within the region of Bni1p responsible for binding Bud6p.

Next, we sought to validate that Bud6p is phosphorylated in vitro

by Ste20p (Figure 6C). While the domain organization of Bud6p is

not as well-defined as for Bni1p, it has been determined that the

C-terminal region (519–788aa) is involved in dimerization as well

as binding Bni1p and actin, whereas the N-terminal region (1–166)

is required for proper Bud6p localization [50]. We thus subcloned

Bud6p to determine which regions are phosphorylated by Ste20p

in vitro. As seen in Figure 6C, weak phosphorylation is observed in

the N-terminal fragment, a stronger signal is observed in the

uncharacterized middle region, and no phosphorylation is

observed in the region involved in dimerization or binding to

actin and Bni1p. Thus, while Ste20p phosphorylates Bni1p in the

region responsible for Bud6p binding, it does not phosphorylate

Bud6p in the region responsible for binding Bni1p.

We used mass spectrometry to identify in vivo phosphorylation

sites for Bud6p. Using standard procedures (see [51] and Materials

and Methods), we identified in vivo phosphorylation of a TAP-

tagged Bud6p fusion protein on two residues: serine 327 and serine

342. These two residues are found in the middle fragment, which

was phosphorylated by Ste20p in vitro (Figure 6C). Thus, Bud6p is

a phosphoprotein in vivo and the phosphorylation on residues

Ser327 and Ser342 correlates with the phosphorylation of the

same region by Ste20p in vitro. Given that the region of Bni1p

which is phosphorylated by Ste20p is required for viability in the

absence of CLA4 [47], we asked whether the same is true for

Bud6p. Expression of a bud6 construct with the region containing

both phosphorylation sites deleted (bud6D272–411) retains the ability

to rescue the lethality of a bud6D cla4D strain and results in a

morphology similar to a cla4D mutant (data not shown). While the

in vivo relevance of Bud6p phosphorylation remains to be

determined, the substrate predictor correctly suggested that direct

phosphorylation of polarisome proteins by Ste20p occurs in vitro,

and thus presents opportunities for directed investigation of the

activation mechanism of this complex.

Discussion

We developed a strategy to aid the discovery of substrates for

any given kinase and demonstrated its utility with the yeast Ste20p

kinase. In particular, we tested ,550 proteins in a biochemical

screen for in vitro substrates of Ste20p. The results were used to

generate an in silico predictor of Ste20p substrates. Cross-

referencing the predicted substrates against known genetic and

physical interactions highlighted polarisome components as likely

targets of in vivo phosphorylation by Ste20p. Of these components,

Bni1p and Bud6p were shown to be phosphorylated by Ste20p in

vitro. The phosphorylation was mapped to a region of Bni1p which

is genetically associated with STE20, and which binds to Bud6p. In

vivo phosphorylation sites were identified on Bud6p, but the

physiological relevance of these sites remains unclear.

The decision to screen proteins coded by essential genes was

made to address the shared essential function of STE20 and CLA4

[39]. We reasoned that if the phosphorylation of a single substrate

is responsible for the synthetic lethality of the ste20D cla4D mutant,

then the gene coding for that substrate may also be essential. We

thus screened roughly half the complement of yeast essential genes,

selected on the basis of GO annotations that we assumed might

overlap with known functions or localizations of Ste20p and

Cla4p. As shown in Table 1, 10 of 14 substrates phosphorylated by

Ste20p were also phosphorylated by Cla4p. It remains to be

determined whether any of these substrates may be responsible for

the shared essential function of Ste20p and Cla4p. While the

identification and mutational analysis of in vivo phosphorylation

sites on these substrates should yield insight into this question, our

results also suggest the phosphorylation of Bni1p is related to this

essential function.

Our approach to kinase-substrate identification can comple-

ment and support various other methods currently used to identify

kinase substrates. For instance, an in vitro screening approach using

protein microarrays [8] has identified 70 substrates for Ste20p, 11

of which were also tested in our screen. We confirmed a 36%

recovery of chip-identified substrates in our screen, which is

generally consistent with observed differences between related

high-throughput assays and with the observation that different

approaches to identify physical, genetic, and biochemical interac-

tions are complementary to each other [52].

