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Model for the analysis of enzymatic
proton-transfer reactions with an application
to soybean lipoxygenase-1 and six mutants
Willem Siebranda* and Zorka Smedarchinaa

A general analytical model is introduced for the analysis of temperature-dependent rate constants in enzymatic
hydrogen and deuterium transfer reactions. It exploits the relationship between kinetic isotope effects (KIEs) and their
temperature dependence in tunneling reaction to derive criteria that indicate whether a data set can be assigned
to one rate-determining tunneling step in the enzymatic reaction sequence. If so, the model evaluates the relative
contributions of the tunneling mode and supporting skeletal modes to transfer and provides information on these
modes. Recently reported kinetic data on proton transfer in linoleic acid catalyzed by soybean lipoxygenase-1 (SLO1)
and six mutants are analyzed by themodel, which includes two oscillators, one representing protonmotion relative to
the skeletal framework and the other the supporting framework motions. It is concluded that most but not all
components of this data set can be assigned to a single tunneling step, possible exceptions being associated with the
highest observed rates, in agreement with evolutionary expectations. This still allows a complete analysis, namely in
terms of the deuteron rate constants. The analysis evaluates how the contributions to proton transfer of the two
modes and the electronic term depend on transfer distances in the enzyme and its mutants. It also provides
rationalizations for several apparent anomalies, such as the vanishing of the activation energy for some mutants
and the observed invariance of the KIE among mutants with very different activity. Copyright � 2010 John Wiley &
Sons, Ltd.
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INTRODUCTION

In chemical reactions, protons behave as light particles in

the sense that their wave character influences their transfer

properties. In practice, this means that when encountering a

potential-energy barrier, a proton, unlike a heavier particle, is not

restricted to going over the top but may tunnel through. Whether

tunneling offers a kinetic advantage depends on the thermal

energy. If it is of the order of the barrier height, little is gained by

tunneling, but if it is much smaller, tunneling is the only practical

transfer mechanism. Barriers will generally be high if the proton is

part of a strong bond that needs to be broken. In this contribution

we consider cleavage of a CH bond, specifically cleavage

catalyzed by enzymes under biological conditions. In view of

the strength of the bond and its low polarity, this cleavage is likely

to be obstructed by a high barrier. The reaction therefore requires

a strong catalyst that can weaken the bond and thereby lower

the barrier for cleavage and stabilize the final state to a level

where the thermal energy is large enough for the proton to

escape from the bond. We may reasonably assume that the

evolution of suitable enzymes has been a gradual process aimed

at meeting minimum requirements, i.e., at lowering the barrier

just enough to allow the proton to tunnel through it at a

biologically acceptable rate or, more specifically, at a rate as close

as possible to that of the next-slowest step in the enzymatic

reaction sequence.

A rough measure of the extent to which tunneling accelerates

the reaction is obtained if we replace the moving proton by a

deuteron, which has twice the mass and thus will tunnel much

more slowly. If this greatly reduces the rate, it appears that the

tunneling step is rate limiting. However, as a natural consequence

of evolution, rate-limiting steps tend to get faster and to

evolve toward a rate comparable to that of other steps. Hence

the observation of even a large kinetic isotope effect (KIE) in an

enzymatic reaction does not prove that one measures a property

of a single reaction step.

The observation of a KIE offers the investigator two different

rate constants for essentially the same reaction. The question we

wish to address in this contribution is how one can use the extra

rate constant to obtain additional information on the reaction.

The standard analysis is based on Arrhenius plots of the rate

constants against the inverse temperature for a narrow range of

temperatures in order to derive effective activation energies, but

it typically goes no further than the obvious conclusion that

the reaction involves tunneling. Computational efforts based on

elaborate, and hence not very transparent, calculations of the KIE,

usually at a single temperature, tend to be more suited to test

theoretical methods than to analyze experimental data, as key
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questions, such as whether the observations are indeed those of

a single step in the reaction sequence, are rarely considered.

Given the complexity of enzymatic reactions and our present

level of understanding, it seems more profitable to start from the

data and look for models that can relate them in a simple and

direct manner to physical parameters.

Experimentally, these data are obtained by measuring the

rate at which a specific intermediate appears or disappears

during the reaction of a substrate with a cleavable CH or CD bond.

The rate of the tunneling step will tend to increase with

temperature for two different reasons. If the reaction is up-hill,

the endothermicity DE0 ¼ E0f � E0i , i.e., the difference between

the minima of the two wells, enters the rate expression as a

Boltzmann factor; this factor is the same for both hydrogen

isotopes. In addition, whether the reaction is endothermic or

exothermic, higher levels of the CH- and CD-stretching vibrations

that govern the proton motion will be populated. Their effect

should be isotope-dependent; however, the high frequencies

of these vibrations imply that their effect on the rate will become

significant only at high temperatures and that at room

temperature the vibrational proton and even deuteron motions

may be taken to be essentially independent of temperature,

especially since measurements of the temperature dependence

tend to be limited to small temperature intervals and are thus

unsuitable for measuring small effects.

The temperature dependence may still be affected, however,

by thermal excitation of lower-frequency vibrations coupled to

the proton motion. From studies on small molecules it is known

that in the generic reaction

X-H � � � Y ! ½X � � �H � � � Y� ! X � � �H-Y
the vibrations of the (skeletal) atoms across the hydrogen

bridge affect proton transfer in two distinct ways, depending on

their symmetry. Of course, the actual transfer potential is not

symmetric, but in the model it is effectively symmetrized. In this

context, symmetric modes are those that cause displacement

along the transfer coordinate and thus modulate the tunneling

distance. Antisymmetric modes are those of the same symmetry

as the transfer mode; they cannot cause displacement along the

transfer coordinate but can add to the barrier. The symmetric

X � � � Y-stretching vibration affects proton transfer by reducing

the effective under-barrier part of the proton path. If the

frequency of this vibration is of the order of the thermal energy

or smaller, this contribution will increase with temperature and

thus give rise to a temperature-dependent rate constant.

The antisymmetric X � � � Y-stretching vibration does not affect

the reaction path, but contributes a Franck–Condon factor to

the rate constant, which for low-frequency vibrations is

temperature-dependent; it is similar to the Marcus-type

exponent describing polar-solvent reorganization. For enzymatic

tunneling reactions we can therefore distinguish two contri-

butions to the reaction path: a vibrational proton contribution

that is isotope-dependent but (essentially) temperature-

independent, and a contribution of (promoting) skeletal

vibrations that is temperature-dependent but (essentially)

isotope-independent. This temperature dependence is usually

expressed as an (effective) activation energy.

This concept allows us to represent the kinetic properties of

these reactions by a very simple model and to use this model to

test whether the data for a given reaction are consistent with the

assumption that they represent a rate-determining tunneling

step. Such a test is necessary because, as pointed out above,

evolutionary pressure will tend to accelerate the slowest step in

a reaction sequence and thus to weaken its rate-determining

status. Surprisingly, no such test has as yet been reported. This

may be due in part to the scarcity of accurate data. However,

recently, Klinman and coworkers[1,2] have taken a great step

forward by carrying out kinetic measurements on a series of

mutants of the enzyme soybean lipoxygenase-1 (SLO1), which

catalyzes proton transfer in linoleic acid. The resulting set of

kinetic data on seven closely related enzymes offers the best

information available to date to carry out this test and, in general,

to explore the mechanism of enzymatic proton transfer. The

authors[1,2] have analyzed their data, at least in part, in terms of

a two-oscillator model similar to the one mentioned above.

