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Abstract

We describe and report initial results on us-

ing virtual machines as a vehicle to deploy

machine translation technology to the market-

place. Virtual machines can bridge the gap be-

tween the computing infrastructure typically

used in research environments and commod-

ity PCs typical of office environments. A key

component is the compact representation of

the underlying databases and models in tightly

packed tries, which allows us to run state-of-

the art translation technology on regular office

PCs.

1 Introduction

The transfer of information technologies from the

research lab to the end user has traditionally been

an expensive and tedious process. In addition to the

need to ensure robustness and reliability of the un-

derlying technology, and the effort necessary to in-

tegrate it into the end user’s work flow, it often also

involves porting software implementations from one

platform to another. Research prototypes are fre-

quently implemented on Unix or Linux platforms,

whereas corporate IT infrastructures often rely pri-

marily on Windows.

The considerable cost of either porting software

from one platform to another, or purchasing and

maintaining the hard- and software required to run

new technology in its ‘native’ format constitutes a

considerable obstacle to fast deployment of cutting-

edge research results to the marketplace. It also

makes it expensive for potential customers to assess

the value that such new technology could add to their

business processes.

In this paper, we argue and demonstrate that virtu-

alization is a viable and cost-effective way of trans-

ferring machine translation technology from the re-

search lab to the real world. In the next section, we

first briefly describe the Portage machine translation

system developed at the National Research Council

Canada. Section 3 introduces the concept of virtu-

alization. In Section 4 we discuss the design and

use of PortageLive, an instantiation of Portage as a

virtual machine. We tested PortageLive in a num-

ber of scenarios, from small, compact machines that

could run on a laptop to parallelizations on computer

networks composed of workstations that are typical

of office environments. The results of these experi-

ments are reported in Section 5. Section 6 concludes

the paper.

2 Portage

Portage (Sadat et al., 2005) is a state-of-the-art sys-

tem for phrase-based statistical machine translation

(Koehn et al., 2003). The advantage of statistical ap-

proaches to machine translation is that they require

much less human labor than language-specific sys-

tems carefully designed and constructed by human

experts in particular languages or language pairs. In-

stead of human expertise, the system relies on exist-

ing collections of translations to learn how to trans-

late. Under active development since 2004, Portage

has been employed to translate between a wide va-

riety of language pairs, involving such languages as

Arabic, Chinese, English, Finnish, French, German,

and Spanish. Special research attention has been

given to translation from English into French and

vice versa, and from Chinese to English.

In the training phase, Portage learns from large



source sentence: Johann hat das Buch gelesen . 

target hypotheses: John has read the book .

Johnny possesses the novel read . 

….

P(John|Johann) = 0.8, P(Johnny|Johann) = 0.2

P(has|hat) = 0.6, P(possesses|hat) = 0.4

P(the book|das Buch) = 0.7, P(the novel|das Buch) = 0.3

P(read|gelesen) = 0.4, ….

….

Phrase translation model 

P(John has read) = …

P(has read the) = …

…

Language model 

Decoder

Figure 1: Phrase-based statistical machine translation

with Portage

collections of bilingual text how short contiguous

sequences of words (“phrases”) in one language

(source) are most often translated into phrases in

the other language (target). Pairs of phrases and

their translations as observed in the training data are

stored in a probabilistic dictionary of phrase-level

translations, the phrase table. During actual transla-

tion (“decoding”), the input is segmented into con-

tiguous groups of words for which translations are

listed in the phrase table. The corresponding trans-

lation fragments are then concatenated to form the

translation of the entire input sentence. Since most

phrases have more than one likely translation, the

decoder uses probabilistic models of phrase trans-

lation, phrase reordering and target language flu-

ency to rank partial translation candidates during de-

coding. Unpromising candidates are dropped; the

other ones are explored further. At the end, the de-

coder outputs the best-scoring “full” hypothesis, i.e.,

a translation covering the entire input sentence. Op-

tionally, the system can produce “n-best lists” of the

n best translations found during the docoding pro-

cess. Figure 1 illustrates the process.