This earlier study also employed a pattern-searching algorithm

to identify predictive phosphorylation motifs for each of the tested

kinases. It succeeded in identifying phosphorylation motifs for 11

of the 87 kinases tested, suggesting these are kinases with strict

phosphorylation site requirements [8]. Though they did not

identify a Ste20p phosphorylation site motif, our multi-motif

predictor of Ste20p substrates exhibits an estimated three-fold

improvement, over screening randomly selected proteins, in the

rate of substrate identification. This substrate enrichment is

especially significant since the predictor is based on a screen of

only 539 proteins. Thus, our approach improves upon previous

efforts to capture sequence motifs that predict substrate status.

This improvement is likely due to the fact that our predictive

approach does not rely on strict phosphorylation site requirements,

but rather a set of sequence motifs that are not restricted to

describing the phosphorylation site and can therefore predict

substrates by other means. We reasoned that, while no individual

sequence feature may be sufficient to identify Ste20p substrates,

the combination of relevant motifs may allow for substrate

prediction with a higher degree of accuracy.

Our approach identified 23 motifs that were then used in a

naı̈ve Bayes classifier to assign a posterior probability of being a

Ste20p substrate to each member of the proteome. Amino acid

preferences at the phosphorylation sites of human Ste20p-related

kinases have been specified via position-specific scoring matrices

(PSSMs) [13], and some of the motifs identified in this study

capture the predominant preference for basic amino acids at

positions N-terminal to the sites (i.e. K..HS and R.S..H).
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Figure 6. Bni1p and Bud6p are phosphorylated by Ste20p in vitro. (A) A schematic representation of the functional regions of Bni1p. These
are the Formin-Homology domains (FH1, FH2, and FH3), GTPase binding domain (GBD), Spa2p-binding domain (SBD), Dia-autoregulatory domain
(DAD), and Bud6p-binding domain. The region C-terminal to the FH2 domain, which contains part of the BBD, is referred to as the COOH region in the
text (figure adapted from [66]). (B) Ste20p only phosphorylates Bni1p constructs containing the COOH region. Constructs composed of different
combinations of the FH1 and FH2 domains and the COOH region were purified and equal concentrations of each were assayed in in vitro kinase
assays with Ste20p and c-[P32]-ATP, then visualized by SDS-PAGE and autoradiography. The three constructs containing the COOH regions are
phosphorylated (with the position of the labeled peptides in their respective lanes indicated by arrows at left), whereas the constructs without the
COOH region are not. (C) Ste20p phosphorylates the central region of Bud6p. In the left panel, full length Bud6p is phosphorylated by Ste20p. In the
right panel, the middle fragment of Bud6p exhibits strong evidence of phosphorylation and the N-terminal fragment exhibits weak evidence of
phosphorylation. No signal is detected for the C-terminal fragment.
doi:10.1371/journal.pone.0008279.g006
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Moreover, we showed that integrating the PSSMs with our motifs

does not improve the accuracy of our Ste20p substrate predictor.

This suggests that our motifs sufficiently capture the preferences

specified by the PSSMs that are useful for predicting Ste20p

substrates. It remains to be determined how these motifs

participate in specifying Ste20p phosphorylation, whether via cis

effects through a docking interaction with Ste20p, or trans effects

through binding with a Ste20p-associated scaffold such as Bem1p,

Ste5p (SGDID:S000002510), or Far1p (SGDID:S000003693).

Though the molecular functions of the motifs are not yet clear,

our analyses showed significant associations between the set of

predicted substrates and genes/proteins that are already (directly

or indirectly) associated with STE20. Thus, although the predictor

is based on the in vitro biochemistry and primary structure of

proteins, employing multiple evolutionarily-conserved selective

motifs seems to result in biologically relevant substrate predictions.

While the predictor remains a tool for identifying a biochemical

relationship between a kinase and its potential substrates, providing

biological context, for example by pathway analysis, suggests

hypotheses that physiologically relate predicted substrates to

kinases. While pathway analysis reveals that the predicted Ste20p

substrate set appears consistent with known roles of Ste20p, the

analysis also suggests a potential role for Ste20p in vesicle-mediated

transport, which is supported by the observation that the human

Ste20p-related kinase Pak1 plays a role in regulating vesicular-based

transport in human fibroblasts [53]. Likewise, a role for Ste20p in

carbohydrate metabolic processes is supported by the observation

that Pak1 phosphorylates and activates phosphoglucomutase-1

(PGM; Ensembl:ENSG00000079739) [54].