However, they did not develop the model to the point where it

can test whether their data are indeed representative of a single

tunneling step in the reaction sequence. Furthermore, they

limited their calculations to skeletal modes with frequencies

smaller than the thermal energy.

In this contribution we analyze the data by a different version

of the model, which turns out to yield quite different results. The

basic two-oscillator model, one oscillator representing the

motion of the proton and the other representing the skeletal

vibrations that promote transfer, as introduced in our early

tunneling studies,[3] is similar to that used by many subsequent

investigators.[1,2,4–6] It has been widely used to calculate proton

and deuteron tunneling rate constants as a function of

temperature, which necessarily involves the introduction of

empirical parameters. Here we use a different approach in which

the model is stripped down to its essentials, a procedure justified

in the Appendix, and used as an analytical tool. This results in a

set of analytical formulas which relate relative rate constants and

their temperature dependence, not only those for proton versus

deuteron transfer but also for rate constants between mutants.

These formulas, which are easy to apply, probe whether the data

set can represent a single tunneling step in a reaction sequence. If

so, they can evaluate how the transfer distance and the

contribution of the skeletal mode to the tunneling vary with

temperature or mutation. As a first application, we analyze the

data of Klinman and coworkers[1,2] on SLO1, and obtain new

results that demonstrate both the usefulness of the method and

the value of the data set as a window on enzymatic tunneling

reactions.

SUMMARY OF DATA

Lipoxygenase-1, depicted in Scheme 1, contains a six-

coordinated iron ion that alternates between Fe(III) and Fe(II)

during the catalytic cycle in which an electron is abstracted from

a CH bond of the C-11 methylene group of linoleic acid. This

weakens the bond sufficiently to allow transfer of the proton to

an OH group coordinated to the iron ion. The fact that the

Scheme 1. 6
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electron and the proton involved in the CH-bond cleavage move

to different atoms makes the reaction a nonadiabatic (NA)

process. Experimentally, the progress of the reaction is followed

by product formation, the product being a peroxide formed after

proton transfer as an intermediate in the enzymatic reaction. The

reported results include the rate constants kcat and the Michaelis

constants KM for hydrogen and deuterium transfer at up to 10

temperatures in the range 278–323 K for the wild-type (WT)

enzyme and six mutants. These constants are derived by

standard Michaelis–Menten kinetics from the initial rate of

product formation under excess substrate conditions:

kt!0 ¼ kcat½SH�=ð½SH� þ KMÞ (1)

where [SH] is the substrate (hydrogen donor) concentration,

KM ¼ ðk�1 þ kcatÞ=k1 , and k1 and k�1 are the association and

dissociation rate constants, respectively, of the reactive complex

formed by enzyme and substrate. This equation may retain its

general form for more complex reaction schemes, including

reactions in which the transfer step is reversible. On the basis of

the fit to the Michaelis–Menten kinetics, the authors[1,2] assumed

that kcat represents the first-order rate constant of a single step

in the enzymatic reaction chain, namely the step depicted in

Scheme 1. For a detailed description of the reaction and the

location of the mutant aminoacid residues, we refer to the

original papers [1, 2].

As usual, the observed rate constants kcat(T), supplied as

Supporting Information in References [1, 2], are reported in

Arrhenius form in the texts:

ln kðTÞ ’ lnA� Ea=kBT (2)

This is convenient for small temperature intervals, but it

should be realized that the Arrhenius equation is fundamentally

invalid for tunneling reactions, since their effective activation

energy varies from zero for low to the barrier height for high

temperatures. As a consequence, the physical meaning of the

parameters A and Ea at temperatures of biological interest is

not immediately clear and the same applies to the ratios AD=AH

and EDa =E
H
a . In what follows it will be shown that a proper

physical interpretation of the latter ratio can be derived for

the two-oscillator model. For this purpose, we render Ea
dimensionless by expressing it in the thermal energy kBT, i.e.,

we modify the Arrhenius plots by replacing T�1 by ln T�1 in the

abscissa so as to yield, through linear regression, a dimensionless

slope �Ea=kBT instead of �Ea=kB ; the corresponding plots are

depicted in Figs 1–6 for WT SLO1 and six mutants, and the

resulting parameters are listed in Table 1.

Because of the large KIE, a plot of ln k against ln T�1, as shown

in Fig. 1 for the WT enzyme and in Fig. 6 for the two mutants of

low activity, tends to be too flat to give a good picture of the

accuracy of Ea. Therefore, we show in Figs 2–5 separate plots of

proton and for deuteron transfer rate constants for pairs of

I553 mutants, arranged so as to yield a clear display. The errors

in the k(T) values reported in References [1, 2] correspond to one

standard deviation and are typically smaller than the vertical

separation of the points from the Arrhenius curve. The errors

listed in columns 2, 3, 5, and 6 of Table 1 are newly calculated

from linear regression. The errors listed in columns 4 and 7

correspond to the sum of the errors of columns 2 and 3, and of

columns 5 and 6, respectively. This summing may underestimate

the accuracy, since the KIE is a relative rate constant, which may

well lead to compensation of errors of individual rates, as

suggested, e.g., by comparison of the KIE of the WT enzyme, the

I553A, and the I553L mutant, which have virtually identical rate

constants. As may be expected on the basis of the scatter shown

by Figs 1–6, the errors near the midpoint of the plots, yielding

ln kð298Þ, are generally smaller than the errors in the slopes,

yielding Ea. Since they do not include the errors encountered in

the measurements of the individual rate constants, they are

probably underestimated.

The KIEs h ¼ kH=kD are of the order of 100, which proves

unequivocally that the reaction proceeds by quantum-

mechanical tunneling; however, within the narrow temperature

interval probed, the modified Arrhenius plots do not show

recognizable deviations from linearity. A remarkable feature of

the KIE values is that they vary by less than a factor of 3, while the

corresponding proton or deuteron transfer rate constants each

cover a range of three orders of magnitude. Within the series

−5.6−5.65−5.7−5.75−5.8

ln T
−1

0

2

4

6

ln
k

Figure 1. Plot of ln kH and ln kD versus ln T�1 for WT SLO1, based on data

taken from Reference [1] (Supporting Information; this holds for all

captions). Here and hereafter open symbols refer to H, closed symbols

to D

−5.6−5.65−5.7−5.75−5.8

ln T
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3.75
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Figure 2. Plot of ln kH versus ln T�1 for mutants I553A (top) and I553V

(bottom), based on data from References [1, 2], respectively6
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of I553 mutants, where the mutation occurs at a site remote

from the reaction center, the rate constants are close to those

of the WT enzyme, only those of the I553-V and -G mutants

showing a significant reduction. As illustrated in Reference [2],

the size of the side chain in the series decreases in the order

WT� I553L> I553V> I553A> I553G and hence is not clearly

correlated to the rates. With the exception of I553G all mutants

exhibit the same KIE as the WT enzyme within the error of the

measurements, irrespective of the rate constants, which for the

mutants with mutations close to the reaction center, viz. L546A

and L754A, are, respectively, two and three orders of magnitude

smaller than for the others.

In columns 4 and 5 of Table 1, we list the observed activation

energies Ea in units kBT¼ 0.59 kcal/mol for T¼ 298 K. Their small

values indicate that the transfer is exothermic. Actually, two of

the H-transfer rate constants, namely those of the mutants I553L

and I553G, displayed in Fig. 3, are independent of temperature

within the error of the measurements,[2] which seems to

be incompatible with tunneling at room temperature. While

activation energies that are too high may be an indication of

endothermicity, there seems to be no easy explanation of an

activation energy that is too low. Since the CH- and OH-stretching

modes that govern the tunneling have high frequencies, which

prevent substantial thermal excitation at room temperature,

the temperature dependence will be basically due to contri-

butions of lower-frequency skeletal modes to the reaction.