3 Virtualization

In the context of computing, virtualization (Popek

and Goldberg, 1974) is the abstraction of computer

resources. In the realm of personal computers, the

concept is most prominent in the form of virtual

memory: the operating system (OS) pretends to have

more main memory than it actually has. The vir-

tual memory manager maintains an index of virtual

memory pages1 and stores on hard disk those pages

that contain data but are currently not in active use.

When such memory pages are eventually accessed,

they are swapped into memory against others that

are written to disk or simply replaced, if nothing has

changed since the last time they were read. Like a

good valet parking service, a virtual memory man-

ager manages a precious resource (fast but expensive

main memory) in a way that ideally gives a large

number of customers the convenience of having (al-

most) immediate access to this resource.

Figure 2: Virtual machines (guests) running as applica-

tions on a physical host machine.

Virtual machine monitors (VMMs) go one step

farther. Running as an application on a host OS,

they emulate an entire computer running an instance

of an embedded guest OS, translating hardware re-

quests from the guest OS into system calls to the

host OS. They can also translate outside requests

into calls to the embedded host system, thus creat-

ing a virtual node on a computer network. Since ev-

ery virtual machine is simply an application instance

from the host OS’s point of view, multiple nodes can

be emulated on a single physical computer, as shown

in Figure 2.

Virtualization has received increased attention in

recent years as a way of reducing the hardware cost

and the ecological impact of large computing facili-

ties. Since not every host is 100% busy at all times,

it is more efficient to have multiple hosts share phys-

ical hardware resources.

Apart from technologically advanced virtualiza-

tion solutions aimed at optimizing resource use of

IT infrastructures from large multi-user business

servers to enterprise computing centers, there are

also lightweight versions for single desktop comput-

ers. There are two typical uses for virtual machines

1A memory page is a contiguous block of memory, often

about 4KB in size.



total count 20

a 13

aa 10

ab 3

b 7

(a) Count table 20

13 7

10 3

(b) Trie representation

a b

a b

0 13 offset of root node

1 10 node value of ‘aa’

2 0 size of index to child nodes of ‘aa’ in bytes

3 3 node value of ‘ab’

4 0 size of index to child nodes of ‘ab’ in bytes

5 13 node value of ‘a’

6 4 size of index to child nodes of ‘a’ in bytes

7 a index key for ‘aa’ coming from ‘a’

8 4 relative offset of node ‘aa’ (5 − 4 = 1)

9 b index key for ‘ab’ coming from ‘a’

10 2 relative offset of node ‘ab’ (5 − 2 = 3)

11 7 node value of ‘b’

12 0 size of index to child nodes of ‘b’ in bytes

13 20 root node value

14 4 size of index to child nodes of root in bytes

15 a index key for ‘a’ coming from root

16 8 relative offset of node ‘a’ (13 − 8 = 5)

17 b index key for ‘b’ coming from root

18 2 relative offset of node ‘b’ (13 − 2 = 11)

(c) Trie representation in a contiguous byte array.
In practice, each field may vary in length.

Figure 3: A count table (a) stored in a trie structure (b) and the trie’s sequential representation in a file (c). As the

size of the count table increases, the trie-based storage becomes more efficient, provided that the keys have common

prefixes ( from Germann et al. (2009)).

on desktop computers: first, to provide a sandbox,

a safe testbed for software development that allows

a machine to crash without crashing the actual com-

puter or interfering with the outside world. And sec-

ond, to run two operating systems concurrently on a

single computer. Since the physical host computer

and the guest running as a virtual machine can com-

municate via networking protocols, it is possible, for

example, to emulate a Linux server on a PC running

Windows. Virtualization technology thus allows de-

ployment of software developed on one OS on an-

other without the need to port software across oper-

ating systems.

The benefits of virtualization of course come at a

price: the additional layer of abstraction also adds

a layer of indirection, which can result in a loss of

performance compared to a native system.