The biological or in vivo relevance of the predicted substrates was

also evaluated using the genetic and physical interaction networks

surrounding Ste20p. Combining genetic and physical interaction

data with biochemical data has been shown to be an effective means

of evaluating and assigning biological relevance to observed

phosphorylation. For instance, the NetworKin methodology

employs several types of data in order to assign thousands of

identified in vivo phosphorylation sites to the roughly 500 human

kinases [55]. In that framework, genetic and physical interactions

are used to evaluate possible kinase-substrate relationships. Here,

we employ a similar approach to evaluate substrates that have been

predicted computationally. The analysis focused on genes/proteins

that are closely linked to STE20 in the genetic and physical

interaction networks, reasoning that these are the most likely to

represent strong candidates for biologically relevant associations

with the kinase. Indeed, STE20 interactor GINs tend to overlap

more significantly with the predicted substrate set compared to the

GINs of other genes in the network. Analogously, Ste20p interactor

PINs tend to overlap more significantly than other PINs with the

predicted substrate set. The interaction neighborhood analyses

therefore support the hypothesis that the predicted substrates

represent candidates for in vivo phosphorylation by Ste20p.

Large-scale screens and bioinformatics analyses are a great

source of novel biological hypotheses, and our analyses led to the

hypothesis that Ste20p phosphorylates components of the polari-

some complex. Here, we confirmed that Bni1p and Bud6p are

phosphorylated by Ste20p in vitro, but that the other two

components are not. Spa2p was assigned a high posterior

probability of being a Ste20p substrate and is also present in

many Ste20p interactor neighborhoods. It may therefore represent

a false prediction. However, it is also possible that there are

additional requirements for Spa2p phosphorylation by Ste20p that

are not present in the in vitro assay. Nonetheless, our predictive

method resulted in the identification of two novel substrates for

Ste20p phosphorylation.

The Ste20p phosphorylation of Bni1p occurs in the C-terminal

Bud6-binding domain (BBD). It has been previously shown that

expression of a bni1 construct lacking this BBD region is unable to

rescue the synthetic lethality of a bni1D cla4D mutant, and

therefore the transformed mutants exhibit a terminal phenotype

similar to that of ste20D cla4D mutants [47]. The phenotypic

similarity between strains lacking the region of Bni1p phosphor-

ylated by Ste20p and those lacking Ste20p altogether suggests that

phosphorylation of this region occurs in vivo and is required in the

absence of cla4D. As its name implies, this region also binds the

other polarisome substrate of Ste20p, Bud6p, indicating the

potential for sophisticated regulatory coordination. Though the in

vivo relevance of Ste20p phosphorylation and the coordination of

the phosphorylation of Bni1p and Bud6p in the regulation of

polarized growth remain to be determined, our predictive

approach to substrate identification has provided a framework

for further investigation.

Phosphorylation is a key modification involved in signal

transduction, and thus participates in many of the dynamic

processes of the cell. Despite this importance, identifying the

detailed architecture of phosphorylation networks remains a

challenge. Here, we have described a combination of biochemical

genomics and bioinformatics to identify potential new substrates

for the Ste20p kinase in yeast. We have confirmed experimentally

that our approach predicts valid in vitro Ste20p substrates, and

leads to greater insight into the functions of this kinase.

Materials and Methods

Materials
Restriction endonucleases and DNA-modifying enzymes were

obtained from New England Biolabs and GE Healthcare. Protease

inhibitor tablets and reduced glutathione were obtained from

Roche. Glutathione-Sepharose 4B beads were purchased from GE

Healthcare. Radioisotopes were purchased from GE Healthcare

and Perkin Elmer, and film for autoradiography was BioMax MS

from Kodak. Acid-washed glass beads (450–600 mm), protease

inhibitors, sorbitol, and trypsin were purchased from Sigma. The

yeast GST-6xHIS Open Reading Frame collection was purchased

from Open Biosystems.

Construction of Plasmids
Yeast expression GST-fusion proteins were obtained from

Open Biosystems [9]. The GST-Bni1 constructs were kindly

provided by C. Boone (University of Toronto).