Thus the observation EHa � 0 would appear to imply the absence

of such contributions. However, at room temperature many

skeletal modes will be thermally excited and their effect on the

transfer is clearly shown by the values of EDa displayed in Fig. 5;

they are about 7 kBT for these two mutants, similar to those of

the other I553 mutants, for which EHa is in the range 3–4 kBT, as

shown in Figs 4 and 5. Again, there is no clear correlation with the

size of the side chain in the I553 series. For the close mutants

L546A and L754A, the activation energies are larger than those

for the WT enzyme and the I553 mutants, especially for proton

transfer.

Evidently, the available data pose questions that require amore

quantitative approach. In Reference [2], an interpretation of the

observed properties of the I553 series of mutants is offered based

on a model similar to that described in the next section, but not

developed so as to allow comparison with all available kinetic

observables. Also, it is restricted to the high-temperature limit,

where the thermal energy is much larger than the skeletal-mode

frequencies. The variation observed in the temperature depen-

dence of the KIE is ascribed to differences in transfer distance,

which are claimed to vary from r0¼ 1.02 to 3.14 Å. However, this

interpretation cannot be correct since the absolute rate constants

kH(298) in the I553 series vary by less than a factor of 6, while the

claimed range of transfer distances implies a variation by many

orders of magnitude. A significant change of transfer distances

is also contradicted by the fact that the mutations occur at a

site that is not close to the reaction center. Rather than making

any a priori assumptions about the causes of the observed

differences among the mutants, we choose an approach capable

−5.6−5.65−5.7−5.75−5.8
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Figure 4. Plot of ln kD versus ln T�1 for mutants I553A (top) and I553V

(bottom), based on data from References [1, 2], respectively
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Figure 3. Plot of ln kH versus ln T�1 for mutants I553L (top) and I553G

(bottom), based on data from Reference [2]
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Figure 5. Plot of ln kD versus ln T�1 for mutants I553L (top) and I553G

(bottom), based on data from Reference [2] 6
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of providing this information directly in analytic form following

substitution of the data.

MODEL

Before transfer the system is assumed to be in the initial state ji>
and after transfer in the final state jf >, both states being

amenable to quantum-chemical evaluation. The coupling driving

the transfer, to be specified later, is represented by an operator V;

it is obviously weak, since these transfers are much slower than

typical molecular vibrations. According to Fermi’s Golden Rule,

which is always valid if the coupling is time-independent,

the transfer rate constant will then be proportional to the square

of the matrix element Vfi ¼< f jV ji >, subject to energy

conservation, and apart from normalization:

k ¼ 2p

�h

X

i;f

jVfij2e�Ei=kBTdðEf � EiÞ (3)

At room temperature ji > will consist of a thermal mixture

of Born–Oppenheimer states, the population of each being

governed by a Boltzmann factor; each of these will interact with a

bunch of Born–Oppenheimer states jf > of the same energy

within the resolution of the experiment. The delta function is thus

to be interpreted as a density of states %ðEf Þ. During the transfer

the proton will move from the initial equilibrium position ri along

the tunneling mode r to the final equilibrium position rf and from

the initial vibrational level v of this mode to the final level w.

Skeletal modes will play a role in this process. From results

obtained for small molecules, we infer that their main effect is

shortening of the transfer distance rf � ri due to motion along

vibrational coordinates or components thereof, collectively

denoted by R, that are collinear with the tunneling mode r.

For simplicity, we assume that the skeletal modes are basically

the same in ji > and jf >.
First we consider transfer of a proton or hydrogen atom

along an adiabatic double-minimum potential involving a

single electronic manifold. In terms of the Golden Rule, the

coupling V can then be represented by an electronic term

that may be taken independent of the vibrational coordinates.

In that case the matrix element in Eqn (3) can be written in

the form

Vfi ¼ J < LðRÞxwðr � rf Þjxvðr � riÞLðRÞ > (4)

where, in our example, < xwðr � rf Þjxvðr � riÞ > would be

an R-dependent vibrational overlap integral between CH-

and OH-stretch wavefunctions and L(R) represents the set

of skeletal vibrational wavefunctions with a component parallel

to r. If the reaction is endothermic, the delta function in Eqn (3)

generates a Boltzmann factor expð�DE0=kBTÞ. If antisymmetric

skeletal vibrations are coupled to the tunneling mode, they will

contribute a similar Boltzmann factor. Such factors are

isotope-independent and thus cancel if we consider the KIE.

In enzymatic reactions such as those of SLO1 where a redox

system accepts an electron while the proton transfers, thereby

putting the system into a new electronic state, the transfer is NA.

To describe this transfer, we use a three-center model consisting

of a substrate SH, where S represents the donor group, and

the enzyme A–K consists of two connected parts, the

proton-acceptor group A and the electron- withdrawing redox

system K. The reaction can be symbolically depicted as

SHþ A-K ! S� þ HAþ-K�

We assume that two electronic states, F0 and F1, are involved

in the transfer and that their ordering changes from E
ð0Þ
i < E

ð1Þ
i

in the initial state ji > to E
ð1Þ
f < E

ð0Þ
f in the final state jf >, as

illustrated in Fig. 7. Their energy separations are mostly governed

by the properties of the redox system K. We assume further

that their coupling is weak and is dominated at the crossing

point along the proton-transfer coordinate r by the nuclear

kinetic-energy term @2=@r2, leading to a dominant coupling

matrix element

jVNA
fi j ¼< F1j@=@rjF0 >

< LðRÞxð1Þ
w ðr � rf Þj@=@rjxð0Þ

v ðr � riÞLðRÞ > (5)

where we have used the same approximations as for

adiabatic transfer. Since enzymatic reactions typically occur

−5.6−5.65−5.7−5.75−5.8
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Figure 6. Plot of ln kH and ln kD versus ln T�1 for mutants L546A (circles)

and L754A (squares), based on data from Reference [1]

(i) (f)

Figure 7. Schematic plot of two interacting double-minimum potentials

used to describe nonadiabatic proton transfer in the systems under

discussion6
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at temperatures where CH- and CD-stretching vibrations are

unlikely to be excited, we may set at least one of the quantum

numbers (v, w) equal to zero. If x
ð0Þ
0 ðr � riÞ is taken to be a

zero-point wavefunction, we obtain for a harmonic oscillator

jVNA
fi j ¼ JNA < LðRÞxð1Þ

1 ðr � rf Þjrjxð0Þ
0 ðr � riÞLðRÞ > (6)

Here a0 is the zero-point amplitude of the tunneling mode and

the constants involved are absorbed into the constant JNA,

because we are concerned with relative rather than absolute

values of the rate constants, specifically with their temperature

and isotope dependence. The operator r raises the vibrational

quantum number x
ð0Þ
0 ðrÞ by one unit, which may change

(increase) the overlap substantially, but only through a

pre-exponential factor.

Evolutionary arguments suggest that these reactions are

unlikely to generate a net energy loss or gain as large as a

quantum of these vibrations, which indicates that the other

quantum number will be either zero or 1. It follows that the

vibrational overlap integral Svw of the tunneling mode will

reduce to S00, S01, or S11, all of which depend exponentially on

the tunneling distance and differ only by pre-exponential factors.