4 Virtualizing Portage

4.1 Compact, fast-loading models

Statistical machine translation is resource-intensive

in many respects. The decoder needs fast access to

language models and phrase tables, and large search

graphs have to be stored in memory to keep track

of partial translation hypotheses. To ensure fast ac-

cess to the underlying databases (i.e., language mod-

els and translation tables), it is highly desirable to

keep them in main memory; disk access and even

network access to models distributed over a network

of computers are several orders of magnitude slower

than accessing a computer’s main memory. Espe-

cially language models, which are queried millions

of time during the translation of a single sentence,

should be kept in memory wherever possible. While

virtual memory allows us to go beyond the limita-

tions of physical memory occasionally, the cost of

memory swapping is so high that it is worth spend-

ing some effort on reducing the memory footprint of

model storage.

Both language models and phrase tables associate

information with token sequences that have a con-

siderable amount of overlap (i.e., common subse-

quences). A trie (Fredkin, 1960), or prefix tree is

a well-known data structure for storing such collec-

tions of sequences with common prefixes. Each se-

quence is represented by a single node in a tree with

labeled arcs; each path from the root node to a node

in the tree spells out the respective token sequence,

as shown in Figures 3a and 3b. Thus, prefixes com-



mon to multiple sequences in the collection need to

be stored only once. Retrieval of information is lin-

ear in the length of the key.

Tries can be represented in linear byte sequences

(e.g, a file) as shown in Figure 3c. Relative offsets

within the byte string are used to indicate links be-

tween parent and child nodes.

In our implementation of tries (Germann et al.,

2009), we save space by using symbol-level com-

pression. Token labels are represented by a unique

integer IDs, which are assigned in decreasing order

of token frequency: the more frequent a token is, the

lower its ID. Token IDs and file offsets are stored

in a variable-width encoding scheme that represents

each number in base-128 notation. The full range of

base-128 digits (0–127) can be represented in 7 bits;

the eighth bit in each byte is used to indicate whether

or not more digits need to be read.

We call this technique tight packing. The space

savings are considerable. Language models encoded

as tightly packed tries consume less space than lan-

guage models in ARPA text format that have been

compressed with the gzip utility, yet still provide di-

rect access in time linear in the length of the key.

More importantly, they have been shown to require

only about a quarter of the physical memory needed,

for example, by the SRI language modeling tookit

(Stolcke, 2002) for representing identical language

models. Unlike in-memory implementations like the

SRI toolkit, a tightly packed language model does

not even need to be fully loaded into memory. In

practice, actual memory use can be as little as 10-

15% of the physical memory needed by the SRI

toolkit (Germann et al., 2009).

We achieve this by using the memory mapping

mechanism provided by most modern operating sys-

tems. A file on disk permanently storing the trie

structure is mapped directly into a region of vir-

tual memory. When an application accesses that re-

gion of virtual memory, the virtual memory man-

ager transparently takes care of loading the respec-

tive data pages from disk if necessary. This approach

has several advantages. First, by using a representa-

tion that can be mapped directly into memory, we do

not need to spend any time rebuilding the structure

at load time or copying data from the OS-level file

cache (which buffers the data read from and written

to disk in order to provide faster access). Second,

since we are using a read-only structure, the vir-

tual memory manager can simply drop pages from

physical memory if memory swapping is inevitable.

Otherwise, all changes to the data structures stored

in memory would have to be written to disk when

memory swapping takes place (although that might

happen in the background, only putting additional

load on the disk without an immediate effect on av-

erage run-time). Third, only those data pages that

are in fact being accessed during translation are ac-

tually read from disk. And fourth, the initialization

delay due to model loading between starting the de-

coder and being ready for translation is almost en-

tirely eliminated. With in-memory implementations

of the underlying models, the Portage decoder has

an initialization lag of about one to two minutes.

With tightly packed tries, the decoder is ready to

translate after about two seconds. As relevant pages

are loaded into memory, translation is slower at first,

but almost achieves the same throughput once the

relevant pages are available in physical memory.