The Bud6p fragments were expressed in E. coli. Relevant

fragments were amplified from genomic DNA [56]. pRA210

expresses full-length BUD6 and was constructed using the

oligonucleotides 59-GAGACCCGGGGAATGAAGATGGCC-

GTGGATGACC-39 and 59-GAGACTCGAGTTAAGTAAAC-

CCCGGCCCAAAATATGC-39. pRA211 expresses BUD61–272

and was constructed using the oligonucleotides 59-GA-

GACCCGGGGAATGAAGATGGCCGTGGATGACC-39and

59-GAGACTCGAGTTAAGCTTCTGTTGTAGACTGATTT-

GTC-39. pRA212 expresses BUD6272–519 and was constructed

using the oligonucleotides 59-GAGACCCGGGAGCTGCTGC-

GGCTGCCGGCCTCATGAC-39 and 59GAGACTCGAGT-

TACCTATTAATATTATGCACTTGTTT-39. pRA213 ex-

presses BUD6519–788 and was constructed using the oligonucleo-

tides 59-GAGACCCGGGAAACAAGTGCATAATATTAATA-

GG-39 and 59-GAGACTCGAGTTAAGTAAACCCCGGCC-

CAAAATATGC-39. The underlined nucleotides are SmaI or XhoI

sites. The PCR products were inserted into the vector pGEX-5T
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by cutting both with SmaI and XhoI followed by ligation. The

resultant plasmids were confirmed by sequencing.

Yeast Strains and Protein Purifications
Yeast media, culture conditions, and manipulations were as

described [57]. Transformation of yeast with plasmid DNA was

achieved with lithium acetate and standard protocols [57].

Growth and induction of yeast strains for the biochemical screen

were essentially as described [9]. Cell patches were inoculated in SD

(2%) -ura medium, grown overnight, washed, reinoculated in

raffinose (4%) -ura, and grown to an absorbance at 600 nm of 0.8.

Cultures were pooled by combining 5 ml of each and were then

induced with 4% (final concentration) galactose for three hours.

GST-fusion proteins were isolated on glutathione-Sepharose beads

as previously described [58]. Isolated proteins conjugated to beads

were dried and kept at 4uC no longer than overnight. The

biochemical screen followed an iterative process with the first-round

pools comprised of eight fusion proteins followed by fractionation of

positive pools by halves until single positives were identified.

Expression of full-length BUD6 and associated fragments was in

E. coli strain BL21, which was induced with 0.4 mM IPTG for

three hours. Fusion proteins were obtained as described [59].

Protein Kinase Assays
The biochemical screen was designed to screen roughly 10% of

the yeast proteome. We reasoned that a substrate responsible for

the shared essential function of Ste20p and Cla4p might itself be

essential. We thus created a library of 539 essential proteins based

on their GO functional and localization annotations [60],

reasoning that these would likely still exhibit biochemical diversity

characteristic of the protein population as a whole. GO terms used

for the selection included broad categories including signal

transduction, protein translation or degradation, cell cycle

progression, among others.

Kinase assays were as described [33]. Dried beads with GST-

fusion proteins bound were resuspended in kinase buffer

supplemented with 2 mM ATP and 1 ml [c-32P]-ATP (4,500 Ci/

mmol, 10 Ci/ml) and were split in two aliquots, one of which

received 1 ml of recombinant GST-Ste20p and the other received

an equal volume of protein storage buffer. Reaction mixtures were

incubated for 30 minutes and then boiled for 5 minutes after the

addition of Laemmli buffer. Samples were separated by SDS-

PAGE, dried, and visualized by autoradiography.

Mass Spectrometry
HPLC grade water and acetonitrile were purchased from Fisher

Scientific (Whitby, ON, Canada). Formic acid (FA) and ammo-

nium bicarbonate were obtained from EM Science (Mississauga,

ON, Canada). Fused silica capillaries were purchased from

Polymicro Technologies (Phoenix, AZ). Jupiter C18, 5 mm particle

material was from Phenomenex (Torrance, CA).

All LC-MS analyses were performed using a Nano-Acquity Q-

TOF Premier (Waters, Millford, MA) with a home-made C18 pre-

column (5 mm6300 mm i.d. Jupiter 3 mm, C18) and an analytical

column (10 cm6150 mm i.d., Jupiter 3 mm C18). Sample injection

was 10 mL, and tryptic digests were first loaded on the pre-column

at a flow rate of 4 mL/min and subsequently eluted onto the

analytical column using a gradient from 10% to 60% aqueous

acetonitrile (0.2% formic acid) over 56 minutes.