Since it will be our strategy to consider rate-constant ratios,

including KIEs, rather than absolute rate constants, we go one

step further and retain only the exponential part of the overlap

integral, a procedure further justified in the Appendix. This allows

us to treat adiabatic and NA reactions by the same model. Thus

in the harmonic approximation we write the overlap integral of

the tunneling mode in the form expð�r2=4a20Þ, where r is the

transfer distance and a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

�h=mv
p

,m and v being the mass and

frequency of the CH or CD oscillator. Since we neglect its thermal

excitation, we ascribe the temperature dependence of the rate

constant for exothermic reactions exclusively to the contribution

of skeletal modes to the transfer. The symmetric modes L(R)

modulate the instantaneous transfer distance r ¼ R� 2b, R being

the separation of the C and O atoms between which the

hydrogen is exchanged and 2b being the sum of the CH and HO

bond lengths. In addition, there may be antisymmetric modes

that contribute a Boltzmann factor, which will also be essentially

isotope-independent. For convenience we combine it with the

Boltzmann factor for endothermic reactions expð�DE0=kBTÞ by
replacing DE0 by DEeff. In this scheme the temperature

dependence is the same for adiabatic and NA rate constants

and is governed by DEeff and the symmetric skeletal vibrations

L(R).

Since the modulation by these vibrations is slow compared to

the hydrogenic vibration, we represent it by a distribution of R

values. The simplest assumption we can make is that this

distribution is normal, i.e., Gaussian:

PðR; TÞ ¼ expf�ðR� R0Þ2=A2ðTÞg
ffiffiffi

p
p

AðTÞ (7)

Integration of the matrix element jVfij over the distribution

yields

< jVfij2 >’ J2 expf�r20=½2a20 þ A2ðTÞ�g (8)

where r0 ¼ R0 � 2b is the equilibrium hydrogen transfer distance,

i.e., the separation of the two hydrogen equilibrium positions,

and J2 includes the pre-exponential constants. In this approach

the Arrhenius formula (2) is replaced by

ln kðTÞ ’ ln
2p

�h
J2%ðEf Þ

� �

� r20
2a20 þ A2ðTÞ � DEeff=kBT (9)

which shows directly the relative contributions of the tunneling

mode and the skeletal modes to the transfer path of length r0.

Thus the rate constant decreases exponentially with the square of

the transfer distance scaled by the sum of the squares of the

amplitudes of the modes contributing to the transfer. This result

is general and does not depend on the details of the model.[7]

As a desirable refinement of the model, we formally introduce

anharmonicity by replacing the zero-point amplitude of

the tunneling mode a
H;D
0 by a

H;D
eff . For simplicity we set

mD ¼ 2mH ¼ 2, so that ðaHeffÞ
2 ¼

ffiffiffi

2
p

ðaDeffÞ
2
.

To simplify the notation, we express all lengths in units aHeff and

introduce new parameters

L ¼ ln
2p

�h
J2%ðEf Þ

� �

; r ¼ r20

2ðaHeffÞ
2
; zðTÞ ¼ A2ðTÞ

2ðaHeffÞ
2
;

BðTÞ ¼ DEeff=kBT

(10)

so that Eqn (7) reduces to

ln kHðTÞ ¼ L� r

1þ zðTÞ � BðTÞ;

ln kDðTÞ ¼ L� r
ffiffiffi

2
p

1þ zðTÞ
ffiffiffi

2
p � BðTÞ

(11)

In this notation z(T) and zðTÞ
ffiffiffi

2
p

are the contributions of

the skeletal modes to the transfer relative to the contribution of

the H and D tunneling modes, respectively. Note that the form

of Eqns (11) is not Arrhenius-like. Contrary to the Arrhenius

Table 1. Rate constants and activation energies at T¼ 298 K of soybean lipoxygenase-1 and six mutants calculated by linear

regression from the kinetic data reported as Supporting Information in References [1, 2]

Enzyme ln kH ln kD ln h EHa =kBT EDa =kBT DEa=kBT

Linoleic/SLO1 5.7� 0.2 1.3� 0.3 4.4� 0.5 2.8� 0.5 5.3� 1.2 2.4� 1.7

Mutant I553A 5.7� 0.1 1.2� 0.4 4.5� 0.5 3.3� 0.7 8.6� 1.0 5.3� 1.7

Mutant I553L 5.8� 0.1 1.3� 0.3 4.5� 0.4 0.7� 1.2 6.7� 0.5 6.0� 1.7

Mutant I553V 4.3� 0.2 0.0� 0.4 4.3� 0.6 4.1� 0.9 8.3� 1.1 4.2� 2.0

Mutant I553G 4.1� 0.1 �1.2� 0.3 5.3� 0.4 0.0� 0.7 7.3� 0.7 7.3� 1.4

Mutant L546A 0.4� 0.2 �4.4� 0.4 4.8� 0.6 5.6� 0.4 9.3� 0.8 3.7� 1.2

Mutant L754A �1.7� 0.3 �6.4� 0.4 4.6� 0.6 6.2� 0.8 8.9� 1.7 2.7� 2.5
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Eqn (2), they yield an expression for the KIE that has a clear

physical meaning:

ln h � ln kHðTÞ � ln kDðTÞ ¼ rð
ffiffiffi

2
p

� 1Þ
½1þ zðTÞ�½1þ zðTÞ

ffiffiffi

2
p

�
(12)

which means that the KIE increases exponentially with the square

of the transfer distance and decreases exponentially with the

skeletal modes contribution, the denominator of the exponent

varying quadratically with z(T) for zðTÞ >> 1 and roughly linearly

with z(T)< 1.

We can use a corresponding approach to relate the rate

constants for the same isotope in two different mutants:

ln
kH1 ðTÞ
kH2 ðTÞ

¼ � r1

1þ z1ðTÞ
þ r2

1þ z2ðTÞ
;

ln
kD1 ðTÞ
kD2 ðTÞ

¼ � r1
ffiffiffi

2
p

1þ z1ðTÞ
ffiffiffi

2
p þ r2

ffiffiffi

2
p

1þ z2ðTÞ
ffiffiffi

2
p

(13)

provided we may assume that both the endothermicity term

B(T), if any, and the electronic term L are the same in the two

mutants. For mutations close to the reaction center, this

assumption clearly needs to be probed. However, since k(T) is

proportional to J2, a change of the electronic factor by at least

an order of magnitude would be required to account for the

observed range of rate constants in terms of the electronic

coupling. Such a large change following the replacement of one

aliphatic side chain by another seems highly implausible. It

follows that a change of L will be at most a minor correction. In

that case substitution of Eqn (12) to eliminate the r parameter

shows that if ln kH1 ðTÞ > ln kH2 ðTÞ then z2ðTÞ ln h2 > z1ðTÞ ln h1 .
This implies that a mutation that reduces the activity of the

enzyme will cause an increase in at least one of two parameters:

z(T), the contribution of the skeletal modes, and h, the KIE.

The equations derived thus far do not involve the

temperature dependence of the observed properties and thus

do not require a specific form for the parameter A(T), which at

the chosen temperature is just a number. However, to study

the temperature dependence of the rate constants, we need

to introduce such a form. Elsewhere[8] we have shown that

in simple cases we can deal with the skeletal vibrations L(R)

that modulate the transfer distance rf � ri in Eqns (4)–(6) by

combining them into an effective mode, whose properties can

be evaluated if a full force field calculation is available. Since

this is usually not the case for enzymatic reactions, we follow

the common procedure of fitting the effective frequency and

reduced mass of this mode, which is often referred to as the

gating or promoting mode, to the observed kinetic parameters.

