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ABSTRACT

This paper addresses the problems of CFD accuracy and re-
Hability by proposing an efficient mesh optimization approach.
By developing an appropriate directional error estimator, cou-
pled with an effective mesh adaptation technique closely tied
to the solver used, it can be demonstrated that for each flow
condition and geometry combination an optimal mesh can be
obtained, It is further demonstrated that such an optimal mesh
can be reached from almost any reasonable initial mesh and
that the order of accuracy of well-posed numerical algorithms
have a minimal impact on solution accuracy if the mesh is well
adapted, Thus, the proposed approach can be considered a first
step towards user-, mesh- and solver-independent, and thus cer-
tifiable, CFD,

1. INFRODUCTION

The last decade has seen Computational Fluid Dynam-
ics (CFD) become the method of choice in the design of
many aerospace, automotive and industrial components
and processes in which fluid or gas flows play a major
role. Phenomenal advances have been made in this disci-
pline with a corresponding meteoric growth in its use for
an ever increasing number and range of applications. The
conventional empirical way of the component/process
design-building-testing cycle has been almost altogether
superseded by ever more (accurate and reliable?) com-
puter simulations, leading to analyses showing features
and details that are difficult and/or expensive to measure
or visualize, These simulation capabilities have led to
first-off designs, in which prototypes are seldom built
and tested, but concepts and ideas are parametrically in-
vestigated on computers, with only the computationally-
selected final configuration verified in a wind tunnel, test
cell or full-scale laboratory conditions before becoming
the product. . '
Thus, an increased competitiveness has set in the
development or acquisition of (reliable?) tools to re-
duce the lead time needed to bring more refined CED-
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based high performance designs to the market. Al-
ready, the two main challenges of the next few years
for CFD have been defined as being its use in in-
verse design or automatic optimization and its utiliza-
tion in multi-disciplinary contexts such as conjugate heat
transfer (flow and heat transfer), aero-elasticity (flow
and structures), aero-acoustics (flow and noise), aero-
thermodynamics (flow and combustion), aero-icing (low
and ice accumulation over lifting surfaces) and aero-
electromagnetics (stealth aircraft), etc. _

Yet, one of the major but most mundane concems fac-
ing CFD today is the assessment and enhancement of the
quality of the solutions obtained, be they from propri-
etary or commercial codes. The various medeling ap-
proximations and algorithmic decisions made in building
a simulation code make it such that it is not necessarily
a given that for a specific physical situation, solving ex-
actly the same set of equations, all codes, or even most
of them, hecessarily yield the same solution or even close
answers,

Such discrepancies are due to several reasons that
must be individually identified before one can hope to
eliminate or altogether reduce them, Here, we first dis-
tinguish between the modeling and numerical errors in
order to clear a path to considerably reducing the lat-
ter. The process of building a CFD code is illustrated
in Fig. 1. Starting from the fundamental laws of physics,
aset of governing equations and corresponding boundary
conditions will be selected to best, or at least in the most
cost-effective manner, simulate a given physical class of
problems.

At that stage, it must be realized that modeling has dis-
connected physics from numerics and that a certain dis-
crepancy is to be expected between reality (interpreted
as measurements and/or observations) and the numerical
answers, We address in this paper this second level of er-
ror. After physical assumptions have been made and a set
of partial differential equations with appropriate bound-
ary conditions has been defined, the question to be posed
is why one cannot obtain a very accurate and certifiable
unique answer to the solution of these partial differential
equation, The errors made in solving that set, i.e. the
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Figure 1: Steps in constructing a CFD code.

_ difference to be anticipated between the exact solution
of the partial differential equations and the numerical so-
lution of the discretized equations are, in general, due to
the following culprits:

e crror of discretization and roundoft,

" other mesh related errors: arbitrary and hence inapro-
priate mesh distribution and various geometry approx-
imations,

¢ the addition of stability and convergence enhancers
such as artificial viscosity, damping, smoothing, up-
winding, otc, :

« Jess than complete convergence of the ¢ode (it is rare
to see convergence curves, too machine accuracy, in

papers).
In fact, rather than limit ourselves to rhetorically an-

alyze the reasons for the lack of accuracy, we will ad-

dress in this paper what we believe are the steps needed
to maintain a handle on the numerical error and control
it. We will specifically address the issue of the current ar-
bitrariness of mesh generation and how, by strategically
adapting the mesh to an evolving sclution, a mesh op-
timization approach can overcome this problem, while
simultaneously:

e yielding solutions that are discretization method-
independent,

¢ yielding solutions that are initial mesh-independent,

o considerably reducing, if not altogether eliminating,
the need for stability and convergence enhancers,