Identification of Predictive Motifs
S. cerevisiae protein sequences were obtained from the Saccharo-

myces Genome Database (SGD) in August 2008 [46]. The sequence

of each of the 19 known substrates (14 from the in vitro screen and

five from the literature forming the positive learning set) was

scanned with a six-amino acid sliding window to identify sequence

fragments where at least three of the residues are predicted to be

exposed according to ACCpro 4.0 [44]. The identified fragments

(with overlapping fragments merged into single fragments) were

then used as input to the Teiresias algorithm [43] in order to

identify motifs characterized with regular expressions. The

algorithm parameters were set so that identified motifs must

contain at least three literal (i.e. non-wildcard) residues and that

any three consecutive literals span at most six amino acids.

Each motif m was evaluated with respect to the positive and

negative (non-substrates of the in vitro screen) learning sets by

computing its selectivity ratio (sm) = (Sjwj,m/Npos)/( Skwk,m/Nneg)

where Npos=19 is the size of the positive set, Nneg=525 is the size of

the negative set, wj,m is the total weight of motif m for substrate j for

j=1..Npos and wk,m is the total weight of motif m for non-substrate k

for k=1..Nneg. The total weights were computed as shown in

Figure 1. The multiple sequence alignments were constructed with

ClustalW2 [61] together with Saccharomyces sequences and

orthology mappings obtained elsewhere [46,62]. An alignment

may include two sequences for proteins in S. bayanus and/or S.

mikatae since for each of these species there were two different

research groups that generated sequences. In such an alignment,

the conservation score considers whether the motif occurrence was

conserved in any of the sequences for a given organism and

therefore does not double-count. The weights of overlapping motif

occurrences were adjusted so that the overlapping region

contributes to the weight of only one of the motif occurrence

(Figure 1).

The Predictor of Ste20p Substrates and Its Cross-
Validation
The predictor is implemented as a naı̈ve Bayes classifier, and

thus computes the posterior probability (i.e. prediction score) that

a given sequence t encodes a Ste20p substrate as follows:

scoret~ 1zs1
{wt,1

s2
{wt,2

. . . sn
{wt,n

P !Sð Þ=P Sð Þ
� �{1

ð1Þ

where

P Sð Þ=14/539 is the substrate identification rate of the in vitro

screen (i.e. the prior probability),

P !Sð Þ=1 - P Sð Þ is the non-substrate identification rate of the in

vitro screen,

sm represents the selectivity ratio for motif m,

wt,m represents the total weight of motif m in sequence t, and

n=23 is the number of motifs used by the predictor (each with

sm§10).

The wt,m values used in (1) are computed as in Figure 1 except

that conservation is not considered and consequently, wt,m,i= ut,m,i
for the ith occurrence of motif m in sequence t. Not considering

conservation during prediction allows for added flexibility. For

example, it may not be possible to map the sequence of a synthetic

peptide to a region of the genome that can be assessed for

conservation across species. However, the peptide can still be

assessed for the likelihood that it is a Ste20p substrate based on the

presence/absence of predictive motifs in its sequence.

Rather than using standard leave-one-out cross-validation

where in each iteration, a different (positive or negative) learning

example is not used to generate the predictor, we only left out

positive examples. A random selection of 100 proteins from the

negative set (,20%) was set aside for testing the predictors

resulting from the different iterations. We cross-validated in this
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way due to the computationally intensive process of deriving

selectivity ratios for the thousands of motifs discovered by Teiresias

during each iteration.

We experimented with different parameter values and used the

overall performance, estimated with the area under the receiver-

operator-characteristic curve (AUC), of the resulting predictors to

guide the selection of optimal parameter values for the final

predictor. For example, the selectivity ratio threshold controls the

number of motifs that are used by the predictor, since the smaller

the threshold the more motifs that will have selectivity ratios above

the threshold, and all motifs that pass the threshold are used.

While using more motifs increases the possibility of false positives

(i.e. a reduction in specificity), since it becomes more likely for any

sequence to contain an occurrence of any predictive motif by

chance, the sensitivity of the predictor improves (data not shown).

For different parameter values, we estimated the AUC of the

resulting predictors using the variation of leave-one-out cross

validation described above. The parameter values that result in

larger AUCs are better. The optimal parameter values used to

build the final predictor are described above.

To integrate the amino acid preferences at the phosphorylation

sites of Ste20p-related kinases, we obtained the PSSMs for Pak1,

Pak2 and Pak4 [13]. The PSSMs were modified to reflect the

background frequencies of amino acids in the S. cerevisiae proteome

(computed from our collection of protein sequences). Specifically,

each PSSM is a 20x10 matrix with entries defined as xij= log(pij/bi)
where pij is the probability of observing amino acid i at position j

(in a 10-residue subsequence with the putative phosphorylated

residue in the centre), and bi is the background frequency of amino

acid i. For any given serine or threonine (S/T) in a sequence t, the
PSSM score is defined as the sum of the xij values corresponding to

the observed amino acids flanking the S/T. We define an S/T

with a PSSM score greater than or equal to a selected threshold as

a likely phosphorylation site of the corresponding kinase.