We assume that it is harmonic with an equilibrium position

R¼ R0, a frequency V and a reduced mass M. The model then

allows us to derive values for these vibrational parameters

from the observed temperature dependence of the transfer

rate constants. In this approach the squared amplitude of the

effective mode takes the form

A2ðTÞ ¼ ð�h=MVÞ cothð�hV=2kBTÞ (14)

or, in dimensionless notation,

zðjÞ ¼ ð�h=MVÞ
2ðaHeffÞ

2
coth j (15)

where j ¼ �hV=2kBT measures the vibrational energy in

terms of the thermal energy and thus represents a scaled

inverse temperature. The distribution z(j) replaces z(T) when the

contributing skeletal modes are represented by a single effective

mode. Since this representation will tend to reduce skeletal-

mode support, we expect that zðjÞ � zðTÞ. In References [1, 2, 4,

5], a similar treatment is restricted to frequencies low compared

to kBT. Here we use a more general approach, which covers the

full range of effective-mode frequencies. It will transpire that this

is an essential generalization since it provides a test for the

compatibility of a given data set with the adopted model.

Differentiating Eqns (11) with respect to the inverse tempera-

ture, and noting that dT�1 ¼ T�1d ln T�1, we obtain in

dimensionless notation

� d ln kHðTÞ
d ln T�1

� EHa
kBT

¼ r
zðjÞFðjÞ
½1þ zðjÞ�2

þ BðTÞ (16)

� d ln kDðTÞ
d ln T�1

� EDa
kBT

¼ r
2zðjÞFðjÞ

½1þ zðjÞ
ffiffiffi

2
p

�2
þ BðTÞ (17)

where FðjÞ ¼ jðcothj� tanhjÞ is a function that varies smoothly

from 0 to 1, as illustrated in Fig. 8. This function, which depends

only on the ratio �hV=kBT , represents the dependence of the

model on the assumption that the effect of skeletal vibrations on

the transfer dynamics can be approximated by that of a single

effective harmonic oscillator with frequency V collinear with the

tunneling mode. Any physical limits set on values of V imply

corresponding limits on F(j). Since d ln T�1 ¼ TdT�1, the

functions (16) and (17) can be read directly off conventional

Arrhenius plots. Note that these equations, in contrast to the

Arrhenius equation, include the dependence of the observed

activation energies on temperature. Although this dependence

may not be directly observable in the narrow temperature

interval to which enzymatic systems are usually limited, it

governs the ratio EDa =E
H
a :

EDa � DEeff

EHa � DEeff
¼ 2

1þ zðjÞ
1þ zðjÞ

ffiffiffi

2
p

" #2

(18)

This expression depends only on the effective endothermicity,

if any, and the relative contribution of the effective mode to the

43.532.521.510.50
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Figure 8. Plot of the effective-mode function FðjÞ ¼ jðcothj� tanhjÞ,
where j ¼ �hV=2kBT6
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transfer. If the transfer is exothermic, as it is for SLO1 according to

the argument presented in the preceding section, and if the

contribution of antisymmetric modes is negligible, so that

B(T)� 0, the ratio of Arrhenius slopes (18) will vary from 1 for

large to 2 for small contributions. If B(T)> 0, the maximum value

of this ratio will be less than 2. Since the activation energies

measured in small temperature intervals tend to be subject to

large experimental errors, the z(j) values calculated from Eqn (18)

may show large uncertainties.

The temperature dependence of the KIE is governed by the

difference of Eqns (16) and (17),

d ln h

d ln T�1
� DEa

kBT
¼ zðjÞFðjÞr 2

½1þ zðjÞ
ffiffiffi

2
p

�2
� 1

½1þ zðjÞ�2

( )

(19)

where DEa ¼ EDa � EHa . This eliminates the dependence on any

endothermicity, but maintains a dependence on the skeletal-

mode function F(j). In Fig. 9,DEa=kBT is plotted, along with ln h, as

a function of the contribution z(j) for the parameter values r¼ 25

and F(j)¼ 1, whose numerical significance will be explored in the

next section. Since both DEa and ln h are linear functions of r, a

change in the transfer distance does not affect the relation

between the KIE and its temperature dependence and thus

between the two curves in Fig. 9. By combining Eqns (12)

and (19), one can readily show that DEa=kBT � 2 ln h, the limiting

value being reached for large z(j) and unit F(j).

Although Fig. 9 is derived for specific values of the parameters

r(¼25) and F(j)(¼1), it can be turned readily into a universal

graph which can be used to test the compatibility of any

enzymatic tunneling reaction with the two-oscillator model.

Since, as pointed out above, a change of r does not change the

relation between the two curves but only their numerical values,

the graph remains valid for all r if we multiply the values along

the abscissa by r/25. To accommodate values of F(j) smaller than

1, we simply reinterpret the DEa curve as DEa=FðjÞkBT . The values
these parameters may assume are considered in the next section.

Hence the treatment gives rise to three criteria for the

compatibility of the data with the model:

(i) the effective-mode parameter F(j) is limited to the range 0–1;

(ii) the temperature dependence of the KIE, given by DEa=kBT, is
limited to the range 0� 2 ln h;

(iii) the effective activation energy at a given temperature for

deuteron transfer cannot exceed twice that for proton

transfer.

In addition there are numerical criteria relating the parameter r

and thus the transfer distance to van der Waals radii and bond

lengths, as discussed in the next section. Failure of a data set

to meet these tests serves as a warning that it may not represent

a single rate-determining tunneling step. Since the model

parameters have a clear physical meaning, they can serve as a

guide to trace the source of any discrepancy.

PARAMETER VALUES

Two key parameters of themodel are the proton transfer distance

r0, i.e., the distance between the proton equilibrium positions in

the initial and final state, and the zero-point amplitude of the

proton in the two states, aHeff . In practice, the transfer distance can

be reasonably estimated from standard bond lengths and van der

Waals radii, and the zero-point amplitude from standard CH- and

OH-stretching potentials. Together they determine the distance

parameter r defined by Eqn (10). The van der Waals radius of the

donating methylene group is about 2 Å and that of the accepting

oxygen atom is about 1.4 Å. The standard CH-bond length is

about 1.1 Å and the standard OH-bond length is about 1.0 Å. In

the final state we expect that hydrogen bonding will reduce the

C � � �O distance and increase the OH-bond length. In the initial

state we expect little hydrogen bonding, but in the final state,

which contributes on an equal footing in the Golden Rule

approach, the ionic structure may lead to strong bonding.

Therefore, we estimate the transfer distance (in Å) to be in the

range 1:0 � r0 � 1:2. The zero-point amplitude a0 for a harmonic

oscillator with m¼ 1 and v¼ 3000 cm�1 equals 0.105 Å. Taking

into account that the oscillator will be anharmonic and that the

anharmonicity will increase with increasing hydrogen bonding,

we estimate 0:11 � aeff � 0:14 A
	
. Combining these estimates, we

arrive at 25 � r � 50. These numbers are specific for the present

system. Much larger values are expected, e.g., for proton transfer

between two carbon centers.

For the effective mode that represents the contributing

skeletal modes we envisage two limiting cases. In the presence of

substantial hydrogen bonding, and thus small r values, it should

closely resemble a localized C � � �H � � �O oscillator with an

effective massM that may approach the limiting value of about 7.