The first step usually made in improﬁing solutions is
to note that CFD phenomena are characterized by re-

2

gions of steep gradients of the flow variables, embed-
ded in regions where these variables vary more smoothly.
The general trend in large-scale CFD problems of cur-
rent interest is the use of a large number of mesh points
to as much as possible resolve physical features such as
boundary layers, flow separation, recirculation regions
and shocks. Taking this to a sometimes impossible limit,
mesh-independence seekers use finer and finer meshes
until the sclution ne longer changes. With most complex
multi-scale and multi-physics phenomena, attaining such
mesh-independence in three dimensions, even for those
best equipped in terms of computers, can be a chimera.
This brute force approach to mesh-independence is due
to the fact that the necessary meshes to carry out CFD
analyses are currently arbitrarily generated, only reflect-
ing a user’s engineering sense of where to concentrate
points, within given constraints of memory, boundary
conditions or mesh aspect ratio quality. Furthermore,
in the worst cases, these meshes may have undetected
geometrical pathologies such as skewness and degener-
ation, that introduce unwanted mesh-dependent errors in
flow solutions. For these various reasoss it is not unex-
pected that different solutions could be obtained by var-
ious users of the same code, on the same flow problem,
using the same overall number of intuitively generated
mesh points. .

It can thus be concluded that urgent emphasis should

" be placed on relieving the user from mesh decisions and

that mesh optimization should be carried out through an
automatic adaptive process. Recent years have thus seen
a rapid development of such adaptation methods based
on g posteriori error estimates: given a computed solu-
tion, one assesses its quality or more precisely measures
the error with respect to the exact solution and alters ei-
ther the mesh or the discretization to obtain a target preci-
sion level. Guided by an equi-distribution principle that
there is ne justification for getting a more accurate solu-

tion in some regions at the expense of others, adaptation

efforts aim at producing a balanced error distribution or
quality.

Current mesh refinement strategies suffer from several
problems, not least among them is the fact that they may
easily lead to an uncontrolled increase in the number of
nodes, in the search for higher precision or even in the
search for a more uniform error distribution. Both refine-
ment and redistribution methods produce nearly isotropic
meshes since their aim is to make the length scales of

each element essentially the same in all directions. These

methods are therefore optimal mostly for flow field re-
gions possessing large gradients in all spatial directions
but can stand improvement for regions with highly di-
rectional flow features such as shocks, boundary layers,
wakes, vortices and slip lines.

In this paper an alternative approach is proposed,
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which is to seek solutiong on anisotropic meshes where
more resolution is selectively introduced along directions
of rapidly changing error estimates, hence without nec-
essarily increasing the overall number of mesh points,

In the following, the anisotropic adaptation criterion
is presented and the adaptive strategy and its implemen-
tation for triangular meshes is demonstrated. The strat-
egy of coupling the adaptive library to FEM and FVM
solvers is also studied. This anisotropic strategy is vali-
dated through the menitoring of the adaptation loop and
convergence of the overall solver-adaptation cycle. Fi-
nally, the efficiency of the strategy is demonstrated on
examples of external flow computations through a range
of Mach and Reynolds numbers,

2. ERROR ESTIMATORS FOR MESH
ADAPTATION

Recent years have seen a rapid development of adap-
tation methods based on a posteriori error estimates.
Given a computed solution up, One wants to assess its
quality, more precisely measure the error with respect
to the exact (unknown) solution and from this measure,
adapt the mesh or the method to obtain a uniform, or at
least improved, precision level.

The construction of error estimaiors is thus a crucial
peint in this process. It is ¢lear that, the exact sclution
being unknown, such estimates can only be indicators,
"There have been some formal analyses of properties that
-should be expected from a good estimate.!> Generally
speaking, these formal analyses aim at determining an
upper and a lower bound for the error based on an error
estimator, the error estimator being thus usable to add or
delete mesh points to equi-distribute the error,

The basic idea underlying the error estimator proposed
here is the estimate

E = lju— up| < Cllu ~ Maul]

where ITxu denotes the interpolate of the solution in the
finite element space, C is a constant depending only on
the PDE solved without any minimat or maximal angle
condition to satisfy and || - || denotes a usual functional
norm to measure the error. This inequality means that
controlling the interpolation error will indeed result in
a control of the error on the (FE, FV, FD, etc) solution
itself.