The selectivity ratio for PSSM m with a given score threshold is

defined as sm= (Sjwj,m/Npos)/(Skwk,m/Nneg), analogous to the selec-

tivity ratio for a regular-expression-based motif. However, here the

total weight of PSSM m in a sequence t is defined as wt,m=Sict,m,i
where ct,m,i represents the conservation score of the ith likely

phosphorylation site in t according to m, and is defined as the

fraction of Saccharomyces orthologues that also have a likely

phosphorylation site according to m at the position aligned to

the likely site in S. cerevisiae. For each PSSM, we computed

selectivity ratios using a range of score thresholds and selected the

threshold that produced the largest selectivity ratio. The selected

threshold for a PSSM m and the corresponding sm are used to

integrate m into the naı̈ve Bayes classifier (1). As with a regular-

expression-based motif, the wt,m values used in (1) are simplified;

here, wt,m is equal to the number of likely phosphorylation sites in

sequence t according to PSSM m (with the selected threshold).

Gene Ontology (GO) Analysis
GO slim annotations from all three ontologies were obtained

from SGD in August 2008 [46]. The significance of the over-

representation of GO category gene sets amongst the predicted

substrates was computed using the hypergeometric test in the

context of all annotated protein-coding genes. For each ontology,

Benjamini and Hochberg multiple-test correction [63] was

performed across all categories exhibiting a non-zero overlap with

the predicted substrates to obtain adjusted P values [63].

Genetic and Physical Interaction Network Analysis
All S. cerevisiae genetic and physical interactions were obtained

from BIOGRID v2.0.40 [64]. The networks were reduced to

protein-coding genes and self-interactions were removed. To avoid

bias and redundancy, Ste20p-substrate interactions from [8] were

omitted from the physical network. The neighborhood of a gene/

protein is defined as the set of genes/proteins that interact with it

in the network. The significance of the overlap between a

neighborhood and the set of predicted substrates was computed

using the hypergeometric test in the context of all protein-coding

genes. For each network, Benjamini and Hochberg multiple-test

correction [63] was performed across all neighborhoods exhibiting

a non-zero overlap with the predicted substrates to obtain adjusted

P values.

If a gene/protein has been investigated in multiple interaction

studies, it is likely to have more identified interactions compared to

a less-studied gene/protein. Consequently, the interaction neigh-

borhood of a frequently studied gene/protein is more likely to

significantly overlap with the set of predicted substrates. To correct

for this artifact of frequent study, we counted the number of times

a gene/protein was used as a bait in interaction screens (b). We

then considered a linear model that uses b to predict the multiple-

test corrected P value for overlap. The model was trained using

data for genes/proteins whose neighborhoods exhibit a non-zero

overlap with the set of predicted substrates. The residuals of the

model were taken as P values adjusted for frequent study (with

negative residuals forced to zero).

The one-sided Mann-Whitney test was used to determine

whether STE20 interactor neighborhoods tend to have lower P

values compared to the neighborhoods of other genes in the

network. The same statistical test was performed to determine

whether the negative set proteins that are predicted as Ste20p

substrates tend to be in more STE20 GINs compared to all

negative set proteins (see Figure S4 and Text S1). We also used

GIN and PIN analyses to investigate known false negatives of the

predictor (see Table S7 and Text S1).

For Figures 4 and 5, we focused on predicted substrates that are

present in at least 1 STE20 interactor GIN or PIN, respectively.

The overlap profiles were clustered using the Ward agglomerative

method and the binary distance metric (see hclust documentation

in the R statistical computing framework [65]). The significance of

branch points in the resulting dendrograms was measured using

multiscale bootstrap resampling (see the documentation for the

pvclust R package [65]). The Approximately Unbiased (AU) score

for a branch point is the percentage of resamples in which the

branch point occurs so that larger percentages represent more

significant branching.