4.2 Protecting the host against excessive

resource demands of the translation engine

Since translation is such a resource-intensive task,

implementing translation engines as VMs does not

only help bridge the gap between different operat-

ing systems but also allows us to shield the host sys-

tem from excessive resource demands of the trans-

lation engine running on a guest VM. This is par-

ticularly relevant in a scenario where computing re-

sources need to be shared between time-critical ap-

plications (e.g., interactive use of office software)

and a translation process that is possibly running in

the background. Without virtualization, the oper-

ating system has two choices in responding to re-

source demands from an application: granting them

(which may lead to heavy memory swapping if there

is not enough physical memory to accommodate all

the virtual memory requested), or denying them,

which typically means that the requesting applica-

tion crashes or aborts. Virtualization allows us to put

a wall around an application: we can limit the max-

imum amount of physical memory available to the

application (or more precisely: the amount of ‘phys-

ical’ memory in the virtual machine on which that

application runs) without forcing the application to

abort if it needs more memory than it has been alot-



Table 1: Corpus statistics for the training corpus used in

the experiments

Fr En

data source Canadian Hansard

running words 113,539,694 101,274,018

vocabulary size 211,053 205,221

sentence pairs 5,239,985 same

phrase table

# of phrase pairs 57,155,768 same file

file size

tightly packed 975 MB same file

.gz 1.6 GB same file

Language model:

unigrams 211,055 —

bigrams 4,045,364 —

trigrams 5,871,066 —

4-grams 8,689,908 —

5-grams 9,712,388 —

file size

tightly packed 274 MB —

ARPA.gz 290 MB —

ted. In this case, the guest VM running the appli-

cation will start swapping memory internally, with

only marginal effects (increased disk load) on appli-

cations running outside the virtual machine.

4.3 Accessing the translation engine

Virtual machines can be accessed via an IP address

like other machines on a local network. This al-

lows us to use standard communication protocols

such as TCP/IP, SSH, HTTP or the SOAP frame-

work to communicate with the translation engine. In

the experiments reported in the next section, we used

an SSH connection to send the test input through a

translation pipe.

5 Experiments

We tested PortageLive in a variety of scenarios to

determine the trade-offs between resource allocation

and translation speed. The top part of Table 2 shows

translation speeds for English-to-French translation

on VM machines with 512, 1024 and 2048 MB

of memory running on a 32-bit host under Win-

dows XP Professional, using VMware Server.2 The

2http://www.vmware.com/products/server/

Table 2: Translation times on a single VM and with 5-

way parallelization on 5 VMs running on 5 distinct hosts.

1st run best run

VM/#a RAM sec.b w/sc sec.b w/sc

1 / 1 512 MB 2,917 7.3 2,917 7.2

1 / 1 1 GB 457 46.7 112 189.6

1 / 1 2 GB 390 54.6 105 202.3

5 / 1 512 MB 1,066 20.0 886 24.0

5 / 1 1 GB 285 74.7 55 388.0

5 / 2 1 GB 224 95.2 59 360.4

5 / 1 2 GB 141 151.0 32 667.7

5 / 2 2 GB 92 231.7 22 959.8

5 / 4 2 GB 172 123.8 24 905.2

a # of VMs (on different hosts) / decoder instances per VM
b End-to-end time for translation of 21,290 words (En to Fr)
c Words per second

Host machines: Dell Optiplex 755 w/ 3.25 GB of RAM; Intel
Core 2 DUO E8500 processor 3.16GHz; OS: Windows XP
Professional SP3. Virtualization software: VMware Server
version 2 emulating a machine with 1 or 2 CPUs. Guest OS:
CentOS 5.2.

statistics for the corpus underlying the system are

shown in Table 1. Due the hard limit of 4 GB on

the size of virtual memory on 32-bit machines, we

were not able to run very large systems in these

experiments, such as our Chinese-English system,

which requires more than 4 GB just for the data ta-

bles, not to mention the memory required to explore

the translation hypothesis space. Nevertheless, our

English-to-French system is by no means small —

the training corpus is about five times as large as the

French-English subset of the popular Europarl cor-

pus (Koehn, 2005).