The problem of finding an optimal interpolant has
been addressed by D’Azevedo and Simpson®’ for a
piecewise linear finite element approximation. The case
of higher order interpolants has not yet received much
attention, although the actual theory for linear element
has already been used to efficiently improve results for
higher order methods. The starting point of I} Azevedo
and Simpson’s theory is the idea that the error on a piece~

wise linear interpolation is bounded by a quadratic term,
as in a Taylor series expansion. More precisely, from the
elementary theory of Lagrange interpolation, it is well
known that the interpolation error E{z} at a point x is

given by
f_ — E‘i{]’- i
7 7)Y

whenever # = 0 and r = h are used as interpolation
nodes and g” is the second derivative of the interpolated
function at some peoint. The same reasoning can be ap-
plied on the edge of the meshes, showing that measur-
ing the error on an edge is directly related to the esti-
mation of the second derivative along that edge. Then
comes again the idea that globally minimizing the inter-
polation error is equivalent to equi-distributing this error
or a scaled measure of it, namely the edge length squared
times the second derivative of the soluton. In 2-D, the
mesh that minimizes the interpolation error for a given
nuember of nedes would thus vield only equilateral tri-
angles, but with edge length measured using the second
derivative of the solution. A solution rapidly varying in
one direction, such as a shock wave, would have a large
second derivative in this direction and a small one in the
orthogonal direction, naturally introducing anisotropy in
the length measure and in the mesh. '

|B(z)] = <2,

3. MESH ADAPTATION TOOLS

The adaptation loop is briefly explained in this section.
To obtain a mesh with all edges having approximately
the same value of the error estimator, the mesh is recur-

sively modified. This approach is thought to be cheaper

than generating new meshes, especiafly at the late stages
where there are few differences between the current mesh
and the previous one, :

Input for the adaptive step is thus a background mesh,
with a solution vector and a description of the domain
boundaries. Second derivatives of the selution are then
computed on this mesh and kept unchanged during the
entire adaptation loop. Local modifications are iter-
atively performed until the error estimates, constantly
reinterpolated using the derivative field on the back-
ground mesh, are nearly equal on all edges of the current
mesh. The output is then an adapted mesh with a solution -

" interpolated on it from the one on the background mesh.

3

3.1 Local Improvements

All mesh modificaticns are local and for a triangular un-
structured mesh, four local operations are used:

s adding a node at mid-edge if the measured error is
above the target error,

¢ removing a node if the error is smaller than the target
error on all surrounding edges,
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« moving a node to equi-distribute the error on its neigh-
boring edges,

e swapping the diagenal of the quadrilateral formed by
any pair of adjacent triangles in order to equilibrate
the error estimator over the edges of neighboring two
elements.

If adapting a structured grid, the operations are re-
stricted to node movement, so that the grid structure is
preserved.® Due to the connectivity constraints in that
case, the goal of having the edge error estimates equally
distributed must somewhat be relaxed. The optimal grid
is then defined as one with minimum energy, using anal-
agy with a spring network.

32 Adaptation Loop Strategies

Particular attention has to be paid to the different criteria
driving the adaptation process. For example, the refine-
ment process converges in few sweeps over all edges, and
the same. is true for mesh coarsening. But, alternating
refinement and coarsening can loop infinitely when the
threshold value for cutting an edge into two, and those
for removing an edge to create greater ones, are too close
to each other, All the criteria governing the local opera-
tions must therefore be set in such a way that the overall
Process converges. . :

The node movement is a crucial tool in the current ap-
proach. In fact, while all other processes are discontin-
uous; one chooses to do something or nothing depend-
ing on whether a criterion is above a threshold value,
node movement is a continuous adaptive process. It can
thus perform surgical improvements after a discontinu-
ous Process.

After many tests, the following algorithm is thought to
be the most appropriate:

1. Smooth the mesh after estimating the error by alterna-
tively
a) moving all the nodes iteratively, -
b} swapping all the edges until convergence,
2. Adapt the mesh by iterating the following loop
a) refine all edges above a threshold error estimate,
then move the nodes,
b) remove all nodes whose edges have an error esti-
mate below a threshold value, then move the nodes,
c) swap the edges until convergence, then move the
nodes.
3, Finally, smooth the mesh by repeating loop 1 before
salving the equations again, starting from a reinterpo-
lated solution on the new mesh.