The limiting frequency is difficult to estimate, since it is expected

to be very different for the initial and final configuration, the latter

being ionic. We note that a frequency of about 400 cm�1, which

seems very high for this type of van der Waals bond, would at

298 K translate into a value of about 0.55 for the function F(j).

Lacking more accurate information, we tentatively accept these

estimates as our limit. Substituting these values together with the

estimates of aHeff into Eqn (15), we obtain zðjÞ � 1:0 at 298 K. In

systems with no significant hydrogen bonding, we expect large r

values and small anharmonicity, together with contributions from

a variety of low-frequency modes to the effective mode, resulting

in amuch larger effectivemass, approaching that of the substrate,
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Figure 9. Plot ofDEa=kBT (solid line) and ln h (broken line) against z(j) for

r¼ 25 and F(j)¼ 1. It becomes a universal graph for enzymatic tunneling

reactions if the numbers along the abscissa are multiplied by r/25 and the

solid line is reinterpreted as DEa=FðjÞkBT 6
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and a frequency much smaller than the thermal energy of about

200 cm�1 at 298 K, which may give rise to F(j) values close to the

upper limit F(j)¼ 1. In this region the hyperbolic cotangentmay be

approximated by its inverse argument. We then obtain

zðjÞ � ðmv=MVÞðkBT=�hVÞ, which can assume a wide range of

values at 298K, depending on the properties of the effectivemode.

Thus in addition to the analytical compatibility criteria between

model and data derived in the preceding section, numerical

compatibility criteria can be derived from a proposed or generally

accepted mechanism for a specific transfer reaction.

PROTOCOL

In this section, we consider the most efficient way to analyze a

given data set in terms of the equations of the ‘Model’ section and

the parameter estimates of the ‘Parameter values’ section. It will

depend, of course, on the amount of information available. In the

minimal case in which the data are limited to the KIE derived from

product analysis and its activation energy, Fig. 9 indicates that

additional information can be extracted only if DEa=kBT 
 ln h.

This would imply a relatively large contribution z(j) of the

effective skeletal mode, which suggests that its frequency V is

well below the thermal energy kBT. In that case, F(j) will be close

to unity, so that it will be possible to estimate the transfer distance

directly from Fig. 9, provided the data meet the compatibility

criteria of the ‘Model’ section. From the transfer distance one may

in turn be able to deduce the atoms between which the transfer

is likely to occur and thus gain information on the transfer

mechanism.

In cases where rate constants are available and enough is

known about the mechanism to estimate the transfer distance by

the approach of the ‘Parameter values’ section, the most efficient

procedure is to start from this estimate and to use Eqn (12) to

calculate z(T), since the KIE value is likely to be more accurate

than its activation energy. To interpret DEa, one needs a model

for the skeletal modes; our assumption that these modes can

be represented by an effective mode is formally equivalent to

the assumption that z(T) can be replaced by z(j). Then F(j) can

be obtained from DEa and z(j) by means of Fig. 9 or Eqn (19);

similarly, the effective endothermicity can be obtained from

Eqs (16)–(18). From F(j) together with Eqn (15), one obtains the

frequency V and the effective mass M of the effective mode. If

all these results are mutually consistent, meet the compatibility

criteria of the ‘Model’ section, and are numerically in line with

physical expectations, the analysis is complete. Its conclusion will

be that the tunneling step investigated is indeed rate limiting and

that the numerical results will provide estimates for the tunneling

distance, the effective endothermicity, and the properties of the

effective mode supporting the tunneling.

If inconsistencies occur that lie outside the range of

experimental uncertainties, it may be unclear how to proceed,

especially if the data set is very small. As the measurements are

very difficult and the model is undoubtedly oversimplified,

there are many possible sources of error. In the next section,

where we analyze the chosen system, several difficulties of this

type are encountered. Their treatment, however tentative, is

offered as an example of how theymay be resolved. If the data set

consists of several closely related reactions, it may be profitable

not to deal with each reaction separately, but to deal first with

the analysis of the rate constants at a single temperature,

chosen near the middle of the range of temperatures for which

measuments are available, since this information tends to

be more accurate than that pertaining to the temperature

dependence. This is the procedure we use in the following

analysis of the SLO1 data.

ANALYSIS

We now probe whether the data set of Table 1 is compatible with

the model of the ‘Model’ section for the range of parameter

values estimated in the ‘Parameter values’ section. We start with a

comparative analysis of the mean values of the rate constants at

T¼ 298 K for the seven enzymes listed. If we may assume that

evolution tends to optimize the efficiency of enzymes, it follows

that the WT enzyme and the mutants I553A and I553L, which

show the highest rates in Table 1, should be associated with the

shortest proton transfer distance and thus the lowest values

estimated for the parameter r. Tentatively setting r0 ’ 1:00 A
	

and aeff ’ 0:14 A
	
, so that r¼ 25, the lower limit deduced in

the ‘Parameter values’ section, we can use Eqn (12) to calculate

the contribution of the skeletal modes to the reaction path:

zð298Þ ¼ 0:42� 0:44, i.e., roughly half as much as that of the

tunneling mode. This result is compatible with the estimated

range of the preceding section. Larger values of r, which yield

larger values of z(T), were tried, but for reasons that will become

clear in the course of the analysis, they proved less satisfactory.

Since the three most active enzymes have virtually the same

rate constants for proton as well as for deuteron transfer, and thus

the same KIE, one is tempted to deduce that these mutations

have no effect on the kinetics of the enzyme, a deduction

supported by the observation that the mutations occur at a site

not close to the reaction center. However, the substrate, linoleic

acid, is a large molecule with a reach that may well extend to this

remote region. This may explain why two mutants, I553V and

I553G, with similar mutations at the same site, do exhibit a

reduced activity, with rates smaller by factors of 4 and 5.5 for H

and 3.5 and 12 for D, respectively. To probe whether these

reductions, if real, should be ascribed to an increase in r or a

decrease of z(T), we use Eqn (15) together with Eqn (12) to relate

the remaining enzymes to the top three. Since the mutations

occur at a remote site, we assume that the electronic parameter L

is not affected. Using the observed rate constants and KIEs listed

in Table 1, we obtain for the mutant I553V : zð298Þ ¼ 0:60� 0:08
and r ¼ 31� 2, and for the mutant I553G: zð298Þ ¼ 0:38� 0:07
and r ¼ 26� 2; these numbers are collected in Table 2.

The result for I553V thus ascribes the reduced activity to a small

increase in the transfer distance partly compensated by an

increase in the contribution of the skeletal modes. Although it is

not clear why this particular mutant should exhibit an increased

transfer distance, the resulting increase in the skeletal modes

contribution is in agreement with the notion that a weaker

hydrogen bond would increase the frequency of the tunneling

mode and decrease that of the effective skeletal mode, both of

which would increase z(T), as follows from Eqn (12). For the I553G

mutant, the reduced activity is accompanied by an increase in

the KIE that is large enough to imply a decrease in z(T), such that

the transfer distance remains essentially unchanged. There is no

obvious rationale for the implied increase in the vibrational force

constant other than a possible effect on the structure of the

enzyme–substrate complex, since a weakening of the hydrogen

bonding, suggested by the reduced activity, would have the

opposite effect.6
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Our result contradicts the large increase in the transfer

distance r0 for the mutants calculated in Reference [2]. As

pointed out in the ‘Parameter values’ section, a transfer

distance r0¼ 0.66 Å as proposed for the WT enzyme is

incompatible with the known van der Waals radii and bond

lengths of the groups directly involved in the transfer. Similarly,

the value r0¼ 2.55 Å proposed for the I553G mutant is

incompatible with the observed rate, which remains close to

that of the WT. Equally surprising is the value r0¼ 1.24 Å

assigned to the I553A mutant whose rate constants for H and D

transfer are virtually the same as the corresponding WT rate

constants. To reconcile the small rate changes with the large

changes proposed for the transfer distance, the authors

invoke ‘conformational sampling’, a concept originally intro-

duced by Bruno and Bialek,[9] who modified a conventional

one-dimensional tunneling model by replacing r0 by empirical

values that are different for H and D transfer in order to account

for the contribution of skeletal vibrations to the rate; formally,

this procedure is equivalent to the one we use in the ‘Model’

section. In terms of our model, these values amount to

r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zðTÞ
p

for H and r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zðTÞ
ffiffiffi

2
pq

for D transfer, as

follows directly from Eqn (11). For the three enzymes quoted,

whose z(T) values are listed in Table 2, the corresponding values

are ð0:85� 0:01Þr0 and ð0:80� 0:01Þr0, respectively, thus

showing none of the large variations obtained in Reference
[2]. Hence, the discrepancy can be traced back to the way

the contribution of the skeletal modes is evaluated. While our

evaluation is based on the KIE and estimates of the transfer

distance based on standard van der Waals radii and bond

lengths, that in Reference [2] apparently involves the activation

energies; these we avoided here because of the large

experimental uncertainties. Since the rate constants and KIEs

in the I553 series show only modest variations, Occam’s razor

suggests that the same applies to the transfer distances, a

suggestion to be tested in the remainder of the analysis.