In our experiments, we translated a test corpus

of 21,290 words of running English text repeatedly

to gauge the difference in performance between a

freshly started system and a system that has been

running for a long time, so that all data can be as-

sumed to be cached in the OS’s file cache, mem-

ory permitting. If sufficient memory is available to

keep all models in memory (2GB for this particu-

lar translation engine), the translation engine speeds

up over time. At first it is sluggish, because model

data needs to be transferred from disk into memory.

Later on, translation is much faster, because most



of the (virtual) memory pages needed for translation

are already in physical memory.

In this particular configuration of an English-to-

French translation system, translation speed suffers

dramatically when less than 1 GB is available to the

translation engine. Notice that there are practically

no caching effects on repeated runs: virtual memory

pages are constantly being swapped in and out of

memory. At 1 GB, there is a noticeable performance

loss compared to a VM with 2 GB, but most of the

time is still spent translating, not swapping memory.

What do these numbers mean in practice? The

most important result, we think, is that this exper-

iment suggests that it is feasible to run an SMT

engine on a single state-of-the-art desktop or lap-

top computer concurrently with other applications,

including interactive use (email, word processing,

etc). Since the virtual host can be accessed like an-

other machine on a local network through a number

of networking protocols (cf. Section 4.3), it is pos-

sible to integrate translation capabilities easily into

applications. Instead of sending a request on another

host on the Internet or Intranet, the request is sent to

the virtual machine hosted on the same computer.

This is an attractive option for providing machine

translation in situations where no network connec-

tions are available.

Another possible application is to use computers

in an existing office network for distributed trans-

lation processing. When the burden of translation

is distributed over many shoulders, even inefficient

“small” VMs can collectively achieve satisfactory

overall translation speeds. We can think of two sce-

narios. One is to have many small translation servers

running permanently as virtual machines on a num-

ber of physical computers (including desktop com-

puters used for regular office work) on a Local Area

Network. A central translation management server

pushes small translation tasks to the servers and

gathers the results. The other one is a scenario where

VMs are started when a particular physical machine

is idle, e.g. in lieu of a screen saver. The VM then

pulls a translation request from a central server, pro-

cesses it and returns it to the central server, which

collects the results.3 The first scenario offers better

3This strategy is well-known from public-benefit grid

computing projects such as BOINC (http://boinc.
berkeley.edu/).

predictability of the translation volume that can be

handled; the second scenario can be used to better

utilize existing machines during idle periods with-

out interfering with ongoing tasks when they are in

use.

We simulated the first scenario by running 5 vir-

tual machines on identical desktop computers that

also serve as our office desktops computers. The re-

sults are shown in the bottom part of Table 2. The

first thing to observe is that even though translations

were run simultaneously on 5 machines, we gener-

ally do not achieve 5 times the translation speed.

This is again due to the overhead of having to load

data gradually from disk into memory. Noteworthy

is the good performance of running two decoders in

parallel on an emulated 2-CPU machine with 2 GB

or RAM. What is happening here? Due to memory

mapping, the two processes share the memory space

that contains the models, so that one decoder bene-

fits from earlier page lookups of the other, and vice

versa. Interestingly, if we run four decoders in paral-

lel on a single 2-CPU VM, the performance suffers.

We assume that this is due to race conditions, espe-

cially with respect to disk access.

6 Conclusion

The goal of our experiments was to evaluate the fea-

sibility of using virtualization to aid the technology

transfer from the research lab to users of machine

translation. Our experiments have shown that this is

a viable option. A key component is the use of com-

pact representations of the underlying data bases, as

described in Section 4.1, which allow us to fit all

our models in the 4 GB memory limit of 32-bit ma-

chines.

Virtualization allows fast transfer of new tech-

nology to existing and potential customers and end

users without significant investments in porting soft-

ware between operating systems, or in hard- and

software to run the technology in its ‘native’ envi-

ronment. This is a particularly attractive option dur-

ing exploratory stages of technology assessment in a

business environment. Moreover, it allows easy de-

ployment of complex software installations. From

the user’s perspective, a virtual machine comes as a

single file that is ‘played’ by the virtualization soft-

ware.
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