Supporting Information

Figure S1 Receiver-Operating Characteristic (ROC) curves of

Ste20p substrate predictors. The ROC curves were estimated with

a modified version of leave-one-out cross-validation (see Materials

and Methods). All predictors are naı̈ve Bayes classifiers that

integrate the motifs identified in this study and/or position-specific

scoring matrices (PSSMs) that specify the amino acid preferences

at the phosphorylation sites of specific Ste20p-related kinases. In

the key, ‘‘all PAK PSSMs’’ refers to the Pak1, Pak2 and Pak4

PSSMs. The estimated true and false positive rates of the predictor

that only integrates our motifs, used with a threshold of 0.9, are

indicated by the dotted red line.

Found at: doi:10.1371/journal.pone.0008279.s001 (0.12 MB TIF)

Figure S2 The statistical significance of clusters based on the

Genetic Interaction Neighborhood (GIN) analysis shown in

Figure 4. Each branch point is labeled with an Approximately

Unbiased (AU) score (see Materials and Methods) such that a

score $95 corresponds to a P value #0.05 indicating the
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significance of the cluster. (A) Dendrogram of STE20 genetic

interactors clustered by the overlap of their respective GINs with

the set of predicted substrates. The box highlights a cluster

containing genes associated with cell-cycle progression and

polarized growth. (B) Dendrogram of predicted substrates

clustered by their overlap with STE20-linked GINs.

Found at: doi:10.1371/journal.pone.0008279.s002 (0.78 MB TIF)

Figure S3 The statistical significance of clusters based on the

Physical InteractionNeighborhood (PIN) analysis shown in Figure 5.

Each branch point is labeled with an Approximately Unbiased (AU)

score (see Materials and Methods) such that a score $95

corresponds to a P value #0.05 indicating the significance of the

cluster. (A) Dendrogram of Ste20p physical interactors clustered by

the overlap of their respective PINs with the set of predicted

substrates. (B) Dendrogram of predicted substrates clustered by their

overlap with Ste20p-linked PINs. The box highlights a cluster of

proteins involved with polarity.

Found at: doi:10.1371/journal.pone.0008279.s003 (0.39 MB TIF)

Figure S4 STE20 genetic neighborhood analysis suggests that

several predicted substrates in the negative set may represent false

negatives of the biochemical screen. There are 34 negative set

proteins that are predicted as substrates and some are present in

the neighborhoods of STE20 genetic interactors (i.e., a table cell is

red if the predicted substrate of the column is present in the

genetic neighborhood of the gene of the row, white otherwise). In

general, the negative proteins predicted as substrates are present in

more neighborhoods compared to all proteins in the negative set

(P > 3.1761025, Mann-Whitney test). See Figure 3A for an

illustration of an interaction neighborhood.

Found at: doi:10.1371/journal.pone.0008279.s004 (0.44 MB

TIF)

Table S1 The substrate prediction scores of all yeast proteins.

Found at: doi:10.1371/journal.pone.0008279.s005 (0.73 MB

XLS)

Table S2 GO slim Cellular Component analysis of predicted

Ste20p substrates (score $0.9).

Found at: doi:10.1371/journal.pone.0008279.s006 (0.03 MB

DOC)

Table S3 GO slim Biological Process analysis of predicted

Ste20p substrates (score $0.9).

Found at: doi:10.1371/journal.pone.0008279.s007 (0.03 MB

DOC)

Table S4 GO slim Molecular Function analysis of predicted

Ste20p substrates (score $0.9).

Found at: doi:10.1371/journal.pone.0008279.s008 (0.03 MB

DOC)

Table S5 Predicted substrates (score $0.9) in the neighborhoods

of STE20 genetic interactors.

Found at: doi:10.1371/journal.pone.0008279.s009 (0.06 MB

DOC)

Table S6 Predicted substrates (score $0.9) in the neighborhoods

of Ste20p physical interactors.

Found at: doi:10.1371/journal.pone.0008279.s010 (0.05 MB

DOC)

Table S7 The number of STE20-linked Genetic Interaction

Neighborhoods (GINs) and Ste20p-linked Physical Interaction

Neighborhoods (PINs) in which each known Ste20p substrate

(from the positive learning set) appears.

Found at: doi:10.1371/journal.pone.0008279.s011 (0.04 MB

DOC)

Text S1 Analysis of the predictor that integrates the amino acid

preferences at the phosphorylation sites of specific Ste20p-related

kinases. GIN and PIN analyses to investigate the known false

negatives and false positives generated by the predictor.

Found at: doi:10.1371/journal.pone.0008279.s012 (0.03 MB

DOC)
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