3.3 Coupling Mesh Adaptation to a Solver

The goal of an optimization approach is not only to per-
form a few operations on the mesh and get better results,

4

but to converge the adaptive mesher and solver to an op-
timal solution, on an optimal mesh. This is done by cou-
pling the solver with the mesher in the following cycle:

Given (M, Sn), 2 mesh and a solution on this mesh
at step n, the mesher produces a new mesh M1
and a solution Sy.1/3, the reinterpolation of 5, on
M, y1. A solution Syyy on Mpyy is then obtained
with the sclver starting with Sp41/9 as an inital
guess. The iterations go over until convergence is
reached.

A close coupling provides a maximum of flexibility to
the mesh and permits to follow the evolution of the solu-
tion during the iterative resolution. This is done by fre-
quent adaptation. In fact, it is useless to completely con-
verge the nonlinear equations on an intermediate mesh,
and better results are obtained when the mesh and the
solution are made to converge in a coupled manner. Typ-
ically, about 20 adaptive steps have been used to reach
a converged steady flow, starting from a uniform initial
solution.

4 EVALUATION OF THE EFFICIENCY OF
THE PROPOSED ADAPTATION TECHNIQUE

The efficiency of the proposed adaptation technique is
first demonstrated by a careful monitoring of the adapted
mesh and solution evolution, at a single adaptation cycle
and in an adaptation/solution loop.

Next, the independence of the final adapted mesh and
solution from the starting mesh is established using nu-
merical examples. ' '

Finally, it is demonstrated that using the proposed
mesh adaptation approach, widely different schemes will
practically get identical answers, showing the indepen-
dence of the adaptation technique from any well-posed
flow solver and the wide range of applicability of the
method.

4.1 Convergence of an Adaptation Loop

A test case is presented for which a mesh is adapted fora
viscous laminar flow around a NACA 0012 profile witha -
freestream Mach number of 2.0 and a Reynolds number
of 10 000 (Fig. 2, middle). The optimal mesh (Fig. 2,
bottom) has no resemblance to the initial one (Fig. 2,
top), despite the fact that it is deduced from it using suc~
cessive local alterations. The number of alterations is
represented in Table 1 at each iteration of the loop and
indicates that changes become negligible after five itera-
tions.

With some convergence demonstrated, the question is
to characterize the converged mesh. Figure 3 indicates
that the edge efror estimate is more equally distributed as
adaptation proceeds, finally yielding a Gaussian distribu-
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Figure 2: Initial mesh (top). The error estimator is derived from
second derivatives of the Mach number field (middle) com-
puted on the initial mesh. Final mesh at the end of an adaptation
leop (bottom).

tion respecting the target error limits specified. The ratio
of the maximum to minimum value of the error decreases
from 5 000 to 3 and the standard deviation is reduced by
two orders of magnitude.

Even if the convergence indicators are not monotonic
(refinement results in a decrease of the minimum error
and coarsening in an increase of the maximum) the al-
gorithm of § 3.2 converges towards a mesh that can be
considered adapted for the flow conditions at hand,

4.2 Convergence of the Coupled
Adaptation/Sclution Cycle

We will consider the convergence of the total number of
nodes on successive adapted meshes as an indication of
the convergence of the coupled problem.

As in §-4.1 above, a viscous laminar flow around a

Table 1. Convergence of local improvements during one adap-
tation loop.

swapping

refinement coarsening
#edpes % i nodes % # cdges %
1671 15.32 2225 41.54 2697  24.73
721 177 290  7.53 102 110
62 0.59 69 190 45 043
25 024 25 070 17 016
19 0.18 14 039 14 013
9 009 13 036 11 0.10
10 0.10 160 028 g8 008
8 0.08 8§ 022 10 010
12 011 10 0.28 2 002
7 007 5 014 4 0.04

over tha Edges

——

>
MR
.

8 3 ] y BE
Log10 of ihe Error Estimate over the Edgas -

-2

Figure 3: Distribution of the edge error over the mesh at differ-
ent iterations of an adaptation loop. -

NACA 0012 profile with a freestream Mach number of
2.0 and a Reynoclds number of 10 000 is used to illus-
trate this point, but starting with a different coarse initial
mesh. An indication of convergence is the leveling off of
the number of nodes after a certain number of remeshing
steps. The meshes at steps A, B, C, and D marked on
Fig. 4 are presented on Fig. 5.