The mutants L546A and L754A, whose mutations are at sites

closer to the reaction center, show strongly reduced activity,

namely by two and three orders of magnitude, respectively, for

both H and D transfer. Such a large reduction following the

replacement of a single nonpolar side chain cannot plausibly

be ascribed solely to a change in electronic coupling and thus

implies an increase in the transfer distance. The observation

that this increase is not accompanied by a corresponding

increase of the KIE indicates an increase in the contribution z(T)

of the skeletal vibrations, as follows from Eqns (12) and (13). If

we ignore a possible change in electronic coupling, we can

apply these equations to obtain zð298Þ ¼ 0:65� 0:10 and

r ¼ 37� 3 for mutant L546A, and zð298Þ ¼ 1:0� 0:2 and

r ¼ 53� 5 for mutant L754A, as listed in Table 2. We note that

all these r values, except the last, remain within the estimate

based on van der Waals radii and bond lengths 1:0 � r0 � 1:2
presented in the ‘Parameter values’ section, the corresponding

increase in the transfer distance being in the range 0.10�0.15 Å.

However, it seems likely that such changes would reduce the

electronic coupling, especially in the case of the least active

mutant, in which case the deduced values of z(298) and rwould

be smaller.

Comparing all these results for z(298) and r in Table 2, we

note that their ratio turns out to be nearly constant. According

to Eqn (8), this implies that the ratio A(T)/r0 is nearly constant

as well. In other words, among most of the mutants a change

in the transfer distance is accompanied by a corresponding

change in the force field of the effective skeletal mode, both

being apparently associated with a change in hydrogen

bonding. Since for the range of skeletal-mode contributions

z(T) encountered in these enzymes the denominator in

Eqn (12) is an approximately linear function of z(T), this

implies that the KIE will be nearly constant for a wide range

of rate constants.

The results collected in columns 2 and 3 of Table 2 do not

depend directly on the temperature dependence of the rate

constants; they are thus independent of the specific form chosen

for the skeletal modes. To proceed, we need to use the observed

activation energies and to apply the complete model in which

the set of contributing skeletal vibrations is replaced by a single

effective harmonic mode, so that z(T) is restrained to zðjÞ � zðTÞ.
If we set zðjÞ ¼ zðTÞ and use the values in Table 2 together with

theDEa values of Table 1, we can use Fig. 9 or Eqn (19) to calculate

F(j). This procedure works satisfactorily for the two inactive

enzymes, where it leads to the F(j) values listed in Table 2.

However, it fails for the five active enzymes since it leads to

values (much) larger than the limiting value of 1, implying that

these data are incompatible with the model and thus with

the assumption that the tunneling step is rate limiting. The

assumption zðjÞ < zðTÞ increases the discrepancy. Similarly,

applying Eqn (18), we find that most of the active enzymes

exceed the limiting value EDa � 2EHa .

To find the source of this discrepancy, we substitute

zðjÞ ¼ zðTÞ in Eqns (16) and (17). As pointed out in the ‘Summary

of data’ section, the small activation energies imply that the

reaction is exothermic, so that we can set B(T)¼ 0; obviously,

Table 2. Physical parameters of the model extracted from the data listed in Table 1

Enzyme r z(298) F(j) j V/cm�1 M/mH

Lin./SLO1 (25) 0.44� 0.06 0.63� 0.10 0.87� 0.15 350� 80 14� 4

Mut. I553A (25) 0.43� 0.06 �1 Small Small Large

Mut. I553L (25) 0.42� 0.06 0.81� 0.07 0.56� 0.05 220� 30 32� 3

Mut. I553V 31� 2 0.60� 0.08 0.76� 0.10 0.65� 0.10 260� 50 17� 4

Mut. I553G 26� 2 0.38� 0.06 0.87� 0.10 0.45� 0.06 180� 40 52� 10

Mut. L546A 37� 3 0.65� 0.10 0.88� 0.10 0.44� 0.05 180� 50 31� 8

Mut. L754A 53� 4 1.0� 0.2 0.59� 0.15 0.93� 0.20 370� 80 6� 2

Values of r in brackets are chosen estimates.
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setting B(T)> 0 would further complicate the problem. Using the

rate constants listed in Table 1, we then calculate F(j), which

should be isotope-independent. We find, however, that for the

active enzymes it is consistently smaller for H than for D transfer.

Small F(j) values imply large effective-mode frequencies; in the

case of H transfer, they lead to frequencies well above our

assumed limiting value of 400 cm�1, while for D transfer they

remain well under this limit. This suggests that the source of

the discrepancy is to be found in the activation energies for H

transfer, a suggestion that is strongly supported by the

observation that two of these energies are essentially zero, a

value incompatible with any tunneling model.

Whether these anomalously low activation energies are an

experimental artifact or a fundamental aspect of the reaction

mechanism we cannot determine on the basis of the available

data. The fact that the anomalous activation energies all refer

to rate constants ln kð298Þ > 4, the largest values in Table 1 may

suggest that the corresponding values of kHcat are contaminated

with the rate constant of one or more other steps in the

reaction sequence, since, as argued in the ‘Introduction’

section, rates of rate-limiting steps in enzymatic reactions

are under upward evolutionary pressure. If this is the case, the

problem of the vanishing activation energies can be reduced

to a problem in the kinetics rather than in the modeling.

Be this as it may, it seems prudent at this stage, to continue

the analysis without the EHa values of the WT enzyme and the

I553 mutants. Their F(j) values in Table 2 are therefore derived

solely from Eqn (17) for deuteron transfer, while those for the

two inactive mutants are derived from Eqn (18). All are now

between the allowed limits 0 and 1, which indicates that the

model is compatible with these data. From F(j) we obtain j and

thus the effective-mode frequency V; these parameters are

listed in columns 5 and 6 of Table 2. To obtain the mass M of

the effective mode in atomic mass units, we set zðjÞ ¼ zðTÞ and
substitute it together with j in Eqn (15). The results are listed

in column 7.

These results show that both the frequency and the effective

mass of the effective mode exhibit very large variations between

the closely related enzymes. This is hardly realistic. Given the

uncertainties of the observed activation energies and the rapid

variation of j with F(j) for FðjÞ 
 0:9, the best we can do is

ignoring the variations and taking averages. Excluding the least

active enzyme for which there is evidence of a change in the

electronic term L, this yields Vav� 200 cm�1 and Mav� 40. These

are reasonable numbers for the system, but they depend strongly

on r. If we had started with r¼ 30 instead of 25, we would have

obtained Vav> 300 cm�1, which seems too high. If on the other

hand, we had adopted a value of r smaller than 25, several

additional mutants would have exhibited F(j) values above the

limiting value of 1, leading to a drastically reduced average

frequency. These results further justify the present choice of r

values.