Evolillon of the Number of Hodas

0 20 ® ) % 00
Numibor of Mesh Adaptations

Figure 4: Total number of nodes versus adaptationfsolution'

cycles for the Aow over a NACA 0012 at Mach = 2.0 and

Reynolds = 10 000.
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Figure 5: Adapted meshes after 1, 4, 20 and 100 mesher/solver
cycles (siep A, B, C and D in Fig. 4)

A surprising fact is a violent initial refinement, fol-
lowed by a gradual decrease of the number of nodes 1o
an asymptotic value. The few first meshes being not well
adapted, the solutions are polluted with spurious oscil-
lations. An over-refinement of the meshes results at the
beginning in order to correct the solutions and define the
salient features of the flow. When the solution improves
and the main features are detected, the mesher reduces
gradually the number of nodes, bringing to bear all the
techniques presented above. This particular feature of
the present approach makes it easier to start the solution
using rapidly generated coarse meshes.

4.3 Independence of Optimal Solution from Initial
Mesh

It is desirable to verify whether the final adapted mesh
is unique. The question asked is if for flow over, or in,
a given geometry there is a unique mesh that should be
used for each freestream condition, and whether the cur-
rent mesh optimizer can yield that mesh, Intuitively, the
answer is yes, as the scheme has been proven to converge
for a single adaptation step as a post-processor and also
when tightly coupled in a mesher/solver loop.

To demonstrate the uniqueness point conclusively, the
same problem as the previous section is solved on three
vastly different meshes. The flow conditions are sim-
ilar to the previous section. In Fig. 6 left, a common
mesh is used, with refinement around the airfoil, em-
bedded in a much coarser mesh away from the airfoil.

Figure 6 center shows a very coarse mesh in which only -

18 points are used to represent the airfoil. Finally, Fig-

6

ure 6 right shows an intentionally arbitrary and counter-

intuitive mesh, with thousands of nodes in the upper half
and only dozens in the lower half, although the prob-

tem is symmetric. Each of the three figures has below it

the corresponding result, using the finite volume code of
Mohammadi.®1? It is interesting to view in Fig. 6 bottom

the improvement of the three initial solutions towards a

very sharp and crisp final solution. As a matter of fact,

the final solutions look the same simply because the fi-

nal adapted meshes are all similar {o the adapted one of
Fig. 5. Figure 7 shows the initial and final distributions
of the friction coefficient. The left side shows how the

initial distributions are different, and incorrect. The right

side of the figure shows how the three superposed results

are indistinguishable, The percentages of edges having a

given error (log 10 of error) is represented in Fig. 8. The

initia! three meshes have a very large error band. After

adaptation, the three solutions give the same Gaussian er-

ror distribution, with a maximum error reduced ten times

from the initial one.

Irtkial Cf (Exdrados and Intrados) for 3 Test Cases
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Figure 7: Different and “incorrect” Cy on initial meshes (feft)
and identical C; on optimal meshes (right) for the three test
cases.

This example convincingly demonstrates that there is
reason to hope that mesh-independentresults could come
soon and easily, as one can save considerable time by
starting from arbitrary meshes and let the adaptation pro-
cedure “gencrate” the correct and unique mesh, This
may also then lead to user-independent results as the
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Figure 6: Initial meshes (top) and solutions {middle), and final optimal solutioris {bottom) after 123 solverfadaptation cycles starting
from the 3 initial meshes (from left to dght, fine, coarse and arbitrary meshes),

meshing decisions are taken away from the user, who in
the first place has no way of making an educated guess,
let alone definitely know, what is the most appropriate
mesh for a given geometry at various flow conditions, It
will also mean that results will be repeatable, as users
wanting to duplicate some results have only to specify
the error level desired, letting the unique mesh corre-
sponding to this error level be determined by the mesher.

4.4 Independence of Optimal Solution from Solver

A characteristic of the current remeshing-resolution
strategy is the independence of the final result from the
solver used i.e, different solvers give almost the same
final result. One solver turn out to be more efficient in
terms of precision and computing time, but the final
meshes always have the same aspect and nearly the same

7

number of nodes. More than that, the final solutions ob-
tained with the different solvers are all identical, at least
as demonstrated here for finite element computations of
a laminar viscous flow. As a result, a good solution is
more a question of meshers than of solvers.