CONCLUSIONS

This contribution aims to show that tunneling, which is

ubiquitous in enzymatic proton-transfer reactions, provides a

hitherto underused tool to investigate the mechanism of these

reactions. The availability of two rate constants for basically the

same reaction, differing only through the mass of the proton, can

be exploited by suitable modeling. The model we use has been

around for decades, but the possibility to cast it in an analytical

form that allows direct comparison with kinetic data has not been

explored before. In the form used here it offers criteria for

deciding whether a given data set can be assigned to a single

step in a reaction sequence. If so, it can derive information of the

transfer mechanism such as the transfer distance and the part

played by skeletal vibrations in the transfer. It can also explore

changes in the mechanism due to mutations in the enzyme or

variation of the substrate.

To demonstrate how the model works in practice, we analyzed

the kinetic SLO1 data reported by Klinman and coworkers[1,2] In

this reaction proton transfer is driven by the abstraction of an

electron from the CH bond by an iron-based redox system. The

reaction is NA and its rate depends on terms not included in the

model. However, in an Appendix we show that these terms

roughly cancel if we consider only relative rate constants. As

shown in Table 2, the analysis of the data set requires only a single

adjustable parameter, which, moreover, is not chosen freely but

derived from physical parameters that can be reliably estimated.

Even this parameter can be eliminated if the data are sufficiently

accurate.

The kinetic data reported in References [1, 2] form a set that is

unique because of the many mutants that were investigated.

They show a number of intriguing features, including vanishing

activation energies for some mutants and large variations

in transfer rates not accompanied by corresponding changes in

the KIE. The analysis suggests that the smallest activation

energies, which are associated with the highest rates of 1H

transfer, may refer to tunneling steps contaminated by other

steps in the reaction sequence. The transfer distance between

the two proton equilibrium positions is estimated to be about

1.0 Å for the WT enzyme and up to 1.15 Å for the least active

mutant. The properties of the skeletal modes assisting the

tunneling indicate that hydrogen bonding plays a major part in

the transfer despite the expected very weak hydrogen bonding

in the initial configuration. This follows both from the values

derived for the effective-mode frequencies and from the

similarity of the KIE for active and inactive mutants. It is in line

with the observation that proton transfer is accompanied by

electron abstraction from the CH bond by the redox system.

The remarkable constancy of the KIE among the mutants is

traced back to the proportionality of the transfer distance and

the force field of the C � � �H � � �O bond, as expected for a

hydrogen-bonded system.

The analysis shows that specific answers can be obtained

if a sufficiently rich set of kinetic data is interrogated by

the model of the ‘Model’ section. The equations required for

the analysis are elementary and can be applied directly to the

observed rate constants and their temperature dependence.

However, the accuracy of individual rate constants and,

especially, activation energies tends to be limited owing to the

complexity of the enzymatic processes. Data sets pertaining

to several closely related reactions are therefore of particular

interest but, unfortunately, few of these are presently

available.

APPENDIX

In this Appendix, we consider the pre-exponential terms in the

expression for the transfer rate constant, which were neglected

in the ‘Model’ section. First we consider adiabatic transfer for6
3
0
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which the coupling V driving the transfer is an electronic term

that may be taken independent of the vibrational coordinates.

In that case the vibrational integral reduces to an overlap

integral. Integrating the zero-point level overlap integral s00
over the distribution (7) to obtain the squared matrix element

(8), we neglected a pre-exponential factor of the form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a20=½2a20 þ A2ðTÞ�
p

. Including this term leads to corrections

to Eqn (11):

ln kHðTÞ ¼ L� r

1þ zðjÞ �
1

2
ln½1þ zðjÞ� � BðTÞ (A1)

ln kDðTÞ ¼ L� r
ffiffiffi

2
p

1þ zðjÞ
ffiffiffi

2
p � 1

2
ln½1þ zðjÞ

ffiffiffi

2
p

� � BðTÞ (A2)

and thus also to Eqn (12):

ln h ¼ rð
ffiffiffi

2
p

� 1Þ
½1þ zðjÞ�½1þ zðjÞ

ffiffiffi

2
p

�
� ln C (A3)

where

C ¼ 1þ zðjÞ
1þ zðjÞ

ffiffiffi

2
p

" #1=2

(A4)

In general these are small corrections that do not influence

the results significantly. The temperature dependence of

these corrections is negligible for our purpose.

For NA transfers, the corrections tend to be larger than for

adiabatic transfers, since the overlap integral of the tunneling

mode is of the form s01. Carrying out the integration over the

distribution (7) we obtain instead of Eqn (8)

jVfij2
D E

¼ J2NA
a0r

2
0

½2a20 þ A2ðTÞ�3=2
exp � r20

2a20 þ A2ðTÞ

� �

(A6)

which modifies Eqns (11) and (12) to

ln kHðTÞ ¼ L� r

1þ zðjÞ þ ln
r

2½1þ zðjÞ�3=2
� BðTÞ

ln kDðTÞ ¼ L� r
ffiffiffi

2
p

1þ zðjÞ
ffiffiffi

2
p þ ln

r
ffiffiffi

2
p

2½1þ zðjÞ
ffiffiffi

2
p

�3=2
� BðTÞ (A7)

and

ln h ¼ rð
ffiffiffi

2
p

� 1Þ
½1þ zðjÞ�½1þ zðjÞ

ffiffiffi

2
p

�
� 3 ln C � ln

ffiffiffi

2
p

(A8)

It follows that for the z(T ) values in Table 2 the correction

terms to the KIE nearly cancel; however, corrections to

absolute values of the rate constants may be substantial. The

temperature dependence of the correction terms in Eqn (A8)

follows from

d ln½1þ zðjÞ�
d ln T�1

¼ zðjÞ
1þ zðjÞ FðjÞ (A9)

and the equivalent equation with z(j) replaced by zðjÞ
ffiffiffi

2
p

; these

terms are always smaller than unity. Introducing the NA

corrections in Eqns (16) and (17) we obtain

EHa
kBT

¼ zðjÞFðjÞ
½1þ zðjÞ�2

r� 3

2
½1þ zðjÞ�

� �

þ BðTÞ (A10)

EDa
kBT

¼ 2zðjÞFðjÞ
½1þ zðjÞ

ffiffiffi

2
p

�2
r� 3

2
½1þ zðjÞ

ffiffiffi

2
p

�
� �

þ BðTÞ (A11)

leading to

EDa � DE0

EHa � DE0
¼ 2C4 r� 3

2
½1þ zðjÞ

ffiffiffi

2
p

�
r� 3

2
½1þ zðjÞ� (A10)

instead of Eqn (18) and

DEa

kBT
¼ zðjÞFðjÞ

� 2r

½1þ zðjÞ
ffiffiffi

2
p

�2
� r

½1þ zðjÞ�2
� 3

2

1þ zðjÞð2�
ffiffiffi

2
p

Þ
½1þ zðjÞ�½1þ zðjÞ

ffiffiffi

2
p

�

( )

(A12)

instead of Eqn (19). It follows that for the parameter values in

Table 2 the new terms may reduce the activation energies and

their difference by up to 10%, which is generally within the

margin of experimental error; however, they do not significantly

affect their ratio.

As a result the numerical estimates of the ‘Analysis’ section

remain valid within the accuracy of the data and the model.

Whereas the NA corrections may increase the absolute values of

the rate constants by an order of magnitude, and decrease their

effective activation energies by 10%, they have only a minor

effect on isotope effects and their temperature dependence as

well as the relative efficiency of closely related enzymes.
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