To justify this claim, numerical solutions obtained
with three different finite element solvers will be pre-
sented. All solvers are based on a primitive variables
formulation of the Navier-Stokes equations. The three
different mixed finite element solvers are labeled as fol-
lows:

P1/(P1-iso-P2): linear elements for density and temper-
ature, Pi-iso-P2 elements for the velocity;

P1/P2: linear elements for density and temperature,
quadratic elements for the velocity;

Censervative P1/P2: linear elements for temperature,

American Institute of Aeronautics and Astropautics
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Figure 8 Percentages of the element edges versus error level
for the three test cases, at the first and final mesh optimization
steps. :

quadratic elements for the velocity and (P1 -+ bubble) el-
ements for density to ensure Jocal conservation of mass,
element by element. This particular formulation ad-
dresses the conservation claim of finite volume methods
versus finite element methods.

The use of mixed FEM dispenses with the addition of

_ any extra artificial viscosity to stabilize the pressure at
© Jow Reynolds numbers or on adapted meshes. For more
details on the solvers, see.!!"14 :

A supersonic laminar flow at Mach = 2 over a
NACA, 0012 was used as a test case. Results are pre-
sented at Reynolds 500 because, at such a low
Reynolds number, the shock is thick and the convergence
behavior is easily seen, Figure 9 presents cuts of the hor-
izontal velocity component in front of the airfeil lead-
ing edge before remeshing. The solutions are substan-
tially different and it really is not obvious which one is
best. After four remeshings, the viscous shock profiles
completely agree. Note that while remeshing, the P1/P2
solver converges a bit faster to the correct shock position.

Another surprising fact is that mesh adaptation im-
proves local conservation, as the solution of the lo-
cally conservative method agrees with those of the other
schemes. - Identical conclusions can be reached using
vastly different finite element and finite volume formula-
tions as well as for higher Reynolds numbers, but cannot
all be covered here for the sake of brevity.

5, CONCLUSIONS

This paper presents a promising approach to the control
of accuracy of CFD calculations and is a step towards
certifiable CFD results, It points the way to the fact that
not enough attention may have been paid to the use of
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Figure 9: Cuts of the horizontal velocity component ¢ over a
NACA 0012 at Mach = 2 and Reynolds = 500, given by
three solvers: on initial mesh (top), after two remeshing steps
(middle) and after four remeshing steps {bottom).

proper meshes when solving fluid flow problems and to
the fact that the task of defining such proper meshes is in-
surmountable unless an automatic way is formulated. In
this paper this is done by using a generic directional mesh
adaptation strategy, based on estimating the truncation
error on mesh edges and coupling it to the flow solver to
dynamically refine/coarsen/swap/move the mesh in such
a way as to equate the lengths of all edges scaled in terms
of second derivatives. This approach, unlike most, not
only does not increase the number of mesh points dis-
proportionately with mesh adaptation, but may result in
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optimal meshes coarser than the initial one,
It is the conclusion of this paper that not only is ac-
curacy controliable by using mesh adaptation, but that
optimal {best and unique) meshes can be automatically
determined, over which most of the CFD panoply of sta-
_ bilization artifices are either not needed or greatly di-

minished in importance. Interestingly, the current work
. also points to the fact that most weli-posed stable nu-
-+ merical schemes, be they of first or second order, give
practically the same answers on optimal meshes, remov-
-. ing somewhat the thunder from under complicated high-
“accuracy schemes designed to fight a numerical evil that
is po longer there once the optimal mesh is used and giv-
ing hope for higher accuracy from simpler schemes. Of
course, this question has to be addressed in more detaiis.

The increased cost effectiveness should not be surpris-
ing if one makes the analogy to the integration of a func-
tion under a curve by Newton-Cotes and Gauss-Legendre
methods. In the first approach, higher accuracy can only
be achieved by an increase of the order of polynomial
approximation, starting at linear, quadratic (Simpson),
etc., quickly becoming cost-prohibitive. On the other
hand, Gauss-Legendre integration asks the more intelli-
gent question of how to select sample points, with corre-
sponding weights, to “exactly” integrate a polynomial of
order 2n + 1, with only n points,

Finally, a standing offer is made to the CFD commu-
nity to use some of the optimal meshes presented in this
paper to recalculate some of their results, using their own
codes, and verify the veracity of the present conclusions